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The concept of a hyperuniformity disorder length h was recently introduced for analyzing volume
fraction fluctuations for a set of measuring windows [Chieco et al. (2017)]. This length permits a
direct connection to the nature of disorder in the spatial configuration of the particles, and provides a
way to diagnose the degree of hyperuniformity in terms of the scaling of h and its value in comparison
with established bounds. Here, this approach is generalized for extended particles, which are larger
than the image resolution and can lie partially inside and partially outside the measuring windows.
The starting point is an expression for the relative volume fraction variance in terms of four distinct
volumes: that of the particle, the measuring window, the mean-squared overlap between particle and
region, and the region over which particles have non-zero overlap with the measuring window. After
establishing limiting behaviors for the relative variance, computational methods are developed for
both continuum and pixelated particles. Exact results are presented for particles of special shape,
and for measuring windows of special shape, for which the equations are tractable. Comparison is
made for other particle shapes, using simulated Poisson patterns. And the effects of polydispersity
and image errors are discussed. For small measuring windows, both particle shape and spatial
arrangement affect the form of the variance. For large regions, the variance scaling depends only
on arrangement but particle shape sets the numerical proportionality. The combined understanding
permit the measured variance to be translated to the spectrum of hyperuniformity lengths versus
region size, as the quantifier of spatial arrangement. This program is demonstrated for a system of
non-overlapping particles at a series of increasing packing fractions as well as for an Einstein pattern
of particles with several different extended shapes.

The structural uniformity of a many-body system may
be studied in terms of fluctuations in the number [1, 2]
and volume fraction [3–5] of objects inside measuring
windows of equal size but different locations. At one
extreme, a totally random arrangement exhibits large
fluctuations that are Poissonian, such that the volume
fraction variance for large L scales as σφ

2(L) ∼ 1/Ld,
where L is the width of the measuring windows and
d is dimensionality. By contrast, a “hyperuniform” [1]
or “superhomogeneous” [2] arrangement exhibits smaller
sub-Poissonian fluctuations that decay more rapidly as
σφ

2(L) ∼ 1/Ld+ε with 0 < ε ≤ 1. At the ε = 1 ex-
treme, two straightforward hyperuniform arrangements
are “shuffled lattice” [2] and “Einstein” [6] patterns,
where particles are effectively bound by square-well and
harmonic potentials, respectively, to fixed crystalline lat-
tice sites and are independently displaced as though by
thermal energy. If the root mean square displacement is
large compared to the lattice spacing, then the arrange-
ment appears quite random to the eye. In such cases, the
underlying crystalline order is well hidden.

There has been growing interest in hyperuniformity be-
cause it occurs jointly with the existence of special ma-
terials properties. Examples include jamming in amor-
phous materials [4, 5, 7–10], complete optical band gaps
in disordered photonics materials [11–15], and reversibil-
ity/irreversibility in periodically driven systems [16–18].
Hyperunformity is also important in the arrangement of
photoreceptors in the retina [19], and in the large-scale
structure of the universe [2]. Unfortunately, hyperuni-
formity can be quite delicate to diagnose [9]. Clean
power-law behavior, over many decades, are needed to
convincingly establish the value of ε and determine if it is

nonzero. For polydisperse systems, the signature of hype-
runiformity is absent in number but not volume-fraction
fluctuations. Plus, as shown here, particle shape imparts
systematic features to the functional form of σφ

2(L) that
have nothing to do with spatial arrangement of the parti-
cles, and that can extend out to many times the particle
width. These difficulties are compounded by finite size ef-
fects: Measurements of σφ

2(L) must incorrectly decreas-
ing to zero as L approaches system size because allowed
measuring windows all strongly overlap and contain the
same particles. In reciprocal space, finite size errors in
the spectral density are not so dramatic, being statistical
rather than systematic [20, 21].

To help diagnose the uniformity of particle arrange-
ments we recently introduced a “hyperuniformity disor-
der length”, h(L), that can be extracted from σφ

2(L)
data [6, 22]. This was done in the context of both point
and “pixel” particles, whose width equals the resolu-
tion/precision po of the experiment/simulation. This is
convenient for actual data coming from digital cameras,
where po is the pixel width; however, preprocessing is re-
quired to identify each particle and set the value of its
central pixel to particle volume divided by voxel volume,
po
d. The intuitive meaning of h is to specify the distance

from the boundary of the measuring windows over which
fluctuations are important. It scales as h ∼ L for Pois-
sonian arrangements, where a fixed fraction of the entire
volume is important, and is constant for strongly hyper-
uniform arrangements with ε = 1. For Einstein patterns,
the asymptotic value is about half the root mean square
displacement. In general, for σφ

2 ∼ Ld+ε the scaling is
h ∼ L1−ε and value of h is bound by L/2 as the up-
per limit for a totally random arrangement. Thus the
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value of h(L) as well as the form of h(L) versus L have
direct meaning, both physically and in comparison with
the bounds. By contrast, prior uses of σφ

2(L) and the
spectral density χ(q), the reciprocal space analogue, for
disordered systems focus on scaling behavior and make
no use of the actual values of σφ

2(L) and χ(q).
In this paper we develop the formalism for finding the

real-space spectrum h(L) for experimental or simulated
arrangements of extended particles, which have nonzero
volume VP larger than the voxel volume po

d, and hence
spread across multiple pixels. One goal is to enable appli-
cation of “hyperuniformity disorder length spectroscopy”
(HUDLS) to digital video data, directly, without the pre-
processing steps of finding the positions and volumes of
every particle and creating a corresponding pixelated im-
age. The key ingredient is prediction of the volume frac-
tion variance for a totally random arrangement of the
same objects. This was relatively straightforward for
pixel particles [6]. By contrast, as our main topic, it
is more complicated for extended particles because they
may lie partially inside and partially outside a measuring
window.

We begin by discussing how to extract σφ
2(L) and its

statistical uncertainty from image data. Then we show
how to compute the variance function for totally random
particle arrangements, first for pixel particles as review
and then for extended particles as a new result. This is
done for both pixelated and continuum particles of arbi-
trary shape and size. After developing the general meth-
ods and examining special limits, we evaluate the vari-
ance function for particles of various specific shapes and
we demonstrate the validity of the predictions by anal-
ysis of simulated 2-dimensional random arrangements.
Lastly, as a small demonstration, we analyze h(L) for
two types of non-random arrangements of extended par-
ticles: non-overlapping particles, and Einstein patterns.

I. IMAGE PROCESSING

The primary measurable is the variance σφ
2(L) for

fluctuations in the volume fraction φ occupied by par-
ticles inside measuring windows of volume VΩ ∝ Ld

placed throughout a d-dimensional image. Here L rep-
resents the width of the window, e.g. the side length of
a hypercubic window or the diameter of a hyperspher-
ical window. Other window shapes are possible, and
can be implemented using a dimensionless window func-
tion H(x, y, z, . . . ;L) whose integral over space equals the
window volume VΩ. Usually H is taken as a step function
(1 inside and 0 outside), but a Gaussian or Lorentzian
etc. could also be used to help smooth out noise in ex-
perimental data. Raw image data from simulation or ex-
periment consist of binary or grayscale “intensity” values
I(x, y, z . . .) where the coordinates specify the location of
the cubic pixels, or voxels, of side-length po and volume
po
d. Ideally, images are normalized such that the volume

of a particle is VP =
∑
Ipo

d, where the sum is over the

pixels covered by the particle. Then the volume frac-
tion for a particular measuring window equals the sum
of intensity values divided by the number of pixels in the
window. This is to be computed for many window lo-
cations, from which the average and variance are to be
found. The average is just the volume fraction φ of the
entire sample. The variance σφ

2(L) depends on window
size and the nature of the particle arrangement; it is the
key quantity to be analyzed per the following sections.
For this we define a relative variance as

Vdata(L) =
σφ

2(L)

φ
. (1)

With this normalization by φ, the relative variance will
be seen to have a large-window asymptote of V →
〈H2〉VP /VΩ for random (Poisson) arrangements of parti-
cles of volume VP , no matter what the volume fraction or
particle shape or window shape. In general, the window
shape does not affect scaling

The standard procedure is to compute σφ
2(L) from

the list of volume fractions for a large number of ran-
dom locations for a measuring window of a given size [1].
Here, instead, we use a Fourier technique to compute
the list of volume fractions for all possible locations of
the measuring window. The basis for this is that the
sum of intensity values in a given window equals the
convolution of the image with the window function H.
Therefore, by the convolution theorem, F−1[F(H)F(I)]
is a d-dimensional matrix where each entry is the sum
of intensity values for a window at a location specified
by the indices. For pixelated image data, F is the dis-
crete Fourier transform as implemented for example in
Mathematica by the Fourier function. While we present
the formalism in general and give calculations for several
specific particle- and window shapes, all simulation tests
are for two-dimensional systems and square L × L step-
function windows with H constructed of 0s and 1s.

For samples of finite size it’s important to understand
the possible errors that can arise. The statistical uncer-
tainty of the volume fraction variance may be estimated
as

∆σφ
2 = σφ

2
√

2/(s− 1), (2)

where s is the number of independent samples. For the
Fourier method, s is simply the ratio of image volume to
window volume. To our knowledge statistical uncertainty
was not estimated prior to Ref. [6], where the volume
fraction variance was found by standard procedure and s
was estimated as the volume of the image that was cov-
ered by the randomly-chosen set of measuring windows,
divided by window volume. Ref. [6] also shows how to
estimate the statistical uncertainty for small windows,
where the measured distributions are not Gaussian. It
is important to note that Eq. (2) does not represent the
degree of noise, i.e. the smoothness, of σφ

2(L) versus L
results for one image. Indeed a given spectrum is per-
fectly smooth for the Fourier method since all possible
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window locations are samples. Noise in σφ
2(L) versus L

only arises when the image is undersampled in the tra-
ditional method of placing, say, 104 windows at random
locations. What Eq. (2) truly represents is the scatter
of σφ

2(L) at a given L for an ensemble of statistically
equivalent patterns.

This Fourier method has several advantages over the
usual procedure. First, it is simple to implement, espe-
cially for cubic windows. It is fast. It gives better statis-
tics, since all possible window locations are used. It al-
lows for easy estimation of s in computing the statistical
uncertainty of the variance. And it can be implemented
for extremely large systems, if small-scale features are
not of interest, by suitable coarse-graining.

Prior to variance computation, it is important to cor-
rect for experimental data that are unnormalized or that
have known artifacts. If the light illumination/collection
fields are flat, then the measured digital image data
for bubbles, colloids, grains, etc. may be written Im =
αI + Ia + Ig where I is the true signal, α is a normal-
ization factor, Ia is an additive constant, and Ig is a
Gaussian random variable of zero mean. Then the true
volume fraction and variance are φ = (φm − φa)/α and
σφ

2(L) = (σm
2 − nBσg2)/α2, where nB = (L/po)

d is the
number of pixels in the window.

II. PIXEL PARTICLES

We begin by recalling the results of Ref. [6] for arrange-
ments of a mixture of different pixel particle species with
“volumes” VPi

= Iipo
d. Such a pixel pattern could rep-

resent point particles, or it could be a “central pixel”
representation of extended particles of actual volume
VPi

. In either case, the intensity of each pixel is in-
cremented by +Ii for each particle of species i that is
centered upon it, and the volume fraction equals the
average intensity per pixel. For random “multinomial”
pixel patterns, the intensity of each pixel is randomly
drawn from {0, I1, I2, . . .} with some set of probabilities
{1 −

∑
qi, q1, q2, . . .}. Then only one particle at a time

resides on each pixel, and the relative variance for cubic
measuring windows of volume VΩ = Ld was computed in
Ref. [6] to be

σφ
2(L)

φ
=

(
1− φ

〈IP 〉

)
〈IP 〉pod

Ld
, (3)

where 〈IP 〉 =
∑
φiIi/φ is the volume-fraction weighted

average particle intensity. For random “Poisson” pixel
patterns, particles are placed at random – including on
top of each other, and the relative variance was instead
found to be σφ

2(L)/φ = 〈IP 〉pod/Ld. This same result
holds for a random multinomial pattern if particle vol-
umes are all large, such that the intensity Ii = VPi

/po
d

is large and the average probability qi = ρipo
d = φi/Ii

for a pixel to be occupied by species i is small. In such

cases the relative variance is more simply

V(L) ≡ σφ
2(L)

φ
=
〈VP 〉
Ld

, (4)

where 〈VP 〉 =
∑
φi(Iipo

d)/φ = 〈IP 〉pod is the volume-
fraction weighted average particle volume.

When the arrangement of particles is not random, i.e.
if it has some degree of uniformity or order, the vari-
ance must be smaller than the upper bound given by
Eqs. (3,4). Then we may define a hyperuniformity dis-
order length h(L) such that fluctuations occur only for
particles lying in the boundary volume [Ld − (L− 2h)d]
of thickness h near the surface of the measuring windows
[6]. Specifically, h is defined from Vdata(L) = (σφ

2/φ)data
by the equivalent expressions

Vdata(L) =
〈VP 〉
Ld

[
Ld − (L− 2h)d

Ld

]
, (5)

= V(L)− V(L− 2h)

(
L− 2h

L

)d
, (6)

where V(L) = 〈VP 〉/Ld is the relative variance for a ran-
dom arrangement of pixel particles. We shall see that
the first of these expressions also holds for extended par-
ticles in the limit Ld � 〈VP 〉, and that the second holds
in general where V(L) is the relative variance for a ran-
dom arrangement of the same objects.

III. EXTENDED PARTICLES

Analysis of Vdata(L) measurements is based on com-
parison with the prediction V(L) for a totally random
arrangement of particles of the same type. In this sec-
tion we develop the necessary machinery and put it to
use for a few different extended particles.

We begin with general monodisperse particles of vol-
ume VP , number density ρ, and average volume fraction
φ = ρVP . The average number of particles that over-
lap with measuring windows of volume VΩ is N = ρVR,
where VR is the volume of a region that is larger than
VΩ according to the non-zero size of the particles. This
can be written as N = (VR/po

d)q where (VR/po
d) is the

number of pixels on which an overlapping particle may
be centered, and q = ρpo

d = φpo
d/VP is the probabil-

ity for a given pixel to have a particle centered upon it.
For a random arrangement the variance in the number
of overlapping particles is then either σN

2 = N if par-
ticles are placed totally at random (Poisson statistics),
or σN

2 = N(1 − q) if particle centers are not allowed to
overlap (binomial statistics). If the image resolution is
good, then q is small and the distinction between Pois-
son versus binomial randomness vanishes. Therefore we
henceforth assume Poisson statistics, without much loss
of generality. Next, the volume fraction variance is given
by the volume variance as σφ

2 = σV
2/VΩ

2. In turn the

volume variance is σV
2 = σN

2〈VQ2〉 where 〈VQ2〉 is the
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mean-squared overlap volume for particles that are at
least partially inside the measuring window. Combin-
ing these ingredients, the relative variance defined by
V(L) = σφ

2(L)/φ for a random arrangement is

V(L) =
VR〈VQ2〉
VPVΩ

2 . (7)

This is the first fundamental equation of HUDLS. Four
different volumes are involved, all of which depend on the
window size except for the particle volume. Eq. (7) holds
for any shape of particle and measuring window, and for
continuous or pixelated space of any dimension. Note,
crucially, that φ does not appear on the right-hand side;
therefore, the volume fraction-dependence of σφ

2(L) for
random patterns is exactly canceled by the normalization
factor of φ. For random patterns, the relative variance is
independent of φ and may be computed from the right-
hand size of Eq. (7) based on just the geometries of a
single particle and the measuring window.

A. Polydispersity

Real systems are rarely monodisperse. For the gen-
eral case of polydisperse particles, the volume fraction
φ =

∑
φi is the sum over different particle species with

volume fractions φi = ρiVPi set by the individual number
densities and particle volumes. For random configura-
tions with Poisson statistics, the above argument works
through to give V =

∑
Wi[VRi〈VQi〉/(VPiVΩ

2)] where
Wi = φi/φ. Thus polydispersity is handled by a vol-
ume fraction-weighted average of the monodisperse ex-
pectation, just as seen earlier for pixel particles. For the
remainder of the theory section we thus focus attention
on evaluating the right-hand side of Eq. (7) for individual
particles of various shape.

B. Limits

To check calculation results, the limiting behavior of
Eq. (7) for small and large measuring windows can be
evaluated as follows. For small L, and pixelated space,
we first write the particle volume as VP =

∑
Ipo

d =
nP 〈IP 〉pod, where nP is the number of pixels covered
by the particle and 〈IP 〉 is the average intensity of the
pixels in a particle. The smallest measuring window is
VΩ = po

d, i.e. one voxel, for which the measuring window
equals the volume VR = nP po

d covered by all nP particle
pixels. The mean-squared overlap volume is therefore
〈VQ2〉 = (1/nP )

∑
(Ipo

d)2 = 〈IP 2〉po2d where 〈IP 2〉 is
the mean-squared intensity of all the pixels in a particle.
Plugging into the right-hand size of Eq. (7), the relative
variance is thus expected to have an intercept of

V(po) = 〈IP 2〉/〈IP 〉. (8)

This reduces to Io for pixel particles of volume VP =
Iopo

d, as expected from Eq. (4). Note that Eq. (8), and
the analogous limit V(0) = 〈IP 2〉/〈IP 〉 for continuous
space, both hold even if the measuring windows are not
step functions.

For very large measuring windows, VΩ � VP , partially-
overlaping particles are far less numerous than fully-
enclosed particles and hence VR = VΩ becomes a good
approximation. And similarly the mean-squared over-
lap becomes 〈VQ2〉 = 〈H2〉VP 2 where H(x) is a hat
function that specifies the measuring window, normal-
ized such that VΩ =

∫
H(x)dx, 〈H〉 = 1, and 〈H2〉 =∫

H2(x)dx/VΩ. For pixelated space, these integrals be-
come discrete sums. With these ingredients, the rela-
tive variance for random patterns is then expected from
Eq. (7) to vanish as

V(L)→ 〈H2〉VP /VΩ. (9)

For step-function measuring windows of volume VΩ = Ld,
and any shape, 〈H2〉 = 1 holds and the limiting behavior
becomes

V(L)→ VP /L
d. (10)

This agrees with the known result that the variance de-
cays as 1/Ld for random point patterns, and shows how
the proportionality constant exactly equals the particle
volume. It also matches Eq. (4); therefore, for large L,
the relative variance for extended particles becomes equal
to that for the central pixel representation.

C. Computation Methods

In evaluating Eq. (7) for the given shapes of the par-
ticle and measuring window, only the numerator poses
difficulty. For continuum particles and windows, one ap-
proach is to use a Fourier method since the overlap of a
particle I(x) with a measuring window H(x) can be writ-
ten as a convolution. The variance is set by the square of
this overlap, averaged over possible relative placements of
particle and window. This is given by Parseval’s theorem
as

VR〈VQ2〉 =

∫
|H̃Ĩ|2dk/(2π)d. (11)

For a cubic measuring window of volume VΩ = Ld, for
example, the transform of the boxcar hat function is
H̃(k) = Ldsinc(kxL/2)sinc(kyL/2) · · · .

The numerator of Eq. (7) may also be evaluated by
direct integration in the continuum limit. For clarity
and for ease of translating to discrete sums for pixelated
images, we write it out explicitly in one dimension. The
particle is imagined to extend from x = 0 to x = pm
and to have “volume” VP =

∫ pm
0

I(x)dx. Two nontrivial
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kinds of overlap are involved:

O1(xo) =

∫ xo

0

I(x)dx, (12)

O2(xo) =

∫ xo+L

xo

I(x)dx (13)

The first is for when the particle extends only some dis-

tance xo into the measuring window; the second is for
when the entire window is covered by a portion of the par-
ticle. The third kind of overlap is a constant, O3 = VP ,
for when the particle is entirely inside a step-function
measuring window. The numerator of Eq. (7) is given by
squaring these and integrating over all possible relative
placements xo of particle and window:

VR〈VQ2〉 =


2

∫ L

0

[O1(xo)]
2dxo +

∫ pm−L

0

[O2(xo)]
2dxo L ≤ pm, (14)

2

∫ pm

0

[O1(xo)]
2dxo + VP

2(L− pm) L ≥ pm. (15)

The factors of 2 appear because the particles are assumed
to be symmetric and can extend part-way into the win-
dow from either side.

For one dimensional pixelated images, we imagine the
particles to cover pixels i = 1 to i = pm/po and to have

“volume” VP =
∑pm/po
i=1 I(i)po. As above there are two

non-trivial particle-window overlap possibilities,

O1(n) =

n∑
i=1

I(i)po, (16)

O2(n) =

n+ L
po
−1∑

i=n

I(i)po. (17)

The first is for when the first n pixels of the particle
extend into the measuring window; second is for when
the entire window is covered by a portion of the parti-
cle starting at pixel n. And similar to the continuum
case, the numerator of Eq. (7) is given by squaring these
and summing over all possible relative placements n of
particle and window:

VR〈VQ2〉 =


2

L
po
−1∑

n=1

[O1(n)]2po +

pm−L
po

+1∑
n=1

[O2(n)]2po L ≤ pm, (18)

2

pm
po
−1∑

n=1

[O1(xo)]
2po + VP

2(L− pm + po) L ≥ pm. (19)

Here the final factor (L− pm + po) comes from po times
the number of ways to place the particle entirely inside
the window.

D. Results

The first several examples are for cubic step-function
measuring windows, VΩ = Ld, for both pixelated and
continuous space, and a variety of different particles.
This is followed by examples with radially-symmetric
spherical and Gaussian measuring windows, for contin-

uous two- and three-dimensional space. These should
cover most cases of interest for analyzing experiments
and simulations.

1. Pixel particles

The easiest use of Eq. (7) is for the case of monodis-
perse pixel particles of volume VP = Iopo

d. Since such
particles either lie entirely inside or entirely outside the
measuring windows, the measuring region and window
are equal, VR = VΩ = Ld. And the mean-squared over-
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lap is exactly 〈VQ2〉 = VP
2. Plugging these four volumes

into Eq. (7) then gives the relative variance for a random
arrangement of pixel particles as

V(L) = VP /VΩ = Iopo
d/Ld. (20)

This is exact, for any packing fraction and any window
size, and recovers the prior result quoted in Eq. (4).

2. Rectangular particles

The first new case is for particles with constant in-
tensity Io that cover a rectangular region of more than
just one pixel. We start with a one dimensional rect-
angular particle of length p, that covers p/po pixels and
has volume VP = Iop. The sums in Eqs. (16-19) with
I(i) = Io are readily evaluated. Dividing VR〈VQ2〉 by

VPVΩ
2 = IopL

2 then gives the predicted relative vari-
ance for random particle placements as

V1(L, p) = Io


Lp− (L2 − p2

o)/3

Lp
L ≤ p, (21)

Lp− (p2 − p2
o)/3

L2
L ≥ p. (22)

This function satisfies four checks: It is continuous at L =
p, satisfies the expected limits V1(po) = Io and V1(L)→
Io(p/L) for large L� p, and for p = po reduces to the d =
1 pixel particle result of Eq. (20). The limit of continuous
space, where there is a continuum of measuring window
overlap possibilities, is given by taking po = 0. The form
of the variance in this limit may be verified two ways.
The first is by the Fourier method, Eq. (11), using a

particle transform of Ĩ(k) = Iopsinc(kp/2). The second
is by direct integration using Eqs. (12-15). Note that the
effect of pixelated space (i.e. of po > 0) is non-trivial in
that the form of Eqs. (21-22) cannot be guessed from the
continuum limit, e.g. by supposing L→ L− po.

For a rectangular particle VP = Iopxpy · · · in higher
dimensions, with cubic measuring windows, the integrals
and sums are all separable. Therefore the relative vari-
ance is the product

V(L) = V1(L, px)V1(L, py) · · · (23)

of the 1-dimensional result (with just one factor of
Io). For small L, the leading behavior is V(L)/Io =
1 − 2(

∑
1/pi)(L − po)/3 + O(L − po)

2. But if po is
first set to zero, then the expansion is V(L)/Io = 1 −
(
∑

1/pi)(L/3) + . . . with no factor of two. For large L,
the asymptotic behavior is V(L) = VP /L

d.

3. Continuum examples

In experimental grayscale images, the intensity profile
is typically brightest in the middle of the particle. For

continuum Gaussian particles in d = 1 dimensions, we
take I(x) = Io

√
2/π exp[−2(x/p)2]. The corresponding

volume is VP = Iop where the “particle length” p is twice
the standard deviation of the intensity profile. Using the
Fourier method, we find the relative variance to be

V1(L) = Io

√
π(L/p)erf(L/p)− {1− exp[−(L/p)2]}√

π(L/p)2
.

(24)
The intercept is V1(0) = Io/

√
π, in accord with

〈IP 2〉/〈IP 〉. For large L the relative variance expands
as V1(L) = Io[(p/L) − (p/L)2/

√
π + O(1/L3)], with the

expected leading behavior. For higher dimensions, just
as for rectangular particles, the d = 1 result may be mul-
tiplied together according to Eq. (23). We were unable
to compute the relative variance for pixelated Gaussian
particles. Judging from the pixelated result for rectangu-
lar particles, it would be quite different from substituting
L→ L− po in Eq. (24). For real images, which are pixe-
lated, Eq. (24) becomes correct in the limit p� po that
the particles are large.

As another one dimensional continuum example, we
take I(x) = Io(2/π)/[1 + (2x/p)2]. This is a Lorentzian
particle with volume VP = Iop, where p is the full-width
half-max of the profile. Using the Fourier method we
compute the relative variance as

V1(L) = Io
2(L/p) arctan(L/p)− ln[1 + (L/p)2]

π(L/p)2
. (25)

The intercept is V1(0) = Io/π and the large-L behavior
is V1(L) = Io[(p/L) − (2/π)(p/L)2 + O(1/L4)], both in
agreement with the expected limits. For higher dimen-
sions, the product of Eq. (23) does not correspond to a
radially-symmetric Lorenztian particle since the position
variables in the intensity profile are not separable.

4. Sine-squared particles

Since it was not possible to compute a pixelated ver-
sion of a Gaussian particle, we tried a few approximate
alternatives. We succeeded with parabolic and quar-
tic profiles of form I(i) = Imax{4(i − 1/2)(po/pm)[1 −
(i − 1/2)(po/pm)]}m with 1 ≤ i ≤ pm/po; however,
the results are quite messy even for the particle vol-
ume. Perhaps surprisingly, the sums can be evalu-
ated and are actually simpler for sine-squared particles:
I(i) = Io sin2[π(i − 1/2)po/p], with 1 ≤ i ≤ 2p/po and p
being the full-width half-max. For this profile, the vol-
ume is VP = Iop, exactly, and the relative variance is
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V1(L) = Io


2L(L2 − 6Lp− p2

o)(C1 − 1) + 3p2
o[2p+ (L− 2p)CL + 4LC2]− 3p3

o(C1/S1 + 2/S2)SL

48L2pS2
2 L ≤ 2p, (26)

(6Lp− 4p2 + p2
o) + (3p2/π2)(1 + 4C2)/Sc

2

6L2
L ≥ 2p, (27)

where C1 = cos(πpo/p), C2 = cos[πpo/(2p)], CL =
cos(πL/p), S1 = sin(πpo/p), S2 = sin[πpo/(2p)], SL =
sin(πL/p), and Sc = sinc[πpo/(2p)]. This result is ver-
ified to be continuous at L = 2p and to have the ex-
pected limits of V1(po) = 〈IP 2〉/〈IP 〉 = (3/4)Io and
V1(L) = Io[(p/L) + O(p/L)2]. As a further check, the
continuum limit of po → 0 matches the result from the
integration method, Eqs. (12-15).

5. Spherical measuring windows

Prior work typically uses spherical measuring windows,
since this is simple to implement with the randomly-
placed measuring window method for computing the vari-
ance. It’s not obvious how do this for pixelated space.
In the continuum limit, the Fourier transform of a radial
unit step function is H̃R(k) = 2πR2J1(kR)/(kR) and

H̃R(k) = 4πR3[sin(kR)− kR cos(kR)]/(kR)3 in two and
three dimensions, respectively, where k = |k| and J1(x)
is the Bessel function of the first kind. For d = 2 circular
particles of radius r and intensity Io, and circular mea-
suring windows of radius R, the relative variance is then
given by the Fourier method as

V2(R) = 8Io

∫ ∞
0

[
J1(x)

x

J1(xR/r)

xR/r

]2

xdx (28)

where x = kr is a dimensionless integration variable.
This evaluates to a large number of algebraic, logarith-
mic, and polylogarithmic terms, as well as separate cases
for when the measuring window is larger or smaller than
the particles. For d = 3, the corresponding prediction

for random arrangement of constant-intensity spherical
particles of radius r is much simpler:

V3(R) = Io


1− 27R

35r
+

2R3

21r3
R ≤ r, (29)

r3

R3
− 27r4

35R4
+

2r6

21R6
R ≥ r. (30)

This has the correct limits and is continuous at R = r.
The difference between these results and Eqs. (21-23)

for cubic windows is maximal at about 3% and 10%
in two and three dimensions, respectively, when parti-
cles and measuring windows are nearly same size. On
this basis, compact step-function particles and measur-
ing windows in general could be roughly analyzed using
the rectangular particles / cubic windows prediction of
Eqs. (21-23). Even more roughly and simply, the relative
variance function could be approximated by the rational
function

Vd(x) = Io

[
x+ 3

x2 + 2x+ 3

]d
, (31)

where x is the ratio of window to particle width. This
matches the initial and final decays, as well as the value at
L = p, for cubic particles with cubic measuring windows,
in all dimensions.

For Gaussian particles with intensity profile I(x) =
Io(2/π)d/2 exp[−2(x/r)2] and volume VP = Ior

d, the sec-
ond intensity moment is 〈IP 2〉/〈IP 〉 = Io/π

d/2, and rel-
ative variances for circular and spherical measuring win-
dows of radius R in two and three dimensions are respec-
tively found by the Fourier method to be

V2(R) = Io
1−

{
I1[2(R/r)2] +HG[(R/r)4]

}
exp[−2(R/r)2]

π(R/r)2
, (32)

V3(R) = Io
1− 6(R/r)2 − [1− 2(R/r)2] exp[−4(R/r)2] + 4

√
π(R/r)3erf(2R/r)

(16π3/2/3)(R/r)3
, (33)

where I1(x) is the modified Bessel function
of the first kind and HG(x) is the confluent
hypergeometric function 0F1(; 1;x), given by
Hypergeometric0F1Regularized[1,x] in Mathe-
matica for example. The limits all behave correctly as

V2(R) = (Io/π)[1 − (R/r)2 + O(R/r)4] and V2(L) =
(Io/π)[(r/R)2 − (r/R)3/

√
π + O(r/R)5] in two dimen-

sions, and V3(R) = (Io/π
3/2)[1−(6/5)(R/r)2 +O(R/r)4]

and V3(R) = [3Io/(4π)][(r/R)3 − (3/2)(r/R)4/
√
π +

O(r/R)5] in three dimensions.
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6. Gaussian measuring windows

Measuring windows need not be step functions.
As a potentially useful continuum example, we con-
sider a radial Gaussian measuring window H(x) =
(2/π)d/2 exp[−2(x/L)2] where L is twice the standard
deviation in each dimension. These may be help-
ful for smoothing over short-range noise or features,
and could be realized optically. For this hat function,
the volume is VΩ = Ld, the mean-squared value is
〈H2〉 = 1/πd/2, and the Fourier transform is H̃(k) =
Ld exp[−(kL)2/8]. For asymmetric Gaussian particles
I(x, y, . . .) = Io(2/π)d/2 exp[−2(x/px)2− 2(y/py)2− . . .],
with volume VP = Iopxpy · · · , the relative variance
is found from both direct integration and the Fourier

method to be

V(L) =
Iopxpy · · ·√

πd(L2 + p2
x)(L2 + p2

y) · · ·
. (34)

This result applies for any orientation of the particles,
since the measuring windows are radially symmetric.
Note that V(0) = Io/π

d/2 is the same intercept as for
Gaussian particles with a square measuring window, as
expected. And the large-L limit is VP /(π

d/2Ld), in ac-
cord with Eq. (9).

For solid circular and spherical particles of radius r and
intensity Io in two and three dimensions, with a Gaussian
measuring window, the respective relative variances may
also be found by the Fourier method:

V2(L) = Io − Io
{
I1[2(r/L)2] +HG[(r/L)4]

}
exp[−2(r/L)2], (35)

V3(L) = Io
1− 6(r/L)2 − [1− 2(r/L)2] exp[−4(r/L)2] + 4

√
π(r/L)3erf(2r/L)

4
√
π(r/L)3

. (36)

Apart from an overall factor, these are identical to the
earlier Gaussian-particle / spherical-window expressions,
where R/r is replaced by r/L; this particle-window du-
ality is expected from the symmetry of particle/window
convolution in Eq. (11). Here, the limiting behaviors all
check out correctly as V2(L) = Io[1−L/(

√
πr)+O(L/r)3]

and V2(L) = Io[(r/L)2−(r/L)4+O(r/L)6] in two dimen-
sions, and V3(L) = Io[1 − 3L/(2

√
πr) + O(L/r)3] and

V3(L) = Io[4r
3/(3
√
πL3) − 8r5/(5

√
πL5) + O(r/L)5] in

three dimensions.

IV. VALIDATION

To test the above methodology and some of the specific
predictions, we now create and analyze two-dimensional
random arrangements of particles of various shapes and
packing fractions. Small example patterns are shown
in Fig. 1 for six different particle shapes, all with the
same particle volume VP = (25po)

2 and packing frac-
tion φ = 1, and with periodic boundary conditions (to
be used throughout). These are Poisson patterns, where
the particle locations are chosen totally at random using
a random-number generator. At high packing fractions,
as shown, there is considerable particle-particle overlap.
Close inspection reveals pixelation effects in both parti-
cle placement and shape, even though the particles are
fairly large compared to the pixel width. Note also that
the sine-squared particles look roughly Gaussian, but are
not radially symmetric and are not as extended.

A. Rectangular Particles

As the first test, we illustrate behavior versus particle
width and packing fraction for rectangular particles. We
choose five different particle widths, ranging from 1 × 1
up to 100 × 100 square pixels, and four different area
fractions, φ = {0.02, 0.15, 1, 5}. For each combina-
tion we create Poisson patterns of size (3000po)

2, and
compute the relative variance Vdata(L) = σφ

2(L)/φ us-
ing the Fourier method described in the Image Process-
ing section. The window sizes L are chosen on a loga-
rithmic scale from L = po to L = 1500po. For larger
L beyond this range, finite-size effects cause a strong
systematic decrease in the measured variance [9]. Final
simulation results for the relative variance are plotted in
Fig. 2. As expected, dividing the variance by φ causes
the data to collapse – such that the relative variance is
independent of φ. And for each particle width, the col-
lapsed data closely matches the plotted predictions of
Eqs. (21-23). In particular, the relative variance begins
at Vdata(po) = 〈IP 2〉/〈IP 〉 = 1 and has a final asymp-
totic decay of Vdata(L)→ VP /L

2. The crossover to final
scaling is set by particle width.

The error bars plotted in Fig. 2 are given by Eq. (2) as

∆σφ
2 = σφ

2
√

2/(s− 1) where the number of indepen-
dent samplings is s = (image area)/L2. Note that the
error bars therefore bloom with increasing L, because
there are fewer independent samplings of an image by
all the possible windows. These error bars represent the
statistical scatter expected for an ensemble of different
images simulated under the same conditions. They do
not represent the statistical scatter between successive
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FIG. 1: Poisson arrangement of various extended particles:
(a) 25×25 square, (b) circular, (c) diamond, (d) 5×125 rect-
angular, (e) sine-squared, (f) Gaussian. For each the image
size is 200×200 square pixels, the total area fraction is φ = 1,
and the particle area is approximately 25 × 25 square pixels
(exactly for square, rectangular, and sine-squared particles).
The insets in (e,f) show isolated particles.

L-values for the spectrum of given image; indeed, with
the Fourier method, σφ

2(L) versus L is perfectly smooth.
While each data set in Fig. 2 may exhibit an apparent
smooth systematic deviation above or below the predic-
tion, the different runs are seen to be scattered randomly
around the prediction by an amount that is in accord
with the plotted error bars. Thus we conclude that the
simulation results for both the relative variance and the
uncertainty are in full agreement with prediction.

B. Other Particle Shapes

Next we consider the effect of particle shape, by simu-
lating Poisson patterns made from the same six particles
shown in Fig. 1. The particle volumes are made as close
to VP = (25po)

2 as possible. This is achieved exactly
for the square, rectangular, and sine-squared shapes,
even though the latter is gray-scale. The other areas
are exactly 616po

2 for pixelated-circular and 613po
2 for

pixelated-diamond, and approximately 622po
2 for Gaus-

FIG. 2: (color online) Relative variance vs measuring win-
dow size for simulated Poisson patterns of rectangular par-
ticles, with dimensions as labeled in pixel units po. For
each particle width there are four volume fractions, φ =
{0.02, 0.15, 1.0, 5}, indicated by increasing symbol size ex-
cept for × for φ = 5 (500%). To within statistical uncer-
tainty these collapse together and agree with the prediction
of Eqs. (21-23), shown by the solid curves. The simulation
system size is 3000 × 3000 square pixels, and has periodic
boundary conditions.

sian. For images of size (3000po)
2 with φ = 1 and pe-

riodic boundary conditions, relative variance results are
collected in Fig. 3. The corresponding predictions from
the theory section are overlaid, and found to match the
simulation data to within statistical uncertainty. Note
how the intercept Vdata(po) is below 1 for the sine-
squared and Gaussian grayscale particles, in agreement
with the expected limit 〈IP 2〉/〈IP 〉. And note how the
final decay is the same for all six different particle shapes,
Vdata(L)→ VP /VΩ = (25po/L)2. Furthermore, the form
of the crossover between limiting behaviors is seen to de-
pend on particle size and shape. This is particularly ev-
ident for the 5 × 125p2

o rectangular particles. It is also
interesting that the crossover is indistinguishable on this
plot for the three compact binary particles: the square,
the circle, and the diamond.

For contrast we also include in Fig. 3 variance re-
sults for the central-pixel pattern associated with the
squares. For this, the center pixel of each square is set to
a grayscale level of 625 and all other pixels in the square
are set to zero. Thus the entire weight of each particle
is concentrated into one pixel, and VP = (25po)

2 and
φ = 1 still hold. As seen, the variance agrees with the
power-law expectation V(L) = VP /L

2 = 625(po/L)2 for
all L.

C. Pixelation Versus Continuum

The accuracy with which continuum predictions de-
scribe pixelated particles and measuring window loca-
tions may be studied by comparing the respective relative
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FIG. 3: (color online) Relative variance vs measuring win-
dow size for simulated Poisson patterns of various particles,
as labeled. As per Fig. 1 the particle areas are approxi-
mately VP = (25po)2 (exactly for square, rectangular, and
sine-squared cases), the total volume fraction is φ = 1, and the
simulation system size is 3000×3000 square pixels. The corre-
sponding solid curves represent the predictions of Eqs. (21-23)
for rectangular particles, Eq. (26-27) for sine-squared parti-
cles, and Eq. (24) for Gaussian particles. There are two data
sets for the rectangular particles, one with all horizontal align-
ment and one with a 50:50 mixture of horizontal and vertical.
The + symbols represent the relative variance results for the
“center-pixel” pattern associated with the squares, where the
entire weight of the particle is given to the central pixel.

variances at L = po, where the difference is largest. In
particular, the relative variance intercepts are V(po) =
Io〈IP 2〉/〈IP 〉 at L = po for pixelated particles, and
V(0) = Io〈IP 2〉/〈IP 〉 at L = 0 for continuum parti-
cles; therefore the value of V(po) for continuum parti-
cles must be lower. For normalized d = 2 dimensional
particles, the intercepts are 1 for all binary particles and
(3/4)d = 9/16 for the sine-squared particles, based on the
above results – in both pixelated and continuum limits.
For d = 2 continuum Gaussian particles, the L = 0 in-
tercept is 1/πd = 1/π2; for pixelated Gaussian particles,
the L = po intercept may depend on particle size and is
found by simulation. Results for the pixelated L = po
intercepts are plotted versus particle width in Fig. 4 as
solid horizontal lines for the square and sine-squared par-
ticles, and as symbols for the simulated pixelated Gaus-
sian particles. The latter is surprisingly constant. For
comparison, the continuum limits of the relative variance
functions are evaluated L = po and plotted versus p using

dashed curves. These all start low, and rise up to the ex-
pected constant at large p. The difference shows that the
continuum approximation of pixelated particles at L = po
becomes better than one percent for square particles of
size p > 60po, for sine-squared particles of size p > 7po,
and for Gaussian particles of size p > 6po. For p > 2po
pixelated Gaussian particles, the continuum approxima-
tion is still quite good – better than eight percent. For
larger L > po, the continuum approximations must be
even better. Pixelation effects for particle and window
locations are largest for binary particles and smallest for
Gaussian particles.
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FIG. 4: (color online) Relative variance at L = po vs par-
ticle width p for various d = 2 dimensional particles, as la-
beled. For pixelated particles this represents the intercept,
and is shown by horizontal lines for square and sine-squared
particles, and by symbols for simulated pixelated Gaussian
particles. For continuum particles, V(po) values are given by
Eqs. (21,23,26) with pixel width set to zero and by Eq. (24,23)
as-is; they are plotted as dashed curves, and are smaller than
the L = 0 intercept when the particle is not large. The dif-
ference is a measure of how well pixelated particles may be
approximated by continuum predictions.

D. Polydispersity

In the theory section we argued that polydispersity
is accounted for by a volume-fraction weighted aver-
age over the different particle species. This is tested
by simulation data for polydisperse mixtures of (3po)

2

and (30po)
2 square particles in Fig. 5. As in prior sim-

ulations, the image sizes are (3000po)
2 with periodic

boundary conditions, and the total volume fraction is
φ = φ3 + φ30 = 1. The weights are W3 = φ3/(φ3 + φ30)
and W30 = φ30/(φ3+φ30) = 1−W3, where the individual
volume fractions equal the product of particle area and
number density. We simulate six different mixtures, with
W30 = {0, 0.05, 0.10, 0.25, 0.50, 1}. The relative variance
results are plotted in Fig. 5, along with the expectation
based on the W -weighted averages of Eqs. (21-23). To
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within statistical uncertainty, there is perfect agreement.
It is worth emphasizing that the shape of the variance
data is due solely to details of the particle shapes since
there is no order in their arrangement.

FIG. 5: (color online) Relative variance vs measuring window
size for simulated Poisson patterns of bidisperse mixtures of
3×3 and 30×30 square particles, labeled by the area-fraction
weight W30 of the larger particles. The total volume fraction
is φ = 1, and the simulation system size is 3000×3000 square
pixels. The corresponding solid curves represent the predic-
tions of Eqs. (21-23), computed separately for each particle
size and averaged together with area-fraction weighting. The
inset shows a 200 × 200 sample with equal area fractions for
the two species.

E. Sub-conclusion

The above simulation results fully verify the funda-
mental equation (7) for the relative variance V(L) =
VR〈VQ2〉/(VPVΩ

2) of a random arrangement of extended
particles, its special limits, the methods for evaluating it,
and the specific predictions it gives for particles of several
different common shapes in different dimensions. The
two-dimensional simulations also verify that the effects
of total area fraction and polydispersity are understood,
and that pixelation effects are important for smaller par-
ticles.

V. PATTERNS WITH HIDDEN ORDER

Disordered particle configurations are usually not to-
tally random, but rather possess some degree of order
even if it is hidden to the untrained eye. Here we dis-
cuss two ways to quantify this by comparison of measure-
ments with the above predictions for the relative variance
of a totally random arrangement of the same particles.
We then analyze simulated patterns of extended parti-
cles where some degree of order is induced by excluding
the possibility of particle-particle overlaps. And lastly

we analyze Einstein patterns of extended particles where
the underlying crystalline order is hidden by displacing
each particle by a Gaussian-distributed random length in
each dimension.

A. Variance Ratio, R(L)

For patterns with hidden order, relative variance mea-
surements Vdata(L) must fall below the expectations
V(L) developed above for totally random arrangement
of the same set of particles [23]. One way to quantify
this is by the volume fraction variance ratio

R(L) = Vdata(L)/V(L) (37)

and how it decays with increasing L. If the pattern
has long-range density fluctuations, (σφ

2/φ)data ∼ 1/Ld,
then R(L) will decay to a nonzero constant. By con-
trast if the pattern is hyperuniform, with (σφ

2/φ)data ∼
1/Ld+ε, then it will decay fully to zero with form R(L) ∼
1/Lε. So examining data in terms of R(L) removes the
effects of dimensionality and allows a yes/no determina-
tion of whether or not the system is hyperuniformity, just
like just like plots of σφ

2(L)Ld [9, 10]. But the real-space
spectrum R(L) additionally removes the effects of parti-
cle shape and has meaning in terms of its value, not just
its scaling behavior versus L. In particular, R = 1 means
totally random, smaller R means more hidden order, and
larger R means more random. Thus, R can be inter-
preted as a randomness index. Another interpretation
comes from the special case of a crystalline arrangement
of particles where a fraction f of lattice sites are empty.
Such vacancy patterns have Poissonian fluctuations, and
the large-L asymptotic value of the variance ratio is cal-
culated to be R(L) = f exactly [6]. Thus, R can also be
interpreted as the fraction of space available for density
fluctuations.

B. Hyperuniformity Disorder Length, h(L)

The original idea is that hyperuniform arrangements
have fluctuations controlled by the average number of
particles on the surface of the measuring windows. Then
the number variance scales as surface area, σN

2(L) ∼
ρLd−1, and the corresponding volume fraction variance
scales as σφ

2(L) ∼ σN
2(L)/(Ld)2 ∼ 1/Ld+1 [1]. While

R(L) is a useful quantity, it does not directly connect
to this idea. So in Ref. [6] we introduced the concept
of a hyperuniformity disorder length to make a concrete
connection and to give a dimensionally correct form for
the scaling of σφ

2(L). In particular, for pixel particles
and VΩ = Ld cubic measuring windows, we defined h(L)
such that number fluctuations are given by σN

2(L) = N b

where N b = ρ[Ld − (L − 2h)d] is the average number of
enclosed pixel particles that lie within a distance h(L) of
the boundary of the window. In other words, h distin-
guishes boundary particles from interior particles, where
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the latter have average number and standard deviation
of N i = ρ(L−2h)d and zero. Then Nb = N−Ni is a ran-
dom variable with mean equal to standard deviation, just
as for Poisson statistics (whether or not higher moments
of the distribution also satisfy Poisson statistics). This
led to Eq. (5), which was used for a variety of disordered
pixel patterns [6].

To generalize the hyperuniformity disorder length con-
cept for patterns of extended particles, we again define
h(L) so that the variance in the number of particles
overlapping a set of measuring windows of volume VΩ

satisfies σN
2 = σNb

2 = N b. But now N b = ρ[VR]b
is given by the volume of a region around the actual
[Ld− (L− 2h)d] boundary volume, according to the non-
zero size of the particles and how they may partially
overlap even though their centers are not enclosed. The
mean-squared overlap between particles and boundary
volume is denoted 〈VQ2〉b, with subscript “b” for bound-

ary. Then the volume variance is σV
2 = σN

2〈VQ2〉b =

ρ[VR〈VQ2〉]b, and the relative volume fraction variance

is Vdata(L) = (σφ
2/φ)data = [VR〈VQ2〉]b/(VPVΩ

2). Since

boundary particles are defined to have σNb
2 = N b, as

for Poisson statistics, the numerator is [VR〈VQ2〉]b =

[VR〈VQ2〉]w − [VR〈VQ2〉]i, where the two terms are for
the whole window and for the interior, respectively, also
as for Poisson statistics. For cubic measuring windows,
this gives the second fundamental equation of HUDLS as

Vdata(L) = V(L)− V(L− 2h)

(
L− 2h

L

)2d

, (38)

where V(L) represents the relative volume fraction vari-
ance of Eq. (7) for a totally random arrangement of the
same set of particles in the actual pattern. We empha-
size that Eq. (38) serves as the definition of h. It can can
be rewritten more symmetrically in terms of the variance
ratio as

R(L) = 1− V(L− 2h)(L− 2h)2d

V(L)(L)2d
, (39)

= 1− [VVΩ
2]i

[VVΩ
2]w

, (40)

where the latter is for measuring windows of arbitrary
shape. Note that for a totally random arrangement,
R(L) = 1 and h(L) = L/2 hold; these are upper bounds.
Note, also, that for spherical windows Eq. (38) becomes
Vdata(R) = V(R)− V(R− h)[(R− h)/R]2d.

The method of “Hyperuniformity Disorder Length
Spectroscopy” (HUDLS) is to use the two fundamental
Eqs. (7,38) to analyze Vdata(L) in terms of the the real-
space spectra of R(L) and h(L) versus L. Unfortunately,
this must be done numerically for most particle shapes
because the form of V(L) computed from Eq. (7) is too
complex to be inverted. But the equations are tractable
for large measuring windows with the general limiting be-
havior V(L)→ 〈H2〉VP /Ld given by Eq. (9) for Ld � VP .

Then Eq. (38) becomes

Vdata(L) =
〈H2〉VP
Ld

{
1−

[
1− 2h(L)

L

]d}
, (41)

= 2d〈H2〉VPh(L)

Ld+1
if h(L)� L. (42)

Recall that 〈H2〉 is the mean-squared value of the mea-
suring window hat function; it equals one for step-
function windows, in which case the earlier pixel-pattern
results are recovered. Eqs. (41-42) can be inverted for

h(L) =
L

2
− L

2

[
1− Vdata(L)Ld

〈H2〉VP

]1/d

, (43)

=
Vdata(L)Ld+1

2d〈H2〉VP
if h(L)� L. (44)

Note that if the measured variance ratio is small, it can
thus be interpreted as R(L) = 2dh(L)/L.

Based on Eqs. (43-44), the following large-L scaling is
expected for particles of any shape. If the pattern has
long-range density fluctuations with Vdata(L) ∼ 1/Ld,
then h(L) ∝ L holds at large L. An example of this
is a d-dimensional crystal with random vacancies; then
h(L) = fL/(2d) where f is the fraction of sites that are
vacant [6]. If the pattern is strongly hyperuniform with
Vdata(L) ∼ 1/Ld+1, then h(L) = he becomes constant
at large L. An example of this is an Einstein pattern,
where particles are independently displaced from crys-
talline lattice sites as though with thermal energy; then
he equals about 1/2 the root mean square displacement
in each dimension [6]. In general, a large-L scaling of
Vdata(L) ∼ 1/Ld+ε implies h(L) ∼ L1−ε where 0 ≤ ε ≤ 1.

As an aside, pixel patterns with no more than one par-
ticle per pixel have Vdata(po) = V(po), as for a random
arrangement, because at L = po the variance is set by the
intensity distribution and does not depend on where the
particles happen to be. The variance ratio of Eq. (37) is
then given in general by

R(L) ≡ Vdata(L)

V(L)
=
Vdata(L)

Vdata(po)
, (45)

= 1−
[
1− 2h(L)

L

]d
, (46)

≈ 2d
h(L)

L
if h� L. (47)

Variance data for a central pixel representation with good
resolution can therefore be normalized to one at L = po
in order to obtain R(L), and this in turn can be sim-
ply interpreted in terms of the hyperuniformity disorder
length. It is not necessary to know φ or 〈IP 2〉/〈IP 〉 in
order to analyze the data.

VI. DEMONSTRATIONS

To demonstrate HUDLS we now simulate non-random
pixelated patterns and analyze the real-space volume
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fraction fluctuations in terms of the variance ratio and
the hyperuniformity disorder length. For all examples we
use square particles and square L×L measuring windows,
since the variance for random configurations is known ex-
actly from Eqs. (21-23). The particle area is chosen as
(15po)

2, which is just large enough that pixelation effects
are not strong and the results are close to continuum.
The system area is at least (6000po)

2, which is about as
large as possible for the current computational resources.
Thus, for a given area fraction, the statistical uncertainty
is roughly optimized.

A. Non-Overlapping Particles

One type of non-random pattern is for particles that
are not allowed to overlap, but that are otherwise totally
disordered. For construction, trial locations are chosen at
random but are accepted only if the pixels to be covered
are all empty. This is repeated one particle at a time until
the desired area fraction is achieved, and gives a binary
image of zeros (empty) and ones (covered by one parti-
cle). A small example is shown in the inset of Fig. 6 for a
(600po)

2 system and 480 square particles of area (15po)
2,

for which the area fraction is 30 percent. Full-size pat-
terns are created at several area fractions. Corresponding
pixel patterns are simultaneously constructed, where the
central pixel for each square particle is set to 225.

The relative variance for five select patterns is plot-
ted versus L/po in Fig. 6, along with the expectation for
random arrangements. Note that the data appear to ap-
proach this upper limit from below as the area fraction is
decreased toward zero. In other words, higher area frac-
tions fall further below the upper bound and are corre-
spondingly less random and have more hidden order. For
large L, at any given φ, the variance results for the ex-
tended and central-pixel representations merge together,
as required, and appear to decay as σφ

2(L) ∼ 1/L2. This
is Poissonian (non-hyperuniform), indicative of long-
range density fluctuations as expected for unjammed
liquid-like arrangements. At small L, the two repre-
sentations have very different behavior. The central-
pixel results all collapse onto σφ

2(L)/φ = (15po/L)2,
when viewed on a log-log plot; in fact, the exact be-
havior is σφ

2(L)/φ = (15po/L)2 − φ for small enough
L that all windows have no more than one pixel with
non-zero value [6]. By contrast, at small L, the vari-
ance for the extended-particle patterns become constant:
σφ

2(L)/φ → σφ
2(po)/φ = 1 − φ. This follows from the

expectation σφ
2(L)/[φ(1− φ)] = (po/L)d for random bi-

nomial patterns [6], since for L = po the variance depends
only on the number of zeros and ones in the pattern
and not on their arrangement. The crossover between
small- and large-L behaviors happens at about the par-
ticle width, as seen in the figure.

The same trends can be inspected more easily and crit-
ically in Fig. 7a in terms of the variance ratio, R(L),
defined by Eq. (37) as the variance divided by the ex-
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FIG. 6: Relative variance versus window size for non-
overlapping square particles of area (15po)2 placed at ran-
dom into a pixelated image of area (6000po)2, with various
total area fractions as labeled. The dotted curves are re-
sults for the corresponding central-pixel representation. The
red-dashed curves are the expectations for a totally random
arrangement of the same particles. This is given by (15po/L)2

for the central-pixel representation, and by Eqs. (21-23) for
the actual extended particles. The inset shows an example
pattern for a (600po)2 sample with area fraction of 30 per-
cent. For clarity, error bars are plotted on only two of the
data sets.

pectation for a totally random arrangement of the same
set of particles. As observed, the variance ratio starts
at R(po) = 1 for the central-pixel representations, and
at R(po) = 1 − φ for the actual extended-particle pat-
terns. For L much larger than particle width, it crosses
over to the same constant for both representations if the
scaling is Poissonian, σφ

2(L) ∼ 1/L2. The corresponding
hyperuniformity disorder lengths are shown underneath,
in Fig. 7b, as deduced from Eq. (38). They grow as
h ∼ L at both small- and large-L, but display a devel-
oping plateau at about the particle width. This is more
pronounced for the central-pixel representation, since all
the data initially behave as L = h/2.

Since the large-L scaling is Poissonian, the simplest
description is in terms of the asymptotic large-L value of
the variance ratio, R(∞). For the lowest area fractions,
the value ofR(∞) can be read right off the graph ofR(L)
versus L. But for large φ, the systems are not big enough
for the asymptotic behavior to be fully reached; plus the
statistical uncertainty blooms. Thus a better procedure
is to extrapolate by fitting the data for L > 45po = 3p
to the form R(L) = R(∞)[1 + ap/L], where R(∞) and
a are adjustable parameters, p is the particle width, and
weighting is taken from the expected statistical uncer-
tainty. This is illustrated in Fig. 7a for the φ = 0.20
data. The fits for both extended and central pixel repre-
sentations are good, and, importantly, give a consistent
value of R(∞) = 0.41± 0.01. The same holds for fits for
all the other area fractions, too.

Extrapolation results for R(∞) are plotted versus φ
in Fig. 8. Data are also included for patterns of non-
overlapping pixelated circles of the same area as the
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FIG. 7: (a) Variance ratio and (b) hyperuniformity disor-
der length based on the results in Fig. 6 for non-overlapping
square particles of area (15po)2 and labelled area fractions.
For clarity, error bars are plotted on only two of the data sets.
As in Fig. 6, the solid curves are for the actual extended-
particle patterns, and the dotted curves are for the corre-
sponding central-pixel representations. The curves in (a)
are literally the ratio of the Fig. 6 data to the correspond-
ing random-arrangement expectation shown there by the red
dashed curves. The curves in (b) are from solving Eq. (38)
for h. In (a), the φ = 0.20 data at L > 45po are fit to
R(∞)[1 + ap/L], as shown by the blue dashed curves. Ex-
trapolation results for R(∞) are plotted by solid gray circles
on the right y-axis for all five data sets. Note that the error
bars reflect the expected scatter for different patterns of the
same size [6], and that this grows at large L.

squares. As seen, for φ < 0.1 the initial behavior closely
matches R(∞) = 1 − 3.7φ for both particle shapes. For
larger φ, the decrease of R(∞) is less rapid, and the
circle data fall below the square data. Presumably this
is because R(∞) vanishes, i.e. the patterns become hy-
peruniform, at random-close packing, which depends on
particle shape. This would be interesting to study, but
the current construction algorithm is prohibitively slow
at larger φ.

B. Einstein Patterns

Now we consider a strongly hyperuniform “Einstein”
pattern, where particles are independently displaced
from a triangular lattice in d = 2 dimensions. Here the
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FIG. 8: Large-L asymptotic limit of the variance ratio versus
area fraction. Values are found by fitting data to the form
R(L) = R(∞)[1+ap/L] as illustrated in Fig. 7a. Squares are
non-overlapping (15po)2 square particles. Circles are for non-
overlapping pixelated circles with the same area. The solid
curves represent a cumulant expansion, R(∞) = exp(−3.7φ−
bφ2), with b equal to 3.3 for squares and 5.1 for circles; the
initial behavior is 1− 3.7φ as shown by the dashed line.

lattice spacing is b = 30po, and the displacement distribu-
tion is Gaussian with root mean square displacement of
3b in each dimension. In addition to using (15po)

2 square
particles, we also create a corresponding pixel pattern
where the central pixel is set to Io = 225 for each parti-
cle. And we also create patterns where pixelated circular
and sine-squared particles of the same area are placed
into exactly the same configuration. Thus, for all four
Einstein pattens, the list of particle centers is the same
and the area fractions are all φ = Io

√
4/3(po/b)

2 = 0.29.
The only difference is in particle shape. A small example
pattern for the square particles is shown in the inset of
Fig. 9b; note that it is not binary, since the extended par-
ticles can overlap one another. Note that the underlying
lattice is totally hidden to the human eye.

Results for the relative variance are plotted in Fig. 9a
for all four patterns. For small L the behavior depends
on particle shape, and closely matches the plotted ex-
pectations for a random arrangement of the same par-
ticles – for square, pixel, and sine-squared shapes. For
circular particles, the random expectation is unknown
but the data are quite close to the square particle re-
sults. For large L, the expectation for a random arrange-
ment is σφ

2(L) = (15po/L)2 for all shapes. As seen,
with increasing L the data fall below this limiting power-
law but merge together and collapse to approximately
σφ

2(L) = (35po/L)3. Such σφ
2(L) ∼ 1/Ld+1 scaling is

expected for strongly hyperuniform patterns.

This general phenomenology can be seen perhaps more
easily in Fig. 9b in terms of the ratio R(L) of the mea-
sured variance to the variance for a random arrange-
ment. For the circular particles, we divide the variance
data by the square particle function. As such, the vari-
ance ratio data nearly collapse together for all four par-
ticle shapes. All data begin very close to R(L) = 1
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FIG. 9: (a) Relative variance, (b) variance ratio, and (c) hype-
runiformity disorder length versus measuring window size for
four Einstein patterns with triangular lattice spacing b = 30po
and root mean square displacement 3b. The list of particle
centers, the area a = (15po)2 of each particle, and the global
area fraction φ = 0.29, are the same for all four patterns.
The only difference is particle shape: open squares for square
particles, solid squares for pixel particles, circles for circular
particles, and ×s for sine-squared particles. The solid curves
in (a), that match the data at small L, are predictions from
the text for a random arrangement of particles of the labeled
shape; these three curves asymptote to (15po/L)2 at large L,
while the relative variance data all asymptote to (35po/L)3.
A small example pattern, for square particles, is shown in (b).

at small L, and cross over to approximately R(L) =
(35po/L)3/(15po/L)2 = 200po/L for large L. The transi-
tion between these regimes is set by the root mean square
displacement and the value of 3b = 90po.

The corresponding hyperuniformity disorder lengths
are found from either Eq. (38) or (39) and plotted in
Fig. 9c. At small L they all scale as h ∼ L but with a
proportionality constant that depends on particle shape.
It is h = L/2 for the central pixel representation, as seen
in Ref. [6]. It is about h = 0.37L for the square and sine-
squared particles; this corresponds toR(L) being slightly
less than one at small L, as expected since the patterns

do not have the same intensity distribution as for a fully
random pattern. For circular particles analyzed with the
variance function for randomly placed square particles,
the behavior of h(L) is a bit irregular at small L; it ini-
tially matches the square and sine-squared particle re-
sults but then rises above the L/2 bound. For large L,
the hyperuniformity disorder lengths all merge together
and approach a constant value as expected for strongly
hyperuniform patterns. The common asymptotic value
is about h(L) = 50po, which follows from Eq. (47) and
R(L) = 200po/L; this is slightly larger than half the root
mean square displacement in each dimension, as seen for
Einstein patterns of pixel particles [6]. The main point of
this demonstration is not the particular value, but rather
that real-space spectra R(L) and h(L) are nearly inde-
pendent of particle shape by strong contrast with σφ

2(L).

VII. CONCLUSIONS

In summary we have shown how to compute the vol-
ume fraction variance for a totally random arrangement
of extended particles, which, by contrast with a point or
pixel particle, can lie partially inside and partially out-
side a measuring window. And we have shown how this
may be used to help quantify hidden order in a disor-
dered pattern either in terms of a variance ratio R(L)
or a hyperuniformity disorder length h(L). The for-
mer is perhaps more intuitive for liquid-like Poissonian
patterns, and the latter for strongly hyperuniform pat-
terns, since the respective quantities become constant
for large windows. Thus we have successfully general-
ized the HUDLS method of Ref. [6] from pixel or point
particles to extended objects. One benefit is that raw
images may now be analyzed directly for the degree of
hyperuniformity, as long as the particle size distribution
is known, without need for identifying particle positions.
As seen for the non-overlapping particle and Einstein pat-
tern demonstrations, with our new generalizations, both
R(L) and h(L) become independent of particle shape for
large windows. There features in the real-space spectra
reflect only the particle arrangement. For small windows,
however, the spectra reflect both particle shape and spa-
tial arrangement. These advances will help guide future
work on diagnosing hyperuniformity, for example in ex-
periments on foams [24] and in simulations of soft discs
above and below jamming [22].
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