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ABSTRACT 
 Like and oppositely charged particles/dust grains in linear shear flows are often driven to 
collide with one another by fluid and/or electrostatic forces, which can strongly influence particle 
size distribution evolution.  In gaseous media, collisions in shear are further complicated because 
particle inertia can influence differential motion.  Expressions for the collision rate coefficient 
have not been developed previously which simultaneously account for the influences of linear 
shear, particle inertia, and electrostatic interactions.  Here, we determine the collision rate 
coefficient accounting for the aforementioned effects by determining the collision area, i.e. the 
area of the plane perpendicular to the shear flow defining the relative initial locations of particles 
which will collide with one another.  Integration of the particle flux over this area yields the 
collision rate.  Collision rate calculations are parametrized as an enhancement factor, i.e. the ratio 
of the collision rate considering potential interactions and inertia to the traditional collision rate 
considering laminar shear only.   For particles of constant surface charge density, the 
enhancement factor is found dependent only on the Stokes number (quantifying particle inertia), 
the electrostatic energy to shear energy ratio, and the ratio of colliding particle radii.  
Enhancement factors are determined for Stokes numbers in the 0-10 range and energy ratios up 
to 5.  Calculations show that the influences of both electrostatic interactions and inertia are 
significant; for inertialess (St = 0) equal-sized and oppositely charged particles, we find that even 
at energy ratios as low as 0.2, enhancement factors are in excess of 2.  For the same situation but 
liked-charged particles, enhancement factors fall below 0.5.  Increasing the Stokes number acts 
to mitigate the influence of electrostatic potentials for both like and oppositely charged particles, 
i.e. inertia reduces the enhancement factor for oppositely charged particles and increases it for 
like charged particles. Uniquely, at elevated Stokes numbers with attractive potentials we find 
collisionless “pockets” within the collision area, which are regions completely bounded by the 
collision area but within which collisions do not occur.  Regression equations to results are 
provided, enabling calculation of the enhancement factor as a function of energy ratio and Stokes 
number.  In total, this study both leads to insight into the collision dynamics of finite-inertia, 
charged particles in shear flows, and provides a means to simply calculate the particle-particle 
collision rate coefficient. 
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I. INTRODUCTION 

 Collisions between micrometer sized charged particles/dust grains have a large influence 

on the behavior of many colloidal [1], aerosol [2,3], granular [4-6], and dusty plasma [7-9] 

systems.  For example, in fluidized beds, dust storms, and volcanic plumes, particle-particle 

collisions lead to charge exchange (even for identical chemical composition particles [4,10-12]), 

which can significantly alter the behavior of a particle-laden flow [13-15].  In aerosols and dusty 

plasmas, oppositely charged particles rapidly aggregate (collide and bind) with one another, 

while the charging of particles to sufficiently high levels of the same polarity stabilizes them 

against aggregation [16-20].  Given the importance of charged particle collisions in particle-

laden flows, numerous efforts have been devoted to developing accurate collision rate models for 

charged particles [21-23].  Many of these efforts consider the combined influences of 

electrostatic potential interactions and thermal energy on particle motion, such that the number of 

collisions per unit volume per unit time (Rij) between particles of type i (size, charge level) and 

type j can be calculated as:   

 ܴ௜௝ ൌ ݇௜௝݊௜ ௝݊          (1) 

where ni and nj are the number concentrations of particles of type i and type j, respectively, and 

kij is the collision rate coefficient.  In particular, in liquid colloids, the approach of Fuchs [24] has 

been used to calculate collision rate coefficients considering Brownian motion (continuum 

regime thermal motion) and combined electrostatic and van der Waals potential interactions (i.e. 

DLVO interactions)[25].  In reduced pressure systems, the effects of thermal energy and 

electrostatic forces have been incorporated into orbital motion limited (OML) theory based 

collision rate coefficient predictions [26-28].  A variety of approaches have also been utilized to 

derive collision rate expressions between the colloidal (diffusive) and low pressure (ballistic) 
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limits [29-33], both for particles with one another as well as particles with ions.  In large part, the 

aforementioned collision rate expressions have shown good agreement with experimental 

measurements [34,35], thus their incorporation into population balance models of particle 

ensembles is commonplace [36]. 

 However, for micrometer sized particles in flowing systems, the influence of thermal 

energy on particle motion is often negligible in comparison to the influence that laminar (linear) 

shear gradients have on particle differential motion.  This differential motion can lead to an 

enhanced rate of collisions (so-called orthokinetic aggregation) between particles as compared to 

consideration of thermal energy alone [37].  In the absence of any electrostatic interactions, the 

collision rate coefficient for spherical particles of radii ai and aj in the presence of a linear shear 

gradient G was first derived by Smoluchowki [38], and is given as: 

  ݇௜௝ ൌ ସଷ ൫ܽ௜ܩ ൅ ௝ܽ൯ଷ
         (2a) 

A number of studies have examined the combined influence of DLVO-like potential interactions 

(wherein particles electrostatically repel one another but attract one another at close approach via 

van der Waals interactions) and laminar shear gradients on particle collisions; collision rate 

coefficients derived considering these two approaches apply specifically to particles in liquid 

colloids [39-41].  However, a collision rate expression considering the combined influences of 

laminar shear and electrostatic potential interactions (both attractive and repulsive), which can be 

applied to particles in gaseous media (including granular systems, aerosols, clouds, and dust 

storms) remains undeveloped, despite the fact that in many gas phase systems, both electrostatic 

interactions and shear play a role in governing particle-particle collisions.  The specific issues 

which remain to be addressed in modeling collisions in such systems are two-fold.  First, when 

following the derivation of equation (2a) but considering attractive electrostatic interactions, the 
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collision area (defined subsequently) approaches infinity.  This complicates calculation of the 

integral required to determine the collision rate coefficient.  Second, unlike liquid colloidal 

suspensions, larger shear gradients can persist in gaseous systems, and as such the influence of 

particle inertia on motion in a combined electrostatic and shear field can be significant.  Prior 

approaches to collision rate coefficient evaluation have neglected particle inertial influences.     

The purpose of this work is to utilize a trajectory based calculation approach to find an 

expression for the particle-particle collision rate coefficient in the presence of a linear shear 

gradient and electrostatic potential interactions, while also accounting for finite particle inertia.  

The resulting calculations are parametrized as an enhancement factor, ߟ௅, such that the collision 

rate coefficient can be calculated in a manner analogous to equation (2a): ݇௜௝ ൌ ସଷ ൫ܽ௜ܩ ൅ ௝ܽ൯ଷߟ௅                                   (2b) 

The sections that follow provide details on the trajectory calculations employed as well as on 

incorporation of trajectory calculation results into enhancement factor calculations.  

Subsequently, calculation results are presented considering simple Coulomb potentials as well as 

fully resolved electrostatic interactions for conducting particles.  We parameterize enhancement 

factors as functions of a dimensionless electrostatic to shear energy ratio, the Stokes number, and 

the particle size (radius) ratio.  The resulting expressions are applicable for calculations of 

particle-particle collision rates in gases wherein both shear gradients and electrostatic effects 

influence particle motion, but with thermal motion negligible. 

 

II. THEORETICAL AND NUMERICAL APPROACH 

In section IIA we derive the non-dimensionalized equation of motion applicable to 

particles used in collision rate determination (considering simple Coulomb and full electrostatic 
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potential interactions), and then in section IIB we discuss the numerical methods employed to 

carry out trajectory and enhancement factor calculations.  Readers not concerned with the details 

of calculations can directly focus on the Results & Discussion section without significant loss of 

scope. 

 

A.  The motion of charged particle pairs in a laminar shear field 

Collisions can be modeled by examining particle pairs (i.e. we consider one particle i and 

a second j).  The equation of motion for each charged particle in a linear shear field of magnitude 

G is given by: ݉ ௗమோሬԦሺ௧ሻௗ௧మ ൌ ݂ ቂݑሬԦ൫ ሬܴԦሺݐሻ൯ െ ௗோሬԦሺ௧ሻௗ௧ ቃ ൅  Ԧ௘                                                                (3)ܨ

where m is the particle mass, ሬܴԦ its position, ݑሬԦ is the fluid velocity field (i.e. ݑሬԦሺݔ, ,ݕ ሻݖ ൌ െ̂݁ݕܩ௭, 

where ݁̂௭ is the unit vector in the z-direction and  x, y, z are coordinates of an arbitrary point in a 

linear shear field with a gradient in the y-direction), and  ܨԦ௘ is the electrostatic force between 

particles. In writing equation (3), Stokes drag is assumed, hence the drag coefficient takes the 

form of ݂ ൌ  where ܽ is the particle radius and μ is the gas dynamic viscosity. We find this ,ܽߤߨ6

is a reasonable assumption for the particle velocities obtained in trajectory simulations here, even 

in situations where the Stokes number is high.  We note however, that we have neglected the slip 

correction factor [42] in our drag formulation.  The slip correction factor could be easily 

incorporated into the subsequently presented dimensionless ratios with minimal modification to 

results. We also neglect the influences of viscous interactions [43] between particles at close 

approach, as well as Saffman lift forces [44].  We anticipate both influences are small for 

submicrometer to supermicrometer particles in the gas phase.  
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The electrostatic force acting on each particle can be obtained by differentiating the 

induced electrostatic potential energy, W:   ܨԦ௘ ൌ െ ௗௐௗ௥೔ೕ  (4)                                                                                                       ݎ̂

where ̂ݎ is the unit vector pointing from the center of the opposite particle to the present particle 

and rij is the scalar distance between particle centers. We examine interactions between non-

conducting and perfectly conducting particles in the dilute limit.  Under these conditions, the 

influence of screening on potentials is negligible (i.e. there is an infinite screening length).  At 

the same time, when particles are far from one another, though potential interactions between 

particles are not screened, the effects of electrostatic forces on particle motion are negligible 

when compared to the effects of shear.  Further, multibody interactions need not be considered in 

the dilute limit, as the probability that a third particle is in the vicinity of two particles closely 

approaching one another is zero.  For non-conducting particles which have not yet collided, a 

simple two-body Coulomb potential is hence assumed, such that the potential energy between  

can be expressed as:  ܹ ൌ ௤೔௤ೕସగఌబ௥೔ೕ                                                                                                       (5) 

where ݍ is the charge carried by each of particles and ߝ଴ is the vacuum permittivity. For perfectly 

conducting particles, we utilize the functional form [45]: 

ܹ ൌ ௤೔మ௖ೕೕିଶ௤೔௤ೕ௖೔ೕା௤ೕమ௖೔೔଼గఌబሺ௖೔೔௖ೕೕି௖೔ೕమ ሻ                                                                                             (6a) 

where ܿ௜௜, ௝ܿ௝ and ܿ௜௝ are the coefficients of capacitance, which are expressed as [46]: 

ܿ௜௜ ൌ ܽ௜ሺ1 െ ଶሻߢ ∑ ఈ೘ଵି఑మఈమ೘ஶ௠ୀ଴                                                          (6b) 

ܿ௜௝ ൌ െ ௔೔௔ೕ௥೔ೕ ሺ1 െ ଶሻߙ ∑ ఈ೘ଵିఈమሺభశ೘ሻஶ௠ୀ଴                                                    (6c) 
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The dimensionless parameters ߙ and ߢ are given by:  

ߙ ൌ ௥೔ೕమି௔೔మି௔ೕమଶ௔೔௔ೕ െ ඨ൬௥೔ೕమି௔೔మି௔ೕమଶ௔೔௔ೕ ൰ଶ െ 1      (6d) 

ߢ  ൌ  ௔೔ାఈ௔ೕ௥೔ೕ             (6e) 

௝ܿ௝ can be obtained by replacing ܽ௜ with ௝ܽ, and vice-versa in the expression of ܿ௜௜.   
We define כݐ ൌ כሬܴԦ ,ݐܩ ൌ ሬܴԦ/ሺܽ௜ ൅ ௝ܽሻ, ݑሬԦכ ൌ െŷ݁כ௭ (where y* the y-coordinate also 

normalized by ai+aj), ܹכ ൌ ଴ሺܽ௜൅ߝߨ4 ௝ܽሻܹ/ݍ௜ݍ௝, ݎ௜௝כ ൌ ௜௝/ሺܽ௜ݎ ൅ ௝ܽሻ,  and ܿכ ൌ ܿ/ሺܽ௜ ൅ ௝ܽሻ. 

The dimensionless equations of motion for particles i and j can then be obtained by combining 

equations (3-5) (for non-conducting particles), or equation (3) and equations (6a – 6c) (for 

conducting particles).  For non-conducting particles the dimensionless equations are: 

ௗమோሬԦ೔כௗ௧כమ ൌ ሺ1 െ θ୫ሻ QS୲ ோሬԦೕିכோሬԦ೔כ௥೔ೕכయ െ ଵି஘ౣሺଵି஘౜ሻS୲ ቆௗோሬԦ೔כௗ௧כ െ כሬԦݑ ቀ ሬܴԦ௜כቁቇ                                          (7a) 

ௗమோሬԦೕכௗ௧כమ ൌ θ୫ QS୲ ோሬԦ೔ିכோሬԦೕכ௥೔ೕכయ െ ஘ౣ஘౜S୲ ቆௗோሬԦೕכௗ௧כ െ כሬԦݑ ቀ ሬܴԦ௝כቁቇ                                            (7b) 

For conducting particles the dimensionless equations are: 

ௗమோሬԦ೔כௗ௧כమ ൌ ሺ1 െ θ୫ሻ QS୲ ோሬԦ೔ିכோሬԦೕכ௥೔ೕכ ௗௐכௗ௥೔ೕכ െ ଵି஘ౣሺଵି஘౜ሻS୲ ቆௗோሬԦ೔כௗ௧כ െ כሬԦݑ ቀ ሬܴԦ௜כቁቇ                            (8a) 

ௗమோሬԦೕכௗ௧כమ ൌ θ୫ QS୲ ோሬԦೕିכோሬԦ೔כ௥೔ೕכ ௗௐכௗ௥೔ೕכ െ ஘ౣ஘౜S୲ ቆௗோሬԦೕכௗ௧כ െ כሬԦݑ ቀ ሬܴԦ௝כቁቇ                                         (8b) 

ୢWୢכ୰౟ౠכ can be evaluated through the dimensionless form of equations (6a – 6c): 

כܹ ൌ ஘౧௖ೕೕכ ିଶ௖೔ೕכ ାଵ/ఏ೜௖೔೔כଶሺ௖ೕೕכ ௖೔೔כ ି௖೔ೕכ మሻ                                                                                             (9a) 

ܿ௜௜כ ൌ θ୰ሺ1 െ ଶሻߢ ∑ ఈ೘ଵି఑మఈమ೘ஶ௠ୀ଴                                                            (9b) 
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ܿ௜௝כ ൌ െ ஘౨ሺଵି஘౨ሻ௥೔ೕכ ሺ1 െ ଶሻߙ ∑ ఈ೘ଵିఈమሺభశ೘ሻஶ௠ୀ଴                                                   (9c) 

with the definitions ߙ ൌ ௥೔ೕכమିଵାଶ஘౨ሺଵି஘౨ሻଶ஘౨ሺଵି஘౨ሻ െ ඨ൬௥೔ೕכమିଵାଶ஘౨ሺଵି஘౨ሻଶ஘౨ሺଵି஘౨ሻ ൰ଶ െ ߢ ;1 ൌ  ஘౨ାఈሺଵି஘౨ሻ௥೔ೕכ ; θ୯ ൌ ௤೔௤ೕ 
and θ୰ ൌ ௔೔௔೔ା௔ೕ.  In calculating dimensionless potentials with equations (9b) and (9c) the number 

of terms retained in series (mt) is determined by calculating the value of the series ∑ ቀ ఈ೘ଵି఑మቁஶ௠ୀ௠೟ାଵ  and the series ∑ ቀ ఈ೘ଵିఈమቁஶ௠ୀ௠೟ାଵ , for equations (9b) and (9c), respectively.  

These series have sums which are straightforward to calculate and are the respective upper limits 

for the series terms in (9b) and (9c).  mt is selected such that the upper limits are smaller than 

0.01.   

The dimensionless equations of motion show that the system, and hence the enhancement 

factor, is governed by six parameters: Q, St, θ୫, θ୤, θ୰, and θ୯ (though θ୯ only comes into play 

for conducting particles). They are the ratio of potential to kinetic energy, Stokes number, 

particle mass ratio, drag coefficient ratio, size ratio, and charge ratio, respectively.   Q, St, θ୫, θ୤ 
are calculated with the equations: Q ൌ ି௤೔௤ೕସగఌబ௙೔ೕீሺ௔೔ା௔ೕሻయ                    (10a) 

 St ൌ ௠೔ೕீ௙೔ೕ            (10b) 

θ୫ ൌ ௠೔௠೔ା௠ೕ           (10c) 

θ୤ ൌ ௙೔௙೔ା௙ೕ           (10d) 

wherein ݉௜௝ ൌ ௠೔௠ೕ௠೔ା௠ೕ  and ௜݂௝ ൌ ௙೔௙ೕ௙೔ା௙ೕ.  Q takes on positive values for oppositely charged 

particles and negative values for like charged particles.  To reduce the number of cases necessary 
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to examine, we note that for equivalent density particles in the continuum regime, θ୫ ൌ
൬ ௔೔య௔೔యା௔ೕయ൰ ൌ ቀ ஘౨యଵିଷ஘౨ାଷ஘౨మቁ and θ୤ ൌ θ୰ [47]. Additionally, under the assumption that irrespective of 

polarity, particles have similar surface charge densities, θ୯ ൌ ஘౨మିଵାଶ஘౨ି஘౨మ for oppositely charged 

particles and θ୯ ൌ ஘౨మଵିଶ஘౨ା஘౨మ for like-charged particles.  This reduces the number of cases to 

examine, as now the enhancement factor is a function of Q, St, and θ୰ only.     

 

B. Enhancement factor calculation 

We use trajectory calculations to determine the collision rate/enhancement factor for 

selected Q, St, and θ୰.  In calculations, initially, particle j is placed at the origin of the coordinate 

system, with dimensionless Cartesian coordinates x*,y*, and z* (each normalized by ai+aj).   

Particle i is released from a surface which is perpendicular to the direction of the shear flow, and 

is infinitely (100 dimensionless units in simulations) far from particle j (with an initial velocity 

of magnitude y*, the dimensionless y coordinate).  As noted in the prior section under such 

conditions particle velocities are defined only by the shear field; the potential is negligible 

initially.  For each condition examined the equations of motion solutions are obtained via the 

Euler method with a fixed maximum distance traveled by each particle during a timestep (0.01 

dimensionless units).   A collision is considered to occur when the dimensionless center-to-center 

distance is less than 1.0.   As demonstrated in the “Calculation validation and relative 

trajectories” section subsequently, we find this simple numerical algorithm is sufficient for 

accurate collision rate coefficient/enhancement factor determination under all circumstances.  

Sample trajectories are depicted in figure 1a, which specifically displays two views of particle i 

and particle j trajectories for two different initial release positions of particle i.  For both sets of 
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trajectories, attractive potential interactions between particles are considered, but there are 

different Q and St values, leading to a collision (upper images, with particles partially orbiting 

one another prior to collision) and non-collision (lower images), respectively.     

For each input Q, St, and θ୰, a dimensionless collision area (ܵ௖כ), can be obtained by 

recording the initial positions of particle i which lead to collision.  With this dimensionless 

collision area, the dimensional collision rate would be expressed as: ݇௜௝ ൌ ൫ܽ௜ ൅ ௝ܽ൯ଶ ׭ כௌ೎כܵ݀ݒ ൌ ൫ܽ௜ ൅ ௝ܽ൯ଷܩ ׭ כௌ೎כܵ݀כݕ                (11)                              

where v denotes the initial relative speed between particles, which, in the case of linear shear, is 

equivalent to (ai+aj)Gy*.  In the absence of potentials, particles take straight line trajectories, and 

collisions only occur when the particles’ initial center to center distance is less than or equal to 

the sum of their radii.  ܵ௖כ is hence a circular area of dimensionless radius of 1.0 with its center at 

the origin of the polar coordinate system.   Substituting ݀ܵכ ൌ כݕ and  ߠ݀כߩ݀כߩ ൌ   ሻߠcos ሺכߩ

into equation (11),  where כߩ and ߠ are the dimensionless polar coordinate radial position and 

angle, respectively, leads to equation (2a) in the absence of potential interactions.   

Considering potentials, the dimensionless enhancement factor can then be obtained by 

combining equation (2b) and equation (11): 

௅ߟ ൌ ଷ ׭  ௬כௗௌכೄ೎כ ସ           (12) 

We adopt slightly different approaches for enhancement factor calculations considering attractive 

and repulsive interactions.  For attractive interactions, we utilize a polar coordinate system on the 

release plane for type i particles.  The pole of the polar coordinate system is located at the center 

of the collision area, and the polar axis is parallel to the y axis.  We define ߩ௕כ  as the 

dimensionless boundary of the collision area.  In doing so, we assume that for כߩሺ ߠሻ ൑  ,ሻߠ ሺכ௕ߩ
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collision can occur, and outside of it collision does not occur.  Equation (12) is then expressed 

as: 

௅,଴ߟ ൌ 3 ׬ ׬ כሻఘ್ߠሺ ݏ݋ଶܿכߩ ሺ ఏሻ଴ഏమ଴                               (13)      (attractive potentials)  ߠ݀כߩ݀

where the subscript “0” denotes the “baseline” enhancement factor calculated with the 

aforementioned ߩ௕כ  assumption (collision occurs). For 30-50 specific ߠ values (variable for 

different input conditions), ߩ௕כ  is determined by monitoring particle trajectories releasing particle 

i at a dimensionless radius of 1.0 and then at successively larger radii; ߩ௕כሺ ߠሻ  corresponds to the 

largest radial location at which collision occurs.  ߩ௕כሺ ߠሻ is not bounded as ߠ approaches 2/ߨ 

because the initial velocity difference between particle i and j goes to zero, and because of the 

long-range nature of the Coulomb potential.  This complicates the calculation of the integral in 

equation (13).  We hence divide the collision area into N individual areas with the angle 

occupied by the nth area ranging from ߠ௡ିଵ to ߠ௡. The contribution to collisions for each 

individual area can be calculated as: ߛ௡ ൌ ׬ ׬ ೙ሺ ఏሻ଴ఏ೙ఏ೙షభכሻఘ್ߠሺ ݏ݋ଶܿכߩ ,ߠ݀כߩ݀ ݊ ൌ 1,2, . . , ܰ െ 1                           (14) 

ேߛ ൌ ׬ ׬ ಿሺ ఏሻ଴ഏమఏಿషభכሻఘ್ߠሺ ݏ݋ଶܿכߩ  (15)                                                          ߠ݀כߩ݀

The baseline enhancement factor is expressed as: ߟ௅,଴ ൌ 3ሺ∑ ௡௡ୀே௡ୀଵߛ ሻ             (16a)                            

To evaluate equations (14) and (15), expressions for ߠ௡, ߩ௕כ௡ሺ ߠሻ and ߩ௕כேሺ θሻ need to be 

specified. We let ߠ௡ ൌ గଶ ሺ1 െ ଵ଼೙ሻ, though note that the choice of this expression is arbitrary, and 

adopt it simply because it rapidly approaches గଶ at large n.  We also adopt a function of the form: 

ሻߠ ௡ሺכ௕ߩ ൌ ௡ሺܣ ଵഏమିఏሻ஻೙ ൅  ௡ are determined from the results ofܥ ௡, andܤ ,௡ܣ ௡.  The coefficientsܥ
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trajectory calculations yielding  ߩ௕כ௡ሺ ߠሻ on the interval ߠ௡ିଵ ൑ ߠ ൑  ௡.  A depiction of theߠ

dimensionless collision area formed on the כݔ -כݕ plane, with ߠ ,כߩ௡,  ߩ௕כ௡ሺ ߠሻ, and ߛ௡ each 

labelled, is provided in figure 1b.  A regression example result for determination of  ܣ௡, ܤ௡, and ܥ௡ is provided in the supplemental information.  ߩ௕כேሺ ߠሻ is the boundary for the collision area 

which consumes the angle from ߠேିଵ to గଶ, and approaches infinity as ߠ ՜ గଶ. Because we can 

only use finite simulation data to fit ߩ௕כேሺ ߠሻ, there is some uncertainty in ߩ௕כேሺ ߠሻ, which further 

leads to the uncertainty of ߛே. However, we remark that there is no uncertainty in determination 

of ߩ௕כ௡ሺ ߠሻ and ߛ௡ for n < N.  Furthermore, as N increases, the value of ߛே decreases. Therefore, 

to compute ߟ௅ in the presence of attractive potentials, we iteratively increase N until the 

inequality ఊಿ∑ ఊ೙౤సNషభ౤సభ ൏ 0.01 is satisfied, and then approximate ߟ௅,଴ ൌ 3ሺ∑ ௡௡ୀேିଵ௡ୀଵߛ ሻ.  Because the 

assumed functional form for ߠ௡converges quickly to గଶ and because the assumed form for ߩ௕כ௡ሺ ߠሻ 

captures trajectory calculation results well, N ≤ 5 is employed in most instances. 

 For low St simulations, the assumption that collision occurs for all כߩሺ ߠሻ ൑  ሻ isߠ ሺכ௕ߩ

found valid.  However, at St = 5 and St = 10, the two largest Stokes numbers examined, 

“pockets” within the collision area are found.  These are regions of initial positions for which כߩሺ ߠሻ ൑  ሻ and collision does not occur, but which are completely circumscribed by aߠ ሺכ௕ߩ

region of initial positions for which collision does occur.  Such cases require corrections to the 

enhancement factor; to determine the bounds of pockets we examined trajectories with particle i 

released from a structured square grid within the bounds of ߩ௕כሺ ߠሻ, with a grid spacing of 0.01 

dimensionless units.  From these calculations we extract ߩ௜כሺߠሻ and ߩ௢כሺߠሻ, the inner and outer 

radii of the pocket at the angle θ, respectively, as well as ߠଵ and ߠଶ, the minimum and maximum 
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angles where the pocket exists .  The enhancement factor is then calculated correcting for the 

pocket area: 

௅ߟ ൌ ௅,଴ߟ െ 3 ׬ ׬ ሻఏమఏభߠሺכ݅ߩሻߠሺכ݋ߩߠ݀כߩሻ݀ߠሺ ݏ݋2ܿכߩ  (attractive potentials)      (16b) 

For repulsive interactions, the collision area is bounded, and in converse to the 

collisionless pockets found for attractive potentials, collisions only occur for ߩ௜כሺߠሻ ൑ כߩ ൑ߩ௢כሺߠሻ.  The integral in equation (12) can thus be evaluated directly by summing up values of כܵ݀כݕin the region where collision occurs; this region can be determined by releasing particle i 

from a structured squared grid (again with a grid spacing of 0.01 dimensionless units, and with 

particle i released on the grid nodes). 

 

III. RESULTS AND DISCUSSION 

A. Calculation validation and relative trajectories 

As enhancement factor calculations require implementation of trajectory calculations and 

subsequent numerical integration, it is critical to validate the method by determining 

enhancement factors through alternative means.  We compare simulation results to those 

calculated more directly considering infinite Stokes number (St ∞, which signifies the 

influence of drag is negligible) with both attractive and repulsive Coulomb potentials.  Though 

this situation is highly unphysical, as in order for shear to have an influence on particle motion 

the drag force must be significant, neglecting drag enables determination of the collision area 

boundaries directly from the conservation of energy and angular momentum for the colliding 

particles.  Derived in the supplemental information following the approach of Vasil’ev & Reiss 

[48] but incorporating linear shear in lieu of thermal motion, the enhancement factor for St ∞ 

considering attractive Coulomb potentials can be calculated as: 
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௅|S୲՜ஶߟ ൌ 3 ׬ ׬ ሻඨభమାభమටଵାߠሺ ݏ݋ଶܿכߩ ఴQౙ౥౩మ ሺಐሻS౪   ଴ಘమ଴  (17a) (attractive)  ߠ݀כߩ݀݀

For the repulsive Coulomb potential, the enhancement factor is expressed as: 

௅|S୲՜ஶߟ ൌ 3 ׬ ׬ ඨଵାమቂQכݕ݀כݔ݀כݕ S౪ൗ ቃ೤כమ ି௬כమ଴ඨభశටభశఴቂQ S౪ൗ ቃమ  
ඨభషටభశఴቂQ S౪ൗ ቃమ     (repulsive) (17b) 

Equation (17b) applies for negative values of Q, and for sufficiently large Q it does not result in 

real numbers; in these instances ߟ௅|S୲՜ஶ ൌ 0.  The consequence of St ∞ is that in equations 

(7a) and (7b) the drag term (rightmost term) can be neglected, with which it is evident that 

trajectory calculation results, similar to equations (17a) and (17b), are dependent primarily on the 

parameter Q/St (which is the ratio of electrical energy to initial particle translational energy).    

Equations (17a) and (17b) calculations are plotted in comparison to trajectory calculation results 

in figures 2a and 2b, respectively.  Across multiple orders of magnitude in Q/St, we find 

excellent agreement with another for both attractive and repulsive collisions; in most 

circumstances the two approaches agree to within 1% of one another, supporting the use of 

trajectory calculations for enhancement factor determination.   

In total, we determined ηL for more than 400 distinct St, Q, and θr combinations, 

considering attractive and repulsive potentials, both with the Coulomb and conducting 

electrostatic potential functional forms.  Tables S1-S4 in the supplemental information 

summarize calculation results for St = 0, 0.5, 1.0, 5.0, and 10; each presented ηL is the result of 

more than 100 trajectory calculations, up to 2000 trajectories for instances where potential 

influences are large.  In subsequent sections we discuss the results of these calculations 

considering attractive and repulsive interactions, respectively.  However, first we examine 

selected relative trajectories of particles in the presence of attractive collisions in figure 3a, 
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considering complete electrostatic potential interactions.  The boundary for collision, ൫y୧כ െy୨כሻଶ ൅ ൫z୧כ െ z୨כ൯ଶ ൌ 1, is marked in the figure for each condition displayed. Particle motion at St 

= 0, the inertialess limit, is examined with simplified, first order equations of motion; these 

equations can easily be derived from equations (8a-8b).  Elevated Stokes number relative 

trajectories result from direct implementation of equations (8a-8b).   At St = 0 - 1, the displayed 

trajectories reveal that at smaller initial separation distances (smaller y୧כ െ y୨כ in figure 3), 

collision occurs, while above a critical value, there is no collision.  Additionally evident is that 

particles may “overshoot” one another (i.e. z୧כ െ z୨כ becomes negative prior to collision) and 

many instances particle relative kinetic energy can approach zero at a relative location near y୧כ െ y୨0 = כ, where there is little-to-no fluid driven differential motion.  In such instances with 

attractive potentials, particles will be directed to collide-with one another; this evident first for 

one of the trajectories displayed at St = 1.  At higher Stokes numbers (5 and 10), the overshoot 

and directed motion towards collision are even more pronounced, and in addition we find that 

particles can take orbiting-like trajectories, completing an entire revolution about one another.  

Experimentally, in the presence of differential settling (gravity) and electrostatic interactions, 

orbiting-like trajectories have been observed in the gas-phase [5]; simulations here suggest that 

similar trajectories can be driven by shear and electrostatic forces.  Interestingly, we also find at 

elevated Stokes number instances where collision does not occur in a narrow initial separation 

distance region, with the precise bounds of this region dependent on θ.  This is evidenced in 

figure 3b, which displays plots of all initial relative coordinates in trajectory calculations leading 

to collisions.  The collisionless pockets are evident in figure 3b plots for St = 5 and St = 10.  

Such collisionless pockets, which necessitate the use of equation (16b) in enhancement factor 

calculations, only persist in instances where linear shear, inertia, and electrostatic interactions all 
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have an influence on particle relative motion; they are not present for St = 0 (no inertia) 

conditions, St = ∞ (no shear gradient) conditions, and Q = 0 (no electrostatic interactions) 

conditions.  Pockets are hence a unique feature of charged particle collision dynamics in gaseous 

media where particles can attain sufficiently high inertia.   

 

B. Enhancement factor for attractive potentials 

Though a simpler problem to examine, collisions in the inertialess limit (St = 0) are of 

interest for smaller particles, hence we examine this scenario first.  Considering the Coulomb 

potential only and attractive potentials, the inertialess enhancement factor as Q ∞ can be 

analytically derived: ߟ௅|S୲՜଴,Q՜ஶ ൌ 3πQ         (18) 

Equation (18) leads to a dimensional collision rate coefficient which agrees exactly with the 

diffusion limited collision rate coefficient [24] at high potential energy to thermal energy ratios; 

this is because in both the laminar shear case and in the diffusive limit, only electrostatic forces 

and drag influence particle motion at high potential energy.  In figure 4, we plot ηL as a function 

of Q considering both Coulomb and conducting electrostatic potentials at variable particle size 

ratios (θr) for St = 0.   Considering only the Coulomb potential, the particle size ratio is found to 

have a minimal influence on the enhancement factor; size influences are more pronounced for 

the complete electrostatic potential, with the largest enhancement factors observed for equal 

sized particles with the electrostatic potential.  Also noteworthy is that even for small values Q 

(i.e. Q = 0.1) the enhancement factor takes on values greater than 1.5 for all examined 

conditions.  In air at 300 K with a shear rate of 10 s-1, Q = 0.1 corresponds to a modest surface 
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charge density of 44 nC m-2, hence calculations suggest that charged particle collisions in shear 

flows cannot be accurately modeled without considering the influence of the charge itself.   

 Plots analogous to figure 4 but for Stokes numbers in the 0.5-10 range are displayed in 

figure 5.  Qualitatively, plots at elevated Stokes number are similar to the curves obtained for 

inertialess particles; ηL 1 as Q 0, the highest enhancement factors are obtained for equal sized 

particles subjected to full electrostatic potentials, and at larger Q, ηL scales linearly with Q.  

However, enhancement factors for all Q are reduced at elevated Stokes numbers, e.g. for Q = 

0.21, ηL decreases from 2.26 to 1.89 and then to 1.24 as St increases from 0 to 0.5 and then to 10, 

for equal sized particles subject to the electrostatic potential.  At larger Q, more pronounced St 

effects are evident, and ηL at Q = 1.56 evolves from 14.74 to 5.48 as St increases from 0 to 10.  

The decrease in ηL can be partially (but not entirely) attributed to the collision pockets formed at 

high Stokes number; for example at Q = 5.97, St = 10, and θr =0.2, we find ηL,0 = 21.0 while the 

pocket correction (equation 16b) is 2.2 (leading to ηL = 18.8).   These results collectively show 

that coupled with the influence of charge is the influence of particle inertia, and that neither can 

be neglected outright in modeling charged particle collisions in gaseous shear flows.     

The influence of potentials on the enhancement factor is not well described by an 

additivity approximation, i.e. ߟ௅ ് 1 ൅ 3πQ.  To parameterize results we fit results for equal 

sized (and hence equal but opposite charge level) particles to the functional forms: ߟ௅ ൌ 1 ൅ ଷሾܾଵܾܳߨ3 ൅ ሺ1 െ ܾଵሻ exp ቀെ ௕మொ ቁሿ       (19) 

These functional forms match the large and small Q limiting functional forms by design.  The 

values of b1, b2, and b3 provided in tables 1 and 2 for the Coulomb and complete electrostatic 

potentials, respectively, are found to match calculations extremely well (to within 1% of 

calculation results in most circumstances).   
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C. Enhancement factor for repulsive potentials 

In all circumstances where long-range, repulsive interactions between particles are 

present, there will be a value of Q (absolute) above which the enhancement factor is zero.  

Therefore, an analogous expression to equation (18) need not be developed for repulsive 

potentials.  Figure 6 displays plots of the enhancement factor versus –Q for St = 0 – 10, 

considering both repulsive Coulombic and complete electrostatic potentials (with the latter a 

repulsive potential at large separation distances, and an attractive potential at close separation 

distances).  For repulsive potentials, again the enhancement factor is higher for the complete 

electrostatic potential in comparison to the Coulomb potential, which is attributable to the close 

range attraction incorporated into this potential form.  While for purely attractive interactions 

particle inertia leads to decreased enhancement factors with increasing St, for repulsive 

potentials, the enhancement factor increases with increasing St, and drastically so.  For example 

at Q = -0.63, with St = 0, particle-particle collisions will not occur, irrespective of particle size 

ratio.  Under the same conditions but with St = 10, the enhancement factor remains above 0.55 

(for all potentials and size ratios), suggesting that though repulsive interactions decrease the rate 

of particle-particle collisions, it remains similar in magnitude to that for uncharged particles.   

For equal sized particles, we fit repulsive potential results to the functional form: ߟ௅ ൌ ܿQଶ ൅ ሺܿQ଴ ൅ 1/Q଴ሻQ ൅ 1,    |ܳ| ൏ Q଴;   ߟ௅ ൌ 0,  |ܳ| ൒ Q଴   (20) 

Regression values for c and Q0 (the absolute value of Q above which collisions no longer occur) 

are provided in tables 3 and 4 for the Coulomb and complete electrostatic potentials, 

respectively. 
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D. Comparison to diffusion limited collision rates 

An interesting comparison is the collision rate for oppositely charged particles in the 

presence of a laminar shear gradient to that predicted by the diffusion limited reaction theory 

[31,36,49], i.e. evaluation of whether Brownian motion or differential fluid motion has a greater 

influence on charged particle collisions.  Consideration of inertialess, equal sized particles and 

the Coulomb potential enables direct derivation of 
௞೔ೕหಽ௞೔ೕหಳ, the laminar shear to Brownian motion 

collision rate coefficient: 

௞೔ೕหಽ௞೔ೕหಳ ൌ ൫1 െ ሺെΛܳሻ൯݌ݔ݁ ൭ ଵଷగொ ൅ ቆܾଵ ൅ ሺ1 െ ܾଵሻ݁݌ݔ ቀି௕మொ ቁቇ൱   (21)  

where Λ ൌ ீ௙೔ೕ൫௔೔ା௔ೕ൯మ௞்  is the shear energy to thermal energy ratio (kT is the thermal energy).  

Equation (21) is plotted in figure 7 for selected values of Λ.  Immediately apparent is that only in 

instances of high Λ (larger than 3π) and modest values of Q (below 1) will the laminar shear 

collision rate exceed the Brownian motion collision rate.  In converse to prior sections, which 

demonstrate the importance of considering both charge and inertial influences on particle-

particle collisions in shear flows, figure 7 clearly shows that such phenomena need only be 

considered at high Λ.  As Λ approximately scales with the cube of the particle radii (neglecting 

non-continuum drag effects), shear based collisions hence become significant above a critical 

size, determined by Λ ൌ 3π.  In air at 300 K, with G = 10 s-1, the critical particle radius is 1.78 

μm, while at G = 1 s-1, the critical radius increases to 3.85 μm.  Though density dependent, 

particles in this size range would still have Stokes numbers close to 0 (St < 0.001 for unit density 
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particles under both example conditions); with shear gradients in the 100-102 s-1 range Stokes 

number influences on collisions manifest themselves for particles with radii in excess of 10 μm. 

 

IV.  CONCLUSIONS 

 We have developed and utilized a trajectory based approach to determine the 

enhancement factor for collisions between charged particles in a laminar/linear field in a gas, 

accounting for finite particle inertia.  Electrical effects are parameterized by the electrical energy 

to shear energy ratio (Q), while inertial effects are parameterized by the Stokes number (St). 

With the enhancement factor, particle-particle collision rates can be calculated simply via 

equation (2b).  We provide regression equations to better facilitate enhancement factor 

calculations for equal sized particles charged to equal levels.  Based on our computations, we 

make the following concluding remarks: 

1.  In gaseous systems with appreciable shear gradients, the interplay between particle 

charge and particle inertia can strongly impact particle-particle collision rates.  Use of 

simplified models of particle-particle collisions (i.e. equation (2a)) may lead to highly 

inaccurate predictions of collision rates, for both oppositely charged particles (where 

equation (2a) leads to underprediction) and particles of the same polarity (where it 

leads to overprediction).  Particle inertia is found to lessen the influence of charge on 

collision, both for oppositely charged and like-charged particles, though not to the 

extent that charge effects can be ignored.  

2. At moderate to large Stokes numbers (i.e. 5-10), we find collisionless pockets in the 

collision area for attractive potentials, which are regions of relative initial particle 

positions where collision does not occur, but which are completely circumscribed by 
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relative initial positions which lead to collision.  To our knowledge such pockets have 

not been observed previously in examining particle-particle collision rates in liquid 

media or considering other forms of differential motion (i.e. settling), and appear to 

be a unique result of inertia, shear, and electrostatic interactions all influencing 

particle motion.   

3.  For charged particles (as well as uncharged particles, though not examined here), 

shear based motion need only be consider for modest Q levels and high shear energy 

to thermal energy ratios (above 3π).  The shear energy to thermal energy ratio is 

strongly dependent on particle size, and is also influenced by gas viscosity, 

temperature, and through the friction coefficient, mean free path (if non-Continuum 

drag is considered).  Above a critical size for any given system, shear induced motion 

is significantly more important than Brownian motion in driving particle-particle 

collisions.    More refined analysis will be required to consider instances where shear 

induced motion, electrostatic interactions, inertia, and Brownian motion [50]  all 

influence particle dynamics. 

4. The collision rate described in this work refers to the rate of initial collisions between 

two particles in a dilute system; whether particles bind and aggregate, rebound and 

exchange charge, or recollide [5] has not been considered here.  To investigate these 

phenomena in future work the approach employed here will need to be coupled with 

models of adhesion (i.e. more detailed short range potential interactions than the 

models employed here), charge exchange upon collision, and exchange of momentum 

and energy upon collision.  Also not examined were aspherical particles and 

aggregates [23,51-53]; this will require consideration of alignment and rotation in 
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flow, as well as an appropriate drag coefficient [54].  Finally, many instances the 

dilute approximation is not valid, and multi-body particle interactions (particularly 

electrostatic) will need to be considered in future collision modeling efforts. 
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Table 1.  Equation (19) regression parameters for equal sized particles considering the attractive 
Coulomb potential. 

St b1 b2 b3 
0 0.5104 0.2302 1.0000 

0.01 0.5389 0.3103 1.0174 
0.02 0.5364 0.2991 1.0074 
0.05 0.5297 0.3070 0.9916 
0.1 0.5321 0.3319 0.9638 
0.2 0.5208 0.3170 0.8985 
0.5 0.5253 0.3973 0.7672 
1 0.5168 0.4734 0.6349 
2 0.4689 0.5177 0.5141 
5 0.2681 0.4106 0.4149 
10 0.1584 0.4022 0.3805 

 

Table 2. Equation (19) regression parameters for equal sized particles considering the attractive 
electrostatic potential. 

St b1 b2 b3 
0 0.9949 32.2759 1.0000 

0.01 0.9790 5.0819 1.0160 
0.02 0.9748 7.8983 1.0141 
0.05 0.9909 2.5547 0.9743 
0.1 0.8426 0.5888 0.9511 
0.2 0.9671 2.0743 0.8931 
0.5 0.9241 1.4361 0.763 
1 0.8738 0.7967 0.6251 
2 0.7882 0.5944 0.5072 
5 0.6521 0.4555 0.3994 
10 0.2601 0.0933 0.3132 

 

 
 
 
 
 
 
 
 
 
 
 



27 
 

Table 3. Equation (20) regression parameters for equal sized particles subjected to the repulsive 
Coulomb potential.  

St ۿ ࢉ૙ 
0 4.745 0.4348 

0.01 4.689 0.4389 
0.02 4.679 0.4348 
0.05 4.498 0.4348 
0.1 4.249 0.4308 
0.2 3.689 0.4308 
0.5 2.111 0.4348 
1 0.888 0.4836 
2 0.331 0.6211 
5 0.123 1.0445 

10 0.062 1.7392 
 

Table 4. Equation (20) regression parameters for equal sized particles subjected to the repulsive 
electrostatic potential. 

St ۿ ࢉ૙ 
0 2.510 0.6322 

0.01 2.471 0.6379 
0.02 2.479 0.6321 
0.05 2.431 0.6321 
0.1 2.328 0.6321 
0.2 2.130 0.6321 
0.5 1.542 0.6332 
1 0.759 0.6575 
2 0.226 0.7820 
5 0.078 1.2542 

10 0.038 2.0282 
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Figure 1.  (a) Example results for trajectory calculations, wherein particle j is placed in the 
center of a linear shear field, and particle i is placed at a specific location at a large “z*” distance 
from particle j.  The trajectories displayed correspond to different Q and St values, as well as 
different initial positions, with the upper set corresponding to a collision, and the lower 
corresponding to a non-collision.  Particle j only moves in response to the shear field after 
electrostatic forces brought about by the close approach of particle i move it from its original y* 
position.  (b)  A depiction of the dimensionless collision area formed considering attractive 
potentials on the y*-x* plane. 
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Figure 2.  The calculated enhancement factor in the presence of laminar/linear shear considering 
(a) attractive and (b) repulsive Coulomb interactions between particles in the St ∞ limit.  Open 
symbols: trajectory calculation results.  Lines:  equation (17a) and equation (17b) predictions. 
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Figure 3.  (a)  Selected relative particle trajectories (i.e. the motion of particle i from the 
perspective of particle j) for particles initiated on the y*

, z* (x* = 0) plane.  Black lines denote 
collision, while red lines denote non-colliding trajectories.  The blue line denotes the bound ൫ݕ௜כ െ ൯ଶכ௝ݕ ൅ ൫ݖ௜כ െ ൯ଶכ௝ݖ ൌ 1, hence it is the collision boundary.  (b)  Points corresponding to 
initial relative release points leading to collision.  Collisionless pockets are evident at St = 5 and 
St= 10.  For all instances, Q = 1.56 and θr = 1.0, with the full electrostatic potential considered.   
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Figure 4.  The enhancement factor considering attractive potential interactions for St = 0.  The 
black dashed line denotes equation (18) predictions. 
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Figure 5.  The enhancement factor considering attractive potential interactions for St = 0.5-10.  
The legend provided in Figure 4 applies to all displayed curves. 
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Figure 6.  The enhancement factor as a function of –Q for repulsive interactions. 
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Figure 7.  The ratio of the laminar shear collision rate coefficient to the Brownian motion 
collision rate coefficient for oppositely charged particles, considering the Coulomb potential with 
St = 0. 
 


