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Experiments in several labs have demonstrated that identical materials brought into repeated 
contact generate unexplained and growing surface charge domains.  Here we show that the growth 
of charge from these experiments can be fit to a previously developed first-principles model for 
contact charging based on feedback of random surface polarizations.  Surprisingly this mechanism, 
which leads to exponential growth in colliding granular beds, can also explain non-exponential 
growth of surface charging, as well as predicting spatio-temporal growth of charge domains and 
their dependencies on material parameters. 

Background: 
Anyone who has looked under a couch knows how assiduously dust can spread and adhere to surfaces.  

The motion and sticking of particles isn’t limited to tiny motes of dust: rubbing a balloon against your hair – or 
even against another balloon – will generate enough charge to make it stick to a wall.  Merely a curiosity at 
home, particle charging is a serious issue.  Michael Faraday himself was hired to investigate a mine explosion 
that killed 95 men and boys: among his findings were that thick layers of flammable coal dust adhered to 
surfaces near the explosion1.  Technologically, a high point in the field was the invention of the photocopier 
by Chester Carlson who had the idea – rejected by consultants as pointless – that charged particles could 
be used to form a permanent image on paper2. 

So how do particles – or more generally surfaces – charge?  In view of the ongoing and historic 
nature of the problem, an observer would be forgiven for believing that the question has been answered, 
however even charging material as commonplace as a child’s balloon is not easily explained3,4.  An 
essential issue in the field is that several laboratories have demonstrated that identical materials charge 
one another after symmetric contact.  In Fig. 1, we summarize these results, showing that identical 
balloons in sliding contact5, identical polycarbonate disks in rolling contact5, and silicone sheets in normal 
contact6 all break symmetry and charge one another.  In these panels, we reproduce voltage and charge 
plots showing that the quantitative charging behaviors in the three experiments appear to behave 
similarly.  In this paper, we analyze this problem and show that this charging behavior is reproduced 
using a recently described first-principles model7,8,9,10.  We show fits of this model to the three experiments 
in each panel of Fig. 1. 

 

Figure 1 – Spontaneous charging of identical materials in three experiments.  (a) Latex balloons 
slid symmetrically in circular motions against one another as indicated in inset, with charging 
measured using a non-contact voltage probe at a fixed distance after each circuit of motion; (b) 
polycarbonate disks in symmetric rolling contact, with charging measured using a different non-
contact probe after each rotation; (c) virgin PDMS sheets in symmetric normal contact, with 
charging measured using an electrometer and Faraday cup after each contact.  Data in panels (a)-
(b) are from Ref. [5], and data in panel (c) are from Ref. [6].  Broken lines show comparison with 
model described in text and shown also in Fig. 3(d). 



 

We propose that the essential physics of contacting surfaces can be described by two lattices of 
identical dielectric particles that are periodically brought into near contact.  Modeling approaches have 
been presented previously7,8,9,10; in the present work, each particle has the same radius, R, and is fixed in 
a close-packed hexagonal lattice as depicted in Fig. 2(a).  We embed two charges within each particle, 
each located ¾R from the particle center.  The magnitudes and angular locations of the charges depend 
on the applied field (to mimic charge induction) and contact between upper and lower lattices (to mimic 
charge neutralization).  In this way, as sketched in Fig. 2(b), if the two charges on particle i are ݍଵ and ݍଶ, then the particle will possess a net charge ݍଵ  ଵݍଶ, and a polarization, ሺݍ െ  Ԧ is theݎ Ԧ, whereݎଶሻݍ
vector connecting the charges, and |ݎԦ| ൌ ଷଶ ܴ.  

 

Figure 2 – Illustrations of charging mechanism.  (a) Induction defined by Eq. [1]: two parallel 
hexagonal lattices of particles, where the electric field on every particle is calculated by summing 
the fields due to all particles on the opposing lattice.  The dark particle is an exemplar in the upper 
lattice whose induced polarization is as shown.  Colors (online) here are only used to distinguish 
upper from lower lattices.  (b) Neutralization defined by Eq. [2]: every particle in each lattice 
contains two charges: ݍଵ, ,ଵݍ ଶ in particle i, andݍ   ଶ in particle j.  Blue (online) here indicatesݍ
negative, and red (online) positive, charges.  The effective fractions of the charges ݍො and ݍො 
nearest the interface between the surfaces are defined geometrically as described in the text, and 
these charges neutralize according to Eq. [2]. 

Evolution of charges is defined as a discrete time mapping, where each time increment represents 
one cycle of bringing the separated surfaces into and then out of contact.  So if particle i at time t has a 
polarization ሺݐሻ, then at time ݐ  1, it will acquire polarization Ԧሺݐ  1ሻ given by the vector sum  Ԧሺݐሻ  Ԧௗ

. The induced polarization, Ԧௗ, is assumed to simply be proportional to the electric field due 
to charges on the opposing surface: 

Ԧௗ  ൌ ߙ  ∑  ሬԦ [1]ܧ

as sketched in Fig. 2(a).  Here α is a constant polarizability and ∑  ሬԦ is the electric field due to all particlesܧ
on the opposing surface.  Only the opposing surface is used for this calculation because particles on 
either surface do not move with respect to one another, and the energy required to change a particle’s 
polarization is considered to be done by the work of moving the surfaces – and their embedded charges – 
relative to one another.  In principle charges on a particle’s own surface also contribute to induced 
polarization, but no work is done – and so no charge separation is produced – by this polarization, and so 
it is neglected in our calculations of surface charge evolution. 

We calculate ܧሬԦ at a fixed separation between surfaces (Δܼ in Fig. 2(a)).  This separation is intended to 
account for the fact that real surfaces (as in the experiments of Fig. 1) are seldom atomically flat but have 
surface imperfections and asperities.   



 

After polarization has been induced according to Eq. [1], neutralization is imposed by requiring the 
vector component of the charges on adjacent contacting surfaces to obey: 

 
ොݍ ՜ 12 ቀݍෝ݅ሺ2 െ ሻߟ  ොݍቁߟෝ݆ݍ ՜ 12 ൬ݍෝ݅ߟ  ෝ݆ሺ2ݍ െ  ሻ൰, [2]ߟ

where ߟ is a neutralization efficiency, and as indicated in Fig. 2(b), ݍො is  the  fraction  of  charge that faces 
downward on the ith particle on the top surface, and ݍො is the fraction of charge that faces upward on the 
nearest particle beneath.  Explicitly, ݍො ൌ  ሺଵ,ଶሻcos ሺ߮ሻ, where ߮ is the polar angle of the polarizationݍ
vector ݎԦ shown in Fig. 2(b).  In this way, if ݎԦ were pointing vertically, ߮ would be 0, and ݍො would be 
whichever charge is facing the interface between surfaces (denoted ݍሺଵ,ଶሻ), while if ݎԦ is pointing off of 
vertical, then the nearest charge would be decomposed into a vertical and a non-vertical component, and 
only the vertical component would participate in neutralization.   

As for the neutralization efficiency, when ߟ ൌ 0, Eq. [2] leaves contacting charges unchanged, and 
when ߟ ൌ 1, Eq. [2] reduces to the average charge, ሺݍ   ሻ/2.  Charge is explicitly conserved by bothݍ
Eq’s [1] and [2]: the total charge on each particle is constant during induction, and the charge of pairs of 
particles is constant during neutralization.   

In previous work7,8,9,10, it was demonstrated that the mechanism of repetitive polarization and 
neutralization defined by Eq’s [1] and [2] leads to exponential growth in charging.  This occurs because 
the electric field defined by Eq. [1] grows multiplicatively with the polarization: a straightforward recipe for 
exponential growth.  In this paper we show that the same mechanism can unexpectedly lead to transient 
growth in surface charging that differs from this recipe in significant ways. 

We present results of this model next, but before doing so we stress two caveats.  First, as with any 
model, it is only an approximation.  It does not describe the microscopic chemistry or physics of how 
charges rearrange to produce the phenomenological behaviors defined by Eq’s [1] and [2].  Several 
groups have published important contributions, for example dealing with changes to effective material 
work functions due to the fields produced by charged particles11,12,13, and with carriers that may be 
responsible for surface charge transport14,15.  Second, the change in polarization on a particle inevitably 
feeds back on itself – i.e. the field from a polarized particle induces a polarization on other particles that in 
turn affect the original particle’s polarization.  In prior work16, we have shown that this feedback converges 
rapidly – e.g. the error compared with the asymptotic state is typically under 0.8% after 2 iterations of 
polarization calculation.  We therefore use 3 iterations in our calculations, but we note that more rapid 
convergence has also been shown to be possible17. 

High neutralization results: 
To explore the charging of surfaces, we perform simulations in which Eq’s [1] and [2] are sequentially 

and repeatedly applied to two close-packed hexagonal lattices of identical 50 × 50 particles, where the 
lattices are separated by Δܼ ൌ 1 particle diameter (as indicated in Fig. 2(a)).  Available data (Fig. 1) are 
produced in experiments in which contact times between surfaces range from 1 second to over an hour6, 
and so we assume that there is ample time for complete neutralization to occur.  Thus we start with the 
case where the neutralization efficiency is 100% (ߟ ൌ 1 in Eq. [2]).  This differs from earlier 
simulations7,8,9,10 of collisional grains in which contact times are short, and so for completeness we follow 
this first simulation with additional simulations in which we investigate the effect of varying ߟ.   

Particles are initialized using small random charges.  Explicitly, each particle is initially neutral, with 
two charges ݍଵ ൌ െݍଶ chosen from a uniform distribution on [–10-6,10-6], and with unit vector ݎԦ/|ݎԦ| 
connecting the charges chosen with random azimuthal and polar angles.  In Fig. 3(a), we show the 
magnitude of the maximum dipole moment, ܲ௫ ؠ  max൫ඃԦ,ඇ൯, among the 50 × 50 pairs of particles for 
polarizabilities ranging from ߙ ൌ 0.01 to ߙ ൌ 1.   

We calculate the maximum rather than the another measure (e.g. the mean of absolute values, ۃหݍ,หۄ) both to provide an unambiguous measure of the fastest growth in a lattice and to facilitate 
comparison with prior work7,8,9,10.  Asymptotically, the fastest growing charges dominate the mean and so 
the two measures produce the same results.  Transient growth, on the other hand, is systematic and 



 

predictable when evaluated using ܲ௫, however we have found that measures such as ۃหݍ,หۄ vary 
erratically as charge domains migrate, compete and annihilate. 

Plots in Fig. 3(a) are on a linear scale, and evidently the growth in polarization is concave down for all 
cases: qualitatively similar to what is seen in experiments (Fig. 1), and distinct from the exponential 
growth reported elsewhere7,8,9,10.   

We note that the direction of concavity can change on a semi-log scale for growth that is slower than 
exponential, and if we instead plot the same data on semi-log axes, we obtain the result shown in Fig. 
3(b), where we see both a concave down regime for shorter times, and an exponential regime at longer 
times.  This is most visible here for the case ߙ ൌ 0.32, but longer trials confirm that this is a general result 
for all polarizabilities – for example in Fig. 3(c), we show an exponential regime for ߙ ൌ 0.01, which 
appears after about 100 contacts. 

We investigate the cause of non-exponential transient growth next, but first we observe that for all ߙ, 
linear plots of the transient regime can be collapsed by simple scaling: ݈ܵܿܽ݁݀ ݐ ൌ ߱ఈ   where the ,ݐ
constant ߱ఈ is found empirically to be 22 ± 1.  In Fig. 3(d), we show three examples of this scaling, and 
we also overlay the black curve from this plot as a broken line alongside experimental data in Fig. 1.  In 
that figure, the broken line only represents the curve in the region of data collapse shown in Fig. 3(d).  
Depending on polarizability, α, used in experiments, charges may grow exponentially outside of this 
region (as shown in Fig’s 3(b)-(c)), or may grow more slowly (as shown in Fig. 3(a)).  Thus the 
comparison shown in Fig. 1 is not definitive; nevertheless it suggests that a mechanism such as we have 
described may be involved in surface charging.   

 
Figure 3 – Simulation results.  (a) Maximum dipole moment evaluated over lattices of 50 × 50 
particles vs. number of contacts under application of Eq’s [1] & [2] for polarizabilities, α, indicated.  
Surface asperities are modeled by taking contact to occur when arrays are ܼ߂ ൌ 1 diameter apart 
 The same plot as in (a) on a semi-log scale: note exponential growth (b)  .(shown in Fig. 2(a) ܼ߂)
occurs after an initial concave-down transient.  (c) ߙ ൌ 0.01 case extended to 500 contacts, 
showing exponential growth after long times.  (d) Concave-down regimes scale: here we display 
linear plots of three exemplars where t is multiplied by a constant scale factor to produce data 
collapse.  Broken curve is overlaid on data from each of the existing experiments in Fig’s 1(a)-(c). 



 

Charging versus polarizability & neutralization: 
To better understand the mechanisms underlying contact charging, we vary polarizability, ߙ, from 0.1 

to 0.9, and neutralization, ߟ, from 0 to 1, in the model that we have defined.  As illustrated in Fig. 4(a) 
through several exemplars at broadly ranging choices of ߙ and ߟ, we find that charge growth is invariantly 
exponential for sufficiently large contact repetitions.  Despite this apparent similarity, qualitatively different 
patterns of charging – both in time and in space – are seen as ߙ and ߟ are varied. 

This is apparent by considering Fig. 4(b), where we plot exponents of growth obtained in the 
exponential regime (for times › 32).  Here we see a systematic confirmation first that most choices of ߙ 
and ߟ produce asymptotically exponential growth rates, and second that distinct regimes of exponential 
growth are identifiable (colored online).  As we will describe, these distinct regimes of growth rates are 
correlated with distinct spatial patterns of growth. 

 

Figure 4 – Charging behaviors of 50X50 2D lattice model.  (a) Exemplars showing exponential 
growth of magnitudes of maximum charges on lattice.  Exponential growth of slowly charging 
examples is not obvious, so in the inset, we expand the semi-log scale in two such cases.  (b) 
Exponential rates of growth (after transient of 32 time steps) of largest polarization, Pmax, as 
function of polarizability, α, and neutralization, η.  Online colorcoding distinguishes patterns 
observed, and black spots identify cases shown in panel (a).  (c) Patterns expressed as α and η 
are varied in 0.01 increments, online colorcoding as in panel (b).  (d) Snapshots of net charge 
magnitudes on upper surface after 50 time steps.  Static domains are steady, the other states 
fluctuation in time (also shown in supplemental videos).  Online colorcoding according to charge on 
logarithmic scale (i.e. red value ൌ  ݈݃ଵ| ܲ௫|, blue value = – |ଵ݈݃ ܲ௫|: see text). 

In Fig. 4(c), we identify these spatial patterns in a more detailed phase diagram.  Here we have 
performed multiple simulations at increments of 0.01 in both ߙ and ߟ and at varying timescales (between 
50 and 500 iterations, until an asymptotic spatial pattern was obtained).  We found four distinct patterns 
(shown as snapshots in Fig. 4(d)) as follows.  

For small ߟ (magenta online in Fig’s 4(c)-(d)) we observe an irregular static array of positively and 
negatively polarized domains.  We’ll discuss this pattern in more detail shortly, but in overview, domains 



 

attain a fixed polarization direction early in the simulation, and consolidate thereafter.  There is some 
jockeying for position during a transient period, and for larger ߙ charges grow more rapidly, but essentially 
the strongest domains establish themselves early and grow in strength – though not in size – thereafter.  
We have remarked that both polarization (Eq. [1]) and neutralization (Eq. [2]) mechanisms are charge 
conserving, and consequently the number, size and magnitude of positively and negatively charged 
domains are comparable.   

For small ߙ on the other hand, individual dipoles correlate little with their neighbors, and no spatial 
patterns are perceptible.  This makes sense since ߙ is the measure of neighbor-neighbor induction, and 
as ߙ ՜ 0, spatial correlation should vanish.  Growth is substantially slower than at larger values of ߙ, but 
nevertheless growth becomes exponential at longer times: this is shown in the inset to Fig. 4(a), where 
we also include a typical case of slow growth without a spatial pattern, at 0.9= ߟ  ,0.1= ߙ.   As expected, 
the iterative nature of the charging mechanism described leads asymptotically to exponential growth for 
any nonzero ߙ. 

At the other extreme, at large ߙ and ߟ, we encounter global oscillations.  The mechanism for the 
emergence of this state can be understood by observing that at large ߟ, the charges nearest the 
contacting surface (nearly) neutralize, and only outermost charges, furthest from that surface, remain 
(sketched in Fig. 5(a)).  Those residual outermost charges grow multiplicatively after repetition of Eq. [1], 
and these charges must be of opposite sign, else charge wouldn’t be conserved.  For strong 
neutralization but weak polarizability, the residual charges diminish in magnitude as depicted in Fig. 5(b), 
however for strong polarizability, the induced charges can in principle exceed the magnitude of the 
existing charges, which causes the ultimate charges to reverse in sign.  This case is depicted in Fig. 5(c), 
and results in the two outermost charges switching signs every time step as they increase in magnitude, 
which is what we see in simulations. 

 

Figure 5 – Charging at large ߟ and ߙ.  (a) For large ߟ, contacting charges neutralize, leaving 
residual charges on surfaces furthest from contact.  These residual charges dominate the resulting 
dynamics.  (b) For large ߟ and small ߙ, induction produces polarization charges (sketched at left of 
panel) that reduce the residual charge magnitudes (as shown at right of panel).  (c) For large ߟ and 
large ߙ, the induced charges can exceed the original charges, and the residual charge therefore 
changes sign every time step. 

Between the extremes of ߟ and ߙ, we find wave-like states as indicated in Fig’s 4(c)-(d).  We term 
these states “traveling” and “irregular” waves (See Supplemental Material at [URL will be inserted by 
publisher] for videos).  Traveling waves move smoothly and continuously, while irregular waves are 
instantaneously similar, but rapidly switch sign.  We interpret the changes in sign as being due to high ߟ 
and ߙ, as described in Fig. 5(a)-(c). 

Apparently, as shown in Fig. 5, simple geometrical arguments can be used to analyze charging 
mechanisms – so for strong polarization and neutralization, outermost surfaces attain opposite charges 
that globally coordinate and switch signs every time step.  Geometrical arguments also provide insights 
into the static domain configuration shown in Fig. 4.  In Fig. 6(a), we show a typical plan view of charges, 
using a logarithmic colormap (online).  The arrangement of domains is never quite regular; nevertheless, 
charge patterns obey clear geometrically based rules. 



 

To understand these rules, note as shown at the left of Fig. 6(b) that two dipoles oriented normal to 
the contact plane will tend to align in parallel, so that negative and positive charges are adjacent.  The 
antiparallel orientation is unstable, as that would place like charges, which repel, nearby one another.  By 
the same reasoning, if the dipoles are oriented in the contact plane, as shown at the right of Fig. 6(b), the 
parallel orientation is unstable, for again this would place like charges nearby.  Instead, such dipoles 
orient either antiparallel, as shown in Fig. 6(b), or in-plane, but skewed with respect to one another (not 
shown).  In Fig. 6(c), we provide a quiver plot of upper (blue online) and lower (green online) dipole unit 
vectors (i.e. all vector magnitudes are plotted as being constant), and we identify parallel and antiparallel 
dipoles that obey the rule described in Fig. 6(b).  Examples of skew dipoles can also be found, but are not 
identified here. 

 

Figure 6 – Static domain pattern at ߟ ൌ ߙ ,0.8 ൌ 0.2.  (a) Charge magnitudes (online colors on 
logarithmic scale).  (b) At the center of each colored spot, dipoles are oriented perpendicular to the 
contact plane, and upper and lower dipoles are parallel.  Between these spots, dipoles are oriented 
in the contact plane, in which case positive charges align with negative ones in an antiparallel 
configuration.  (c) Parallel and antiparallel orientations are identified in quiver plot of the same 
simulation as in panel (a).  Online: green quivers are in the lower lattice; blue are in the upper. 



 

Conclusion: 
It has been known at least since the 16th century that insulating materials charge more readily than 

conducting ones18, and for over 30 years that identical materials can tribocharge one another19.  The 
mechanism by which insulators recruit charge carriers, or by which identical insulators break symmetry to 
choose charged states, has only recently been investigated.   

In the present work, we have shown that aspects of existing data of the charging of surfaces can be 
explained by focusing on dipoles rather than on net charges.  Indeed, by the same token that it is 
mysterious that net charges of opposite signs build in proximity to one another, it is entirely predictable 
that dipoles do so.  Likewise, only in insulators can the mutual reinforcement of nearby dipole moments 
occur.  And as we have shown, if the nearest parts of mutually reinforcing dipoles neutralize, a self-
consistent, charge conserving first-principles model can be constructed that appears to agree with 
existing experimental data.   

In particular, in the limit of long contact times between surfaces – and so high neutralization 
efficiencies – we find that all experimental data, shown in Fig. 1, collapse onto a master curve, as shown 
in Fig. 3(d).  Further, we predict that localized charge domains should be seen for high polarizability and 
low neutralization (e.g. on pristine, high dielectric constant, surfaces6), while as neutralization efficiency 
grows (e.g. through surface contamination by water or other mediators of charge transportt14,15,), 
spatiotemporal states should emerge.  Existing data (Fig. 1) seem to generate steady, or nearly steady, 
charge growth, and more detailed experiments will be needed to determine whether such spatiotemporal 
states in fact occur. 

The simplified simulations that we have presented here beg the question of how, in detail, surface 
transport of charge interacts with polar molecules in bulk insulators20.  This is a fundamental question that 
will require intensive research to resolve in the future.  Our results so far suggest that the underlying 
practical finding – in dissimilar as well as identical insulators – should be that growth of localized charge 
domains is the rule, and that this growth should asymptotically be exponential, though slower transient 
growth can also occur.  Moreover, our results indicate that the well-known lack of reproducibility of 
tribocharging21,22 may be the result of an intrinsic exponential growth mechanism that amplifies 
infinitesimal imperfections, and not due to lack of experimental care, as has long been believed. 
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