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We introduce the concept of a “hyperuniformity disorder length” h that controls the variance of
volume fraction fluctuations for randomly placed windows of fixed size. In particular, fluctuations
are determined by the average number of particles within a distance h from the boundary of the
window. We first compute special expectations and bounds in d dimensions, and then illustrate the
range of behavior of h versus window size L by analyzing several different types of simulated two-
dimensional pixel patterns – where particle positions are stored as a binary digital image in which
pixels have value zero/one if empty/contain a particle. The first are random binomial patterns,
where pixels are randomly flipped from zero to one with probability equal to area fraction. These
have long-ranged density fluctuations, and simulations confirm the exact result h = L/2. Next we
consider vacancy patterns, where a fraction f of particles on a lattice are randomly removed. These
also display long-range density fluctuations, but with h = (L/2)(f/d) for small f , and h = L/2
for f → 1. And finally, for a hyperuniform system with no long-range density fluctuations, we
consider “Einstein patterns” where each particle is independently displaced from a lattice site by a
Gaussian-distributed amount. For these, at large L, h approaches a constant equal to about half
the root-mean-square displacement in each dimension. Then we turn to grayscale pixel patterns
that represent simulated arrangements of polydisperse particles, where the volume of a particle is
encoded in the value of its central pixel. And we discuss the continuum limit of point patterns,
where pixel size vanishes. In general, we thus propose to quantify particle configurations not just
by the scaling of the density fluctuation spectrum but rather by the real-space spectrum of h(L)
versus L. We call this approach “Hyperuniformity Disorder Length Spectroscopy” (HUDLS).

The structure of crystals is straightforward to describe.
By contrast, it remains a fundamental problem to iden-
tify and characterize the structural features of disordered
many-body systems that relate to materials properties.
In this regard the concept of hyperuniformity was devel-
oped for systems in which long-wavelength density fluc-
tuations are suppressed to nearly the same extent as in
crystals [1, 2]. Disordered systems that are hyperuniform
accordingly possess some degree of long-ranged hidden
order, not evident in the local structure, and this can give
rise to special material properties. For example, hyper-
uniformity has been connected to jamming [3–12] and to
novel photonic behavior [13–17] in amorphous materials.
It is relevant for the spatial arrangement of certain biolog-
ical [18] and astrophysical [19] objects. And it has been
connected with irreversibility in seemingly-deterministic
many-body systems subjected to periodic driving [20–22],
as well as to dynamical behavior of Brownian particles
subjected to steady driving [23]. Thus the importance of
quantifying hyperuniformity is increasingly recognized.

According to the original definition, a d-dimensional
system of point particles is said to be hyperuniform if
the structure factor S(q) vanishes at wavevector q = 0.
[1]. Equivalently, it is hyperuniform if the variance in
the number of particles enclosed by a set of randomly-
placed measuring windows of volume ∝ Ld grows as
the average number of particles on the window surface,
σN

2(L) ∼ Ld−1 [1]. Here L is the width or diameter
of the window and d is dimensionality. By contrast, the
number variance for liquid-like systems with long-range
density fluctuations grows like the average number par-
ticles inside the entire window, σN

2(L) ∼ Ld; this cor-

responds to S(0) > 0. For extended particles of nonzero
volume, the quantities of interest are instead the spectral
density χ(q) and the variance σφ

2(L) of volume-fraction
fluctuations [2, 7, 8]. The usual focus is on the small-q /
large-L scaling; i.e. on

χ(q) ∼ qε, (1)

σφ
2(L) ∼ 1/Ld+ε, (2)

and the value of the exponent. For ε = 0, then there are
long-ranged density fluctuations and the particles have a
liquid-like arrangement that is significantly more random
than in a crystal. For ε > 0, the particles are arranged
more uniformly throughout space and the system is said
to be hyperuniform. The degree of hidden order increases
with ε, and the upper limit ε = 1 corresponds to a crystal-
like uniformity. Logarithmic corrections to Eqs. (1-2)
may be expected, and can be described by a single value
of ε over a (perhaps experimentally-limited) range of q
or L.

To relate to structure, it is helpful to translate mea-
sured quantities into a length scale. For example Hop-
kins et al. [24] define a correlation length from the value
of S(0). And Refs. [12, 20, 22] define other lengths based
on the location of features in the form of χ(q) versus q
or of σ2(L) versus L. Here, we introduce a completely
length based on the value of σφ

2(L) that we call the “hy-
peruniformity disorder length”, h(L). The size of h(L)
relates directly to the distance from the boundary over
which fluctuations occur for a set of measuring windows,
and its value – as well as its scaling with L – indicates
the degree of uniformity.
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FIG. 1: (color online) Example binary pixel pattern, consist-
ing of a 50 × 50 grid of pixels and 125 particles (solid blue)
occupying an area fraction of φ = 125/(50× 50) = 0.05.

Particle positions, whether from experiment or sim-
ulation, can be represented by a digital image where
pixel size is determined by experimental or numerical
precision. Accordingly, we develop our approach for d-
dimensional pixel patterns. A binary 2-dimensional ex-
ample is shown in Fig. 1, where space is represented by a
square grid of pixels that have value I(x, y) = 0 if empty
or I(x, y) = 1 if a particle is present. We begin by deriv-
ing the volume fraction variance for a few special cases.
Using this as a guide, we discuss how to quantify hid-
den order from the measured variance, first by its ratio
to that in a totally random arrangement of the same ob-
jects, and then by the hyperuniformity disorder length.
The continuum limit of vanishing pixel size, i.e. of point
particles, is also discussed. Then we illustrate this pro-
gram for several classes of system, starting with binary
pixel patterns and ending with grayscale pixel patterns
representing a polydisperse collection of extended parti-
cles.

I. VARIANCE FOR PIXEL PATTERNS

In this section we define notation and compute the vol-
ume fraction variance exactly for four special arrange-
ments of pixel particles (Poisson patterns, multinomial
patterns, separated-particles, and cubic crytals). As in
Fig. 1, the patterns to be characterized consist of a d-
dimensional Cartesian grid of pixels with intensity values
I(x, y, z . . .) that specify the arrangement of pixel-sized
particles. The “volume” of a particle of species i is con-
sidered to be vi = Iipo

d, where po is the pixel width
and po

d is the pixel volume. Then the volume fraction
φ equals the average intensity in the pattern. For ex-
ample, a system of extended particles with actual geo-
metrical volumes vi can be represented by a pixel pat-
tern where the central pixel inside each particle is incre-
mented by intensity Ii = vi/po

d. In general, if species
i has number density ρi, then it occupies volume frac-
tion φi = viρi = Iipo

dρi and the total volume fraction

occupied by all particles is φ =
∑
φi. The average prob-

ability for a pixel to contain a particle of species i is
qi = po

dρi = φi/Ii, to be used below.
The basic tool for quantifying the extent of hidden or-

der and hyperuniformity is the volume fraction variance
σφ

2(L) versus window size. Operationally, a large num-
ber of measuring windows of volume VΩ are placed at
random. In each window Ω, the volume fraction is com-
puted as the average intensity. The results vary from
window to window, but the average must converge to
the total/true volume fraction φ if enough windows are
sampled. The variance of the measured volume fraction
values, on the other hand, depends on the particular pat-
tern and on the window size/shape. The nature of the
hidden order is to be analyzed from this behavior.

For analysis of simulated pixel patterns, we use cu-
bic measuring windows of volume VΩ = Ld. This will
be useful for future analyses of digital video data. For
continuum space, it is more usual to use spherical mea-
suring windows. However this is inconvenient for pixel
patterns, because spheres cannot be constructed except
as pixelated approximates. In this section, results for
arbitrary window shapes are given in terms of VΩ and
results for hypercubic windows are given in terms of L.
Continuum results for hyperspherical windows of diame-
ter D are given in the conclusion. The behavior of h(L)
for hypercubic windows is almost the same as h(D) for
hyperspherical windows.

A. Random Patterns and Relative Variance

The volume fraction variance may be computed ex-
actly, as follows, if the pixel particles are arranged at ran-
dom. For a given Ld measuring window of n = (L/po)

d

pixels, the total volume of pixel particles is V =
∑
viNi

where Ni is the actual number of species i enclosed
(i.e. the number of time enclosed pixels were incre-
mented by +Ii). The corresponding average and vari-
ance over window locations are V =

∑
viN i and σV

2 =∑
v2
i σNi

2 +
∑
i 6=j vivjσNiNj , where N i = ρiL

d is the av-

erage number of species i enclosed, σNi
2 is the variance,

and σNiNj
= NiNj −N iN j is the covariance.

To evaluate the variance and covariance for the num-
ber of enclosed particles, we must now make a distinction
between two different kinds of random configuration. If
multiple particles can occupy the same pixel, then Pois-
son statistics hold, the number variance is σNi

2 = nqi
where the probability qi was given above, and the co-
variance is zero. In this case, each particle’s location is
chosen at random and multiple particles may freely oc-
cupy a pixel. Such configurations are called “Poisson”
patterns. By contrast, if only one particle at a time is
allowed on each pixel, then multinomial statistics hold:
the number variance is σNi

2 = nqi(1 − qi) and the co-
variance is σNiNj

= −nqiqj . This case corresponds to
a pattern where the intensity of each pixel is randomly
drawn from {0, I1, I2, . . .} with respective probabilities
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{1−
∑
qi, q1, q2, . . .}. We call such configurations “multi-

nomial” patterns.
Combining these ingredients, the volume fraction vari-

ance for the two different types of random pattern is com-
puted to be

σφ
2(L) =

〈I〉pod

Ld

{
φ Poisson, (3)

φ [1− φ/〈I〉] Multinomial, (4)

where 〈I〉 =
∑
φiIi/φ is the volume-fraction weighted

average grayscale intensity of the particle species. The
common prefactor may be re-written as 〈v〉/VΩ where
〈v〉 = 〈I〉pod is the volume-fraction weighted particle vol-
ume and VΩ is the window volume – no matter what its
shape. Thus, the variance scales as 1/Ld as expected for
a system with long-range density fluctuations. And, im-
portantly for later, the actual proportionality constants
are now known. In principle, Eqs. (3-4) could be obtained
from reciprocal-space results [2, 25–27].

To our knowledge, neither pixelated space nor the dis-
tinction between Poisson and multinomial statistics have
been previously considered. This is important when a
large fraction of pixels contain particles. For exam-
ple, a random “binomial pattern” of non-overlapping
binary particles, with I = 1, has variance σφ

2(L) =
(〈v〉/VΩ)[φ(1 − φ)]; this holds at all φ, and is correctly
unchanged by image inversion I → 1− I and φ→ 1− φ.
Note that Poisson statistics are recovered to good ap-
proximation when the populated pixels are dilute and
the qi are small compared to one. This happens for a
central-pixel representation when the image resolution is
good, i.e. in the continuum limit where the pixel size is
small enough that φ� 〈v〉/pod = 〈I〉 is true.

On the basis of Eqs. (3,4) we define the relative vari-
ance for general configurations as

V(L) ≡


σφ

2(L)

φ
Poisson, (5)

σφ
2(L)

φ[1− φ/〈I〉]
Multinomial, (6)

where the two cases are respectively for particles that
are, or are not, allowed to overlap. Then for both types
of random pixel patterns, the relative variance is V(L) =
〈v〉/VΩ for any volume fraction. This equals 〈I〉 at the
smallest window size, VΩ = po

d, and has an initial linear
decay of V(L) = 〈I〉[1 − d(L − po)/po + O(L − po)2] for
hypercubic windows. For patterns with hidden order,
V(L) will be smaller than this upper bound [28].

B. Separated-Particles Limit

The volume fraction variance may also be computed
exactly for small L, when all measuring windows con-

tain no more than one particle. For example if the
pixel particles effectively repel each other, or if for an-
other reason they have some minimum separation, then
for a set of w randomly placed Ld measuring win-
dows that are sufficiently small, the results will be some
numbers {Mo,M1,M2, . . .} of observed intensity values
{0, I1, I2, . . .}. Then the measured volume fraction mo-
ments are φnm =

∑
(Mi/M)(Iipo

d/Ld)n, where M =∑
Mi, and the measured relative variance is

Vm(L) =

∑ Mi

Mφ

(
Iipo

d/Ld
)2 − φ

1− φ/〈I〉
, (7)

assuming multinomial statistics as appropriate for sepa-
rated particles. The averages are set by M i = MρiL

d =
M [φi/(Iipo

d)]Ld. This gives φnm =
∑
φi(Iipo

d/Ld)n−1,
which leads to φm =

∑
φi = φ and a relative volume

fraction variance of

V(L) = 〈I〉 (po/L)d − φ/〈I〉
1− φ/〈I〉

, (8)

Note that Eq. (8) is exact and holds for small enough L,
for any arrangement of particles. If the arrangement is
random, then it holds only for L = po since there will be
a nonzero number of adjacent pixel particles. If the par-
ticles are separated, then Eq. (8) holds up to some larger
L that is set by the smallest particle-particle separation.
For windows of arbitrary shape, Eq. (8) generalizes to
V(L) = (〈v〉/VΩ−φ)/(1−φ/〈I〉). To our knowledge, the
small window limit of separated particles has not been
previously considered.

C. Cubic Crystal

As a third example that may be computed exactly,
we consider a pattern consisting of pixel particles of vol-
ume v = Iopo

d on a d-dimensional cubic lattice of spac-
ing b, using Ld hypercubic measuring windows, where
both the lattice and the windows are aligned with the
grid of pixels. For this situation there are only (b/po)

d

distinct locations for the windows; and there are only
d + 1 distinct results for the number n of enclosed par-

ticles. These are all of form n =
∑d
j=0 aj [floor(L/b)]j ,

with ad = 1. For example, in d = 1 there are (b − δ)/po
ways for n1 = floor(L/b) particles to be enclosed, and
δ/po ways for n1 + 1 particles to be enclosed, where
δ = L − bfloor(L/b). The probability distribution and
the moments for the number of enclosed particles may
then be evaluated. Exact results for the average and
variance of the measured volume fractions are found by
direct summation to be φ = Io(po/b)

d, as expected, and



4

σφ
2(L) = φ2

(
b

L

)2d{
L

b
− floor

(
L

b

)[
1− 2

L

b
+ floor

(
L

b

)]}d
− φ2 . (9)

We calculated Eq. (9) explicitly in 1, 2, and 3 dimensions,
and we verified the d = 2 case by comparison with simula-
tion. Though we are unaware of prior statement or proof,
we suppose it is true in all dimensions. The correspond-
ing number variance is σN

2(L) = [σφ
2(L)/φ2](L/b)2d.

For L < b the results simplify to σφ
2(L) = φ2[(b/L)d−1]

and σN
2(L) = (L/b)d[1 − (L/b)d]. The former agrees

with Eq. (8); the latter agrees with the d = 1 case con-
sidered in Ref. [1], where the number variance was com-
puted from the structure factor and expressed in Eq. (83)
as a Fourier series. For increasing L, the variance van-
ishes at integer values of L/b. The variance at half-way
between the zeros gives the large-L decay envelope as
σφ

2(L) = (d/4)(φb/L)2. This is pathological for d > 1,
since crystals ought to be strongly hyperuniform with
variance scaling of 1/Ld+1. Our result is even more
pathological than expected based on footnote 11 on p. 14
of Ref. [19], which indicates that σφ

2(L) ∼ 1/Ld−1 was
found for cubic crystals with cubic measuring windows.
The pathology arises because the distribution of mea-
sured φΩ values is highly non-Gaussian; hence, it may be
removed by using spherical measuring windows [1, 19].
For pixelated space it is more convenient to tilt the lat-
tice at multiple angles with respect to the pixel grid, as
done in the simulations below.

D. Continuum Limits

The above expectations were all derived for pixelated
space, where window widths and lattice spacings are an
integer number of pixel widths po, and where each par-
ticle has intensity Ii and occupies a po

d voxel. But the
results all also extend to continuous space for a point
representation of particles of volume fraction φ and φi-
weighted average particle volume 〈v〉. This is the limit of
vanishing po and diverging Ii taken simultaneously such
that vi = Iipo

d and φi are constant. Then multinomial
statistics reduce to Poisson statistics, since φ/〈I〉 van-
ishes and there is zero probability for two point parti-
cles to lie on top of one another. For measuring win-
dows of any shape, and volume VΩ, the relative variance
expectation of Eq. (3) for a random arrangement then
becomes σφ

2(L)/φ = 〈v〉/VΩ. For an infinite system,
where there is no minimum particle-particle separation,
this holds for all VΩ. For a finite system, however, it fails
for small VΩ where the windows all contain no more than
one particle. For any pattern and window shape at such
small VΩ, the relative variance expectation from Eq. (8)
is σφ

2(L)/φ = 〈v〉/VΩ − φ. For cubic crystals, Eq. (9)
holds in the continuum limit as written.

II. CHARACTERIZING HIDDEN ORDER

We now discuss how to measure the volume fraction
variance for a given pixel pattern, then we propose two
different ways to plot and interpret the results.

A. Measurements and Errors

Standard procedure is to measure the variance of
the list of volume fractions found inside a large num-
ber w of randomly placed measuring windows Ω of de-
sired size and shape [1]. For pixel patterns, the vol-
ume fraction inside a particular measuring window is
φm = [

∑
I(x, y, z...)po

d]/VΩ, which equals the total en-
closed particle volume divided by the measuring window
volume VΩ ∼ Ld; this is the same as the average inten-
sity of all the enclosed pixels. The average φm and the
variance σm

2 = φ2
m − φ2 of the measured volume frac-

tions may then be computed. For a large number w of
windows, φm will converge to the actual total volume
fraction φ of the whole pattern. But how large must w
be, and what is the resulting expected statistical uncer-
tainty between the measured variance and the true value?
To our knowledge, this has not been addressed in prior
work.

The error analysis for large measuring windows is most
straightforward. Since then the distribution of measured
volume fractions ought to be Gaussian, the uncertainty
can be estimated from the standard error of the variance
as ∆σφ

2(L) = σφ
2(L)

√
2/(s− 1), where s is the number

of independent samples. If the w measuring windows are
small and the pattern is large, then the windows measure
disjoint sets of particles and hence s = w may be used.
But for measuring windows that are sufficiently large in
size or number, some of the particles will be sampled by
more than one window and hence s will become smaller
than w. In general, the number s of independent samples
will be the total number of pixels covered by the entire
set of measuring windows divided by the number of pixels
per window. To account for this we create an auxiliary
binary image where pixel values Iaux(x, y) are flipped
from zero to one if the corresponding pixel in the image
lies within a measuring window. Then the number of
independent samples is taken from the auxiliary image
as s = (

∑
Iaux)/(L/po)

d.
To cover most of the sample with windows, there is no

need for w to be more than on the order of V/VΩ where
V is the volume of the entire image. This gives a number
of independent samples that is close to smax = V/VΩ. As
window size increases toward system size, smax decreases
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to one and causes the standard error of the variance to
bloom. In our analyses of two-dimensional simulations,
below, we take the number of L × L square windows to
be w = A/(2L2), where A is the image area, subject
to the constraint 102 ≤ w ≤ 104. And the largest win-
dow size we use is typically L =

√
A/2. Results for larger

measurement windows are contaminated by finite size ar-
tifacts, such that the area-fraction variance is artificially
depressed toward zero as L approaches the image width
[11]. Care must be taken that this systematic error not
be mistakenly interpreted as a sign of hyperuniformity or
lack thereof.

For small measuring windows, the standard error of
the variance is not a good estimate because the volume
fraction distribution is not Gaussian. Instead, the sta-
tistical uncertainty may be deduced from Eq. (7), which
gives (∆V)2 ∝

∑
(∆wi)

2 where wi is the number of small
measuring windows that contain one particle of species
i. The key ingredient is (∆wi)

2 = wi = wρiVΩ. As
before, w should be replaced with s. The resulting for-
mula for the uncertainty is good only for small enough
windows that contain no more than one particle. But
we suppose it might serve as an estimate for intermedi-
ate window size, anyway. Combining this in quadrature
with the standard error of the variance, which applies for
large windows, gives the expected statistical uncertainty
in the measured relative variance as

∆V =

√
〈v3〉/VΩ

3

sφ[1− φ/〈I〉]2
+

2V2

s− 1
, (10)

assuming multinomial statistics. For Poisson statistics,
the continuum limit, or pixel particles with φ � 〈I〉,
the −φ/〈I〉 term is dropped in comparison with one.
Note that the first term dominates for small windows,
while the second dominates for large windows; there-
fore, it does no harm to simply add them together.
We will use Eq. (10) to generate error bars in analy-
sis plots, below. Note that the φi-weighted moments
of the particle volume distribution may be written as
〈vn〉 =

∑
φivi

n/φ = (
∑
Nivi

n+1)/(
∑
Nivi) where the

sums are over species and where Ni is the total number
of particles of species i in the sample. This may also
be written as 〈vn〉 =

∑
vj
n+1/

∑
vj where the sums are

over all particles in the sample.

B. Variance Ratio, R(L)

The volume fraction variance is largest for a totally
random pattern, and necessarily decreases with ordering.
Therefore the presence of hidden order can be detected
by comparing σφ

2(L) for the pattern in question with
[σφ

2(L)]rand for a totally random arrangement of the
same set of particles. For non-overlapping pixel particles,
the variance at L = po merely measures the distribution
of particle intensities independent of their arrangement;
therefore, σφ

2(po) = [σφ
2(po)]rand = φ〈I〉[1−φ/〈I〉] holds

and we may write [σφ
2(L)]rand = σφ

2(po)(po/L)d. Hence
we define the variance ratio, and evaluate it without hav-
ing to know φ and 〈I〉, as

R(L) ≡ σφ
2(L)

[σφ2(L)]rand
=

σφ
2(L)Ld

σφ2(po)pod
. (11)

By construction, totally random patterns have R(L) = 1
and this is an upper bound. Note, too, that the variance
ratio is normalized to R(po) = 1 for all pixel patterns.
For the continuum limit of point particle and spherical
measuring windows, simply replace L with diameter D,
and po with some chosen smallest measuring diameter
Do that is less than the minimum particle-particle sepa-
ration rmin in the sample. Either Do should be vanish-
ingly small compared to rmin, or else a correction should
be made using the above results for separated-particle
arrangements:

R(D) =
σφ

2(D)Dd

[σφ2(Do) + φ2]Do
d
. (12)

This gives R(D) = 1 − φVΩ/〈v〉 exactly for D < s, and
is normalized to R(Do) = 1 only as Do vanishes and
σφ

2(Do) diverges. To interpret R(L), first note that the
large-L scaling is R(L) ∼ 1/Lε for σφ

2(L) ∼ 1/Ld+ε.
Therefore, R(L) goes to a constant for patterns with
long-range density fluctuations (ε = 0); and it goes to
zero as a dimension-indepenent power-law if the pattern
is hyperuniform, e.g. most notably R(L) ∼ 1/L for
strongly hyperuniform (ε = 1). The utility of diagnos-
ing hyperuniformity via the product σφ

2(L)Ld has been
previously recognized [11, 12]. The advantage of addi-
tionally normalizing by σφ

2(po)po
d is that then the value

(not just the scaling) has meaning. Smaller R means
more order, larger R means more random, and R = 1
means totally random. Thus, R(L) can be thought of
as a randomness index, which decays from one as L in-
creases and hidden order is detected. As shown below,
R(L) can also be interpreted as the fraction f of space
available for density fluctuations at wavelength L.

C. Hyperuniformity Disorder Length, h(L)

While R(L) is a useful new quantity, it does not con-
nect to the original idea [1] that fluctuations in hyper-
uniform systems are governed by particles on the surface
of the measuring windows. Since particles reside in a
volume, we quantify this notion by introducing a hyper-
uniformity disorder length h(L) that specifies the region
near the window boundary where fluctuations are impor-
tant. This concept is depicted in Fig. 2, which shows an
L×L measuring window that is partitioned into a bound-
ary region of thickness h and an (L−2h)×(L−2h) interior
region. Intuitively, h is defined such that, if the system is
ergodic and the time variation φΩ(t) for one window has
the same distribution as for a randomly placed set of win-
dows, then only the boundary particles have opportunity
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to temporarily leave the measuring window. For a totally
random system where all enclosed particles participate,
h(L) would equal the maximum value L/2. For a “maxi-
mally” hyperuniform system, h(L) would be a minimum
and equal to po/2, which is the largest constant consistent
with the h ≤ L/2 requirement for all L; in this case, the
participating pixel particles are literally on the surface.
Since h(L) increases with disorder, we call it the hyper-
uniformity disorder length. In general, the nature of the
fluctuations is thus easily visualized in terms of the value
and form of the real-space spectrum of h(L) versus L.
We therefore call this analysis method “Hyperuniformity
Disorder Length Spectroscopy” (HUDLS).

FIG. 2: (color online) Example “Einstein pattern” of pixel
particles with a Gaussian-distributed random displacement
from a triangular lattice. The lattice constant is 30 pixels,
and the root-mean-square displacement is 150 pixels in each
dimension. Since the particles are effectively bound to the
lattice sites, the pattern is hyperuniform with no long-range
density fluctuations – even though it appears very disordered
to the eye. Randomly placed measurement windows hence
show density fluctuations that are due only to particles within
a distance h of the window boundary that is constant for
large windows. Here this “hyperuniformity disorder length”
is h = 82 pixels, as illustrated for an example 1100 × 1100
window. For clarity, the pixel particles are shown as dots
that are 11 pixels across.

The technical definition of h(L) is based on the mea-
sured variance compared to that for a totally random
arrangement of the same set of particles. For a truly
random pattern, the number of pixels with fluctuating
particles is equal to the number n = (L/po)

d of pixels in
the entire Ld measuring window. For non-random pat-
terns with smaller variance, we take it instead to be the
number nB = [Ld−(L−2h)d]/po

d of pixels in the bound-
ary region; this is where h enters. Intuitively, the particle
number variance is set by the average number of particles
in the boundary region. Repeating the arguments in the
first three paragraph of Section I A, but with n replaced
by nB as the only difference, gives the following Funda-

mental Equations of HUDLS for cubic windows:

V(L) =
〈v〉
Ld

[
Ld − (L− 2h)d

Ld

]
, (13)

R(L) = 1− (1− 2h/L)
d
, (14)

h(L) = (L/2){1− [1−R(L)]
1/d}. (15)

Note that the term in square brackets in Eq. (13) equals
the right-hand side of Eq. (14), and is the ratio of bound-
ary volume to window volume. As defined earlier, V(L) is
shorthand for the relative volume fraction variance given
by Eqs. (5-6) for either Poisson or multinomial statistics,
as appropriate; 〈v〉 = 〈I〉pod is the φi-weighted average
particle volume; and R(L) ≡ V(L)/[〈v〉/Ld] is the ra-
tio of the variance to that in a random arrangement of
the same particles. We emphasize that Eqs. (13-15) are
equivalent, and serve to define h(L) in terms of the mea-
sured volume fraction variance. The same set of equa-
tions holds for point particles in continuum space, and
also for spherical measuring windows if L is replaced by
diameter.

Before putting this machinery into action, we examine
special cases and bounds. First, note that V(L) = 〈v〉/Ld
and R(L) = 1 are recovered for totally random pat-
terns, where h equals L/2 by construction. These are
upper bounds [28]. For not-totally-random patterns with
liquid-like long-range fluctuations, V(L) also scales as
1/Ld; then R(L) goes to a constant and h(L) scales like
L but with a proportionality constant less than 1/2. For
separated particles at small L, where there is no more
than than one particle per window, the expectations are

V(L) =
〈v〉/Ld − φ
1− φ/〈I〉

, (16)

R(L) =
1− φLd/〈v〉

1− φ/〈I〉
, (17)

h(L) =
L

2
− L

2

[
φLd/〈v〉 − φ/〈I〉

1− φ/〈I〉

]1/d

. (18)

These are lower bounds; however, at larger L where
Eq. (18) falls below po/2, the lower bounds are given
instead by the fundamental equations evaluated at h =
po/2 (maximally hyperuniform). In the continuum limit,
the φ/〈I〉 terms vanish. For patterns where h(L) � L
holds and fluctuations are hence only near the measur-
ing window surfaces, then expansion of the fundamental
equations gives

V(L) = 2d
〈v〉h(L)

Ld+1
, (19)

R(L) = 2d
h(L)

L
, (20)

h(L) =
1

2d
R(L)L. (21)
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The case of strong hyperuniformity is V(L) ∼ 〈v〉/Ld+1;
this corresponds to a constant hyperuniformity disor-
der length h(L) = he. Note that the very form of the
V(L) ∼ 〈v〉/Ld+1 scaling demands the existence of a new
length scale, he, in order to become dimensionally cor-
rect: V(L) ∝ 〈v〉he/Ld+1.

For further intuition and direct connection with the
surface coefficient Λ of Ref. [1], we repeat the deriva-
tion of Eq. (19) for the restricted case of monodisperse
particles of volume v, Poisson statistics for boundary

fluctuations, arbitrary window shapes, and h � VΩ
1/d.

Then the boundary volume equals window surface area
AΩ times h, and the number variance equals the average
number of particles in AΩh:

σN
2 =

AΩhφ

v
. (22)

The volume fraction variance is therefore

σφ
2 ≡

(
v

VΩ

)2

σN
2 =

vAΩhφ

VΩ
2 , (23)

and the relative variance is

V(L) ≡ σφ
2

φ
=
vAΩh

VΩ
2 . (24)

This reduces to Eq. (19) for hypercubic windows, where
VΩ = Ld and AΩ = 2dLd−1. In Ref. [1] a surface coeffi-
cient is defined by σN

2 = Λ(R/b)d−1 and tabulated for
hyperspherical windows of radius R and monodisperse

crystals with lattice spacing b. Thus Λ and he are di-
rectly related by Λ(R/b)d−1 = AΩheφ/v.

As another aside, it might be tempting to use the fun-
damental equations to analyze actual images of extended
particles – rather than their central-pixel representation.
We warn that this is correct only for sufficiently large
windows. Ref. [29] generalizes our HUDLS analysis ap-
proach to extended particles, and corrects upon Eq. (13)
at small L by accounting for particles that lie partially
inside and partially outside the measuring windows.

D. Multinomial Expectations in d = 2

In the following sections we measure the area fraction
variance for simulated two-dimensional patterns of non-
overlapping pixel particles. So multinomial statistics are
appropriate, and for reference the three quantities of in-
terest are

V(L) =
σφ

2(L)

φ[1− φ/〈I〉]
=

4〈a〉(L− h)h

L4
, (25)

R(L) =
σφ

2(L)L2

σφ2(po)po2
, (26)

h(L) = (L/2)[1−
√

1−R(L)], (27)

where 〈a〉 = 〈I〉po2 is the area-fraction weighted average
particle area. These equations will be used to deduce
R(L) and h(L) from measurements of V(L). Results will
be compared with the following bounds:

max

{
〈a〉/L2 − φ
1− φ/〈I〉

,
〈I〉(2L/po − 1)

(L/po)4

}
≤ V(L) ≤ 〈a〉

L2
, (28)

max

{
1− φL2/〈a〉

1− φ/〈I〉
,
〈I〉(2L/po − 1)

(L/po)2

}
≤ R(L) ≤ 1, (29)

max

{
L

2po

(
1−

√
φL2/〈a〉 − φ/〈I〉

1− φ/〈I〉

)
,

1

2

}
≤ h(L)

po
≤ L

2po
. (30)

The upper bounds are for totally random patterns; these
will be plotted as red dashed lines. The lower bounds are
either the small-L expectation for separated particles, or
the expectation for maximally-hyperuniform as defined
by h = po/2; these will be plotted as green dotted curves.
Note that, with substitution of 〈a〉 = 〈I〉po2, the bounds
are all algebraic functions of the dimensionless variable
x = L/po. For small L, and for very disordered patterns,
it can happen that the measured variance exceeds the up-
per bound in accord with expected statistical uncertainty.
ThenR is greater than one and h cannot be deduced from
Eq. (27); instead, we take h = (L/2)[1 +

√
R− 1] as a

reasonable way to show data points and error bars that

overlap the upper bound.

III. BINARY PIXEL PARTICLES

We now apply the above methods to characterize three
different types of two-dimensional binary pixel patterns
created by simulation. Here the image sizes are all
8600po × 8600po, somewhat larger than typical digital
video images. Pixel values are either I(x, y) = 0 (empty)
or I(x, y) = 1 (one particle); therefore multinomial statis-
tics reduce to binomial statistics, all particle areas are
a = po

2, and the area fraction equals the fraction of pix-
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els that contain a particle. The area fraction variance
σφ(L)2 is measured as described above using L×L mea-
suring windows, where L is varied from po to at least
4300po, half the image width.

A. Random Binomial Patterns

A simple algorithm is to flip each pixel from zero to
one with probability equal to the desired area fraction,
φ. This creates a random “binomial” pixel pattern, with
an actual area fraction that is approximately φ. To cre-
ate a binomial pattern with exactly the desired area frac-
tion, we instead select a pixel at random, set its value to
one, and repeat until the desired number of pixel parti-
cles is reached. Such binomial patterns are the pixelated
analogue of random Poisson patterns for point particles.
While points literally occupy zero volume in Poisson pat-
terns, binomial patterns have 0 < φ < 1 and reduce to a
Poisson pattern at both extremes.

FIG. 3: (Color online) Area fraction variance (a) and hy-
peruniformity disorder length (b) versus measuring window
size, for simulated two-dimensional random binomial pixel
patterns with total area fraction φ as labeled. The system
size is 8600po × 8600po where po is the pixel width; this is
indicated by yellow shading. The results agree well with ex-
pectation of (a) σφ

2/[φ(1 − φ)] = (po/L)2 and (b) h = L/2.
However there are significant finite-size effects for large L, so
all further simulated patterns will be analyzed only up to half
the system size.

Simulation results for the relative variance V(L) =
σφ

2(L)/[φ(1 − φ)] are plotted versus L/po in Fig. 3a for
six different target area fractions, ranging widely from
φ = 10−3 up to φ = 0.9. All data collapse together

and match the expectation (po/L)2 to within statisti-
cal uncertainty for L less than about half the image
width, where finite-size effects are expected to become
strong [11]. The corresponding hyperuniformity disorder
lengths, deduced from Eq. (27), are plotted underneath
in Fig. 3b. All results collapse together and match the
expectation h = L/2 to within statistical uncertainty, as
long as finite-size effects are absent. The good agreement
between simulation and expectation validates our calcu-
lations as well as our image analysis procedures. Note in
particular that the factor of (1 − φ) in the relative vari-
ance is crucial for obtaining good collapse at high packing
fractions.

B. Vacancy Patterns

Another type of disordered pattern can be created by
randomly removing a fraction f of particles from a crys-
talline lattice. Here we study such vacancy patterns made
from pixel particles on a two-dimensional triangular lat-
tice that is rotated by 14◦ with respect to the image grid.
The rotation, and the triangular pattern, help smooth
out irregular features in the area fraction distributions
that would be especially strong for a square lattice with
square measuring windows. We take the lattice spacing
to be b = 30po, which gives the area fraction of the base
crystal as φc =

√
4/3(po/b)

2 = 0.00128. When a frac-
tion f of sites are vacant, the area fraction decreases to
φ = (1 − f)φc. These are small compared to 1, so we
may neglect factors of (1 − φ) and our simulations are
effectively in the continuum limit with Poisson statistics.

Simulation results for the relative variance are shown
in Fig. 4a for several values of f . Each curve represents an
average of 20 independent runs. All data initially decay
as (po/L)2, just like for random patterns. As L increases
toward the lattice spacing, the variance data fall below
the (po/L)2 upper bound, more quickly for smaller f .
This behavior matches well the lower bound given by the
small-L separated-particle expectation of Eq. (28). For
f > 0, the final decay is not as steep and appears to scale
as ∼ 1/L2. At small L there are prominent oscillations
set by the lattice spacing. For large L and f = 0, the data
appear to eventually approach and hug the maximally-
hyperuniform bound. These trends are easier to see in
terms of the corresponding variance ratios, R(L), plotted
underneath in Fig. 4b. In particular, it’s more appar-
ent that the initial decay is in good agreement with the
small-L separated-particles expectation of Eq. (29). And
for large-L, before finite-size effects become strong, the
R(L) data appear to approach a constant that equals the
fraction f of vacancies. These features may all be readily
understood, next, taking the relative variance of the per-
fect crystal as a given and using the binomial distribution
to treat vacancies.

To model the volume fraction variance of vacancy pat-
terns in d-dimensions, first note that the number of par-
ticles in a particular Ld measuring window is equal to the
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FIG. 4: (Color online) Area fraction variance (a), variance ra-
tio (b), and hyperuniformity disorder length (c) versus mea-
suring window size, for simulated two-dimensional triangular
crystals with a specified fraction f of random vacancies. Here
φ is the area fraction, po is the pixel width, 8600po is image
width (yellow shading), and b = 30po is the lattice spacing.
Measurements are made at all integer L/po for f = 0 (gray
curve), but only at a select subset for f > 0. Results for
f = 0 at the same subset of L/po are shown by black curves.
The dash-dotted curves correspond to our model, Eq. (31);
these curves appear to stop below a certain L, but in fact
they are present but entirely covered by the data curve. The
red and green dashed curves represent the upper and lower
bounds given by Eqs. (28-30). The separated-particle bound
is shown only for the crystal.

number N = Nc−Nv of enclosed crystal lattice sites mi-
nus the number of vacancies. Therefore, the average over
a large set of Ld measuring windows is N = N c−Nv, and
the variance is σN

2 = σNc
2 − 2(NcNv −N cNv) + σNv

2.
For the crystal lattice sites, we may write N c =

∑
npn

and N2
c =

∑
n2pn where pn is the probability of find-

ing n sites in a randomly placed Ld window. If there
are n sites in a window, then the probability for k of
them to be vacant is given by the binomial distribution as
qk = {n!/[k!(n−k)!]}fk(1−f)n−k. By direct summation,
this gives Nv =

∑
n

∑n
k=0(kqk)pn = fN c as expected.

Similar computation gives N2
v =

∑
n

∑n
k=0(k2qk)pn =

f(1− f)N c + f2N2
c and NcNv =

∑
n

∑n
k=0(npn)(kqk) =

fN2
c . Plugging these into the expression for σN

2, multi-
plying by (po/L)2d to convert to area fraction variance,
and dividing left and right hand sides by φ = (1− f)φc,
gives a final result that is surprisingly simple:

σφ
2(L)

φ
= (1− f)

σφc
2(L)

φc
+ f

(po
L

)d
. (31)

Thus the relative variance of a vacancy pattern is the
weighted average of that for a perfect crystal plus that
for a random binomial pattern. The variance ratio and
hyperuniformity length can then be expressed in terms
of those quantities for the perfect crystal as

R(L) = (1− f)Rc(L) + f, (32)

h(L) = hc(L)(1− f)1/d +
L

2
[1− (1− f)1/d]. (33)

Again these are weighted averages, but for h(L) the
weighting is not linear in f . For f → 0 the crystal results
are recovered; and for f → 1, as all particles are removed,
the pattern becomes totally random with h = L/2.

Since crystals are hyperuniform, σφ
2(L) should de-

cay faster than 1/Ld and therefore the second terms in
Eqs. (31-33) will eventually dominate at large L. Then
the large-L asymptotic behavior is

σφ
2(L)

φ
= f

(po
L

)d
, (34)

R(L) = f, (35)

h(L) = (L/2)[1− (1− f)1/d]. (36)

For our d = 2 simulations, these predicted scalings with
L are readily seen in Fig. 4. As a stronger test, Vc(L),
Rc(L), and hc(L) were extracted from the f = 0 data,
and the resulting expectations based on Eqs. (31-33) are
plotted as dot-dashed curves. These match the f > 0
simulation data very well, until finite-size effects become
strong. At our level of precision, such effects are notice-
able even for L down to one tenth the sample width.

Based on the R(L) → f result for vacancy patterns,
we may interpret R(L) for general systems not just as
a kind of randomness index but also more specifically as
the fraction of space available for density fluctuations at
wavelength L.

C. Einstein Patterns

Our previous examples all exhibited h ∼ L at long
length scales, so now we study a type of disordered pat-
tern that has no long-range density fluctuations and is
unquestionably hyperuniform. In particular, we con-
sider two-dimensional pixel particles that are individu-
ally displaced by a Gaussian-distributed amount from
a crystalline lattice. We dub these “Einstein patterns”
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in honor of Einstein’s simplified model for the heat ca-
pacity of solids, where each atom is harmonically bound
to a fixed lattice site. This may be compared with the
“shuffled lattice” patterns of Ref. [19], where each object
is placed randomly inside a cubic volume surrounding a
lattice site. For our simulations we again use a triangu-
lar lattice with spacing b = 30po, which is large enough
that factors of (1 − φ) may be dropped. Displacements
in each dimension are randomly drawn from a Gaus-
sian distribution specified by the dimensionless param-
eter δ = xrms/b = yrms/b. For large δ, it is sometimes
necessary to repeat a trial placement until an unoccupied
pixel is found.

Example patterns are shown in Fig. 2 for one δ, and in
Fig. 5 for a sequence of increasing δ. We include δ = 0,
although the crystal isn’t perfect due to pixilation effects
that must be large for xrms < po, i.e. here for δ < 0.02.
Note that the underlying crystal is evident for δ � 1,
including the case δ = 0.15 that corresponds to the Lin-
demann criterions for melting. For δ > 0.5, i.e. for dis-
placements larger than about 1/2 lattice spacing, it is
difficult to detect the lattice by eye. Nevertheless, even
for very large δ, the particles are still bound to a lattice
and hence cannot have long-range density fluctuations.
This will be reflected intuitively, as shown next, in terms
of the behavior of the hyperuniformity disorder length.

We next measure the area fraction variance as above,
and display the results in Fig. 6a. The corresponding
variance ratios and hyperuniformity disorder lengths are
shown underneath, in Figs. 6b-c. Each curve represents
an average of fourteen Einstein patterns, all with dif-
ferent displacements, and where the underlying lattice
was rotated by a different angle θ ∈ {1◦, 2◦, . . . , 14◦}.
This helps minimize artifacts from pixelation as well as
from commensuration of the lattice with the square mea-
suring windows. Such artifacts are still present for the
“zero-temperature” crystal case, δ = 0, where the rel-
ative variance is computed at each integer L/po in the
range 1 − 4300. Since these artifacts vanish for large
enough δ, we then measure at fewer window sizes.

The observed behavior is as follows. At small L, the
relative variances for all δ match well with the random
binomial expectation with h = L/2. For increasing L,
each data curve eventually falls below the binomial ex-
pectation – sooner for smaller δ, i.e for less disorder. The
δ = 0 crystal results show pronounced oscillations with
features located according to lattice spacing. At large
enough L such features are less regular, though are still
present, and the variance approaches the lower bound of
maximally hyperuniform. For δ > 0, the variance results
similarly show a final decay of 1/L3 but with a numer-
ical prefactor that grows with δ. Einstein patterns are
therefore all hyperuniform, but not maximally so.

The extent of hyperuniformity may be diagnosed in
terms of the behavior seen in Fig. 6c for the hyperunifor-
mity disorder length at large L. In particular a signature
of strong hyperuniformity is that h becomes a constant,
and the degree of hyperuniformity may be judged by the

FIG. 5: (Color online) Example Einstein patterns for different
root-mean-square displacements, labeled by the value of δ =
xrms/b = yrms/b. Here the lattice spacing b is 30 pixels, and
for clarity the particles are shown as dots that are many pixels
across. By eye, patterns (f)-(i) are nearly indistinguishable
and appear quite random.

size he of this constant. To deduce he we either average
the large-L results or we fit to

h(L) =
he(e

αL/he − 1)

2α+ (eαL/he − 1)
, (37)

where α and he are adjustable parameters. This empir-
ical function has an exponential crossover from h = L/2
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FIG. 6: (Color online) Area fraction variance (a), variance ra-
tio (b), and hyperuniformity disorder length (c) versus mea-
suring window size, for simulated two-dimensional Einstein
patterns with specified dimensionless root-mean-square dis-
placement, δ. Here φ is the area fraction, po is the pixel
width, 8600po is image width (yellow shading), and b = 30po
is the lattice spacing. In (c) an empirical fitting function is
shown, which may be used to estimate the constant value he
of the hyperuniformity length at large L. Note that he is
roughly one-half the root-mean-square displacement in each
dimension. Measurements are made at all integer L/po for
δ = 0 (gray curve), but only at a select subset for δ > 0.
Results for δ = 0 at the same subset of L/po are shown by
black curves. The red and green dashed curves represent the
upper and lower bounds given by Eqs. (28-30).

at small L to h = he at large L. It is seen in Fig. 6c
to match the data quite well, except for the oscillations
coming from the crystal. The fitting results for α are
constant: α = 0.77 ± 0.02. The fitting results for he are
plotted versus δ = xrms/b = yrms/b in Fig. 7, and are
well described by

he =

√
(po/2)

2
+ (cxrms)2, (38)

with c ≈ 1/2. Thus, he is approximately one-half the
total root-mean-square displacement in each dimension,

which comes from the combination of pixelation and
Gaussian kicks. This makes intuitive sense by thinking of
a fixed measuring window and harmonically bound par-
ticles that independently oscillate in time with thermal
energy. Number fluctuations are primarily due to the
particles whose lattice sites lie within a distance he from
the boundary of the measuring window. This degree of
disorder is not evident to the eye when the root-mean-
square displacement is larger than the lattice spacing.
But it is readily detected by analyzing the relative vari-
ance in terms of the hyperuniformity disorder length.

FIG. 7: (Color online) Large-L value of the hyperunifor-
mity disorder length versus dimensionless root-mean square
displacement, δ = xrms/b = yrms/b, for the Einstein pat-
tern results shown in Fig. 6b with lattice spacing b = 30po.
The insert is a blow-up of the small-δ region. The fitting

function he =
√

(po/2)2 + (cbδ)2 matches the data well with

c = 0.56 ± 0.01. By contrast a linear fit for all δ, shown by
the dashed yellow line in the inset, fails for small δ.

D. Finite-size effects

The degree to which variance measurements are af-
fected by the finite size of the system can be examined
in terms of the ratio of measured to expected variance
as a function of L/W where W is the width of the sam-
ple. This is shown in Fig. 8 for all three pattern types
discussed above. For the binomial and vacancy patterns,
we found no trend with area fraction and f , respectively.
So results are averaged together. As seen in Fig. 8, finite
size effects are generally largest for the binomial patterns
and smallest for the Einstein patterns. In all cases, the
variance is suppressed and the amount increases with dis-
order and the range of the density fluctuations. Thus
Einstein patterns with small δ are least affected, and
binomial patterns are most affected. For general guid-
ance, systematic errors are no more than about 1% for
L < 0.05W and no more than about 10% for L < 0.2W .
But for strongly hyperuniform systems the systematic
errors can be considerably less.
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FIG. 8: (Color online) Ratio of simulated to expected area
fraction variance versus L/W where L is the width of the
measuring boxes and W = 8300po is the width of the sample.
Data are from previous figures. As seen, the effect of finite
sample size is to suppressed the variance at large L. The
longer the range of the density fluctuations, the larger the
effect.

IV. GRAYSCALE PIXEL PARTICLES

In this section we apply the same analysis approach to
three different types of simulated two-dimensional pat-
terns where the pixel particles are now polydisperse, with
a range of intensity values Ii that differ from one. The
particle areas are ai = Iipo

2, and the expectations are
determined by the weighted average 〈a〉 = 〈I〉po2 =∑
φiai/φ. Area fractions are given by the sum of in-

tensities divided by number of pixels, and the variance
σφ

2(L) is measured using L× L square windows.

A. Random Multinomial Patterns

The first test is for totally random multinomial pat-
terns made either from equal numbers of three species
of pixel particle with grayscale intensities {1, 2, 3}, or for
patterns made from equal area fractions of four species of
pixel particle with grayscale intensities {1, 2, 4, 8}. Two
patterns are created for each mixture, with different total
area fractions of 0.1 and 0.9, by randomly choosing pix-
els values as {0, I1, I2, . . .} with appropriate probabilities
{1 −

∑
qi, q1, q2, . . .}. The relative variance is expected

to be V(L) = σφ
2(L)/[φ(1 − φ/〈I〉] = 〈I〉(po/L)2, where

the φ/〈I〉 term cannot be neglected. We therefore plot
V(L)/〈I〉 in Fig. 9 and compare with (po/L)2. As ex-
pected, the data for all four patterns perfectly collapse
to this power law until finite size effects become notice-
able at large L. This validates the multinomial statistics
calculation, and serves to emphasize that the relevant
average particle area is set by φi-weighting.
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FIG. 9: (Color online) Normalized area fraction variance ver-
sus measuring window size for four random multinomial pixel
patterns. Two mixtures of pixel particle species are used,
as labeled, and patterns for each are created with total area
fractions of 0.1 (smaller symbols) and 0.9 (larger symbols). A
small portion of the {1, 2, 3} system with φ = 0.9 is shown in
the inset. For all four patterns, the relative variance results
agree well with the (po/L)2 expectation shown by the dashed
red line.

B. Bidisperse Squares: Overlapping

The second test is for a grayscale Poisson pattern made
from of a 50:50 mixture of two different size square par-
ticles, a1 = (10po)

2 and a2 = (20po)
2, and the associated

central pixel pattern. Extended particles are repeatedly
added at random locations, such that each covered pixel
is incremented by +1, until the respective area fractions
reach φ1 = 0.2 and φ2 = 0.8. The total area fraction
is then φ = 1 and the φi-weighted average particle area
is 〈a〉 = 340po

2. Note that particle-particle overlaps are
freely allowed, and that the value of each pixel is equal to
the number of particles that cover it. In parallel we con-
struct the central pixel pattern representation of the same
configurations, where the center pixel for each particle of
each species is incremented by I1 = 100 or I2 = 400.
For both image types, the local area fraction is given by
the sum of pixel values per unit area. Small examples of
extended-particle and corresponding central-pixel images
are shown in the insets of Fig. 10. Even though the total
area fraction is one, the particles are large enough that
the central pixel pattern is quite dilute and has intensity
values of only {0, I1, I2}. Therefore, the distinction be-
tween Poisson and multinomial statistics for the central
pixel representation can be neglected.

The main plot of Fig. 10 shows the relative area frac-
tion variance for the two different representations of the
same arrangement. The results for the central-pixel
image are well described by the prediction σφ

2/φ =
〈a〉/L2 = 340(po/L)2. By contrast, the relative variance
for the extended particle image merges onto 〈a〉/L2 only
for L much greater than the particle sizes; in this limit
the two representations give identical results. At small-L
the relative variance for the extended particle image has



13

0.0001

0.001

0.01

0.1

1

10

100

1 10 100 1000

340(p
 
/L)

σ
φ2  / 

φ

L/p
o

2
o

a
1
=(10p

o
)2, φ

1
=0.2

a
2
=(20p

o
)2, φ

2
=0.8

FIG. 10: (Color online) Relative variance versus measuring
window size for a random arrangement of a 50:50 bidisperse
mixture of extended square particles (gray squares) and the
corresponding central-pixel representation (red dots). The
actual image sizes are 4300po×4300po; much smaller versions
are shown as insets. Particle sizes and total area fractions are
labeled. The φi-weighted average area of the two species is
〈a〉 = 340po

2. The red line is the 〈a〉/L2 expectation. The
gray curve is from Ref. [29].

a slower decay starting from σφ
2/φ = 1 at L = po. This

reflects the particle shape as well as the random arrange-
ment [29], whereas the decay for central pixel patterns
reflects only the nature of the arrangement.

C. Bidisperse Squares: Non-Overlapping

Lastly, we use a central-pixel representation to diag-
nose the uniformity of simulated 50:50 bidisperse mix-
tures of a1 = (10po)

2 and a2 = (20po)
2 square particles

with 〈a〉 = 340po
2 as a function of total area fraction.

This system is like in Fig. 10, but with one major dif-
ference: Random trial locations are now rejected if any
particle-particle overlap occurs. An example of the re-
sulting binary pattern of extended particles is shown in
the inset of Fig. 11. As before, central-pixel representa-
tions are simultaneously made and then analyzed.

Results for the relative variance, the variance ratio,
and the corresponding hyperuniformity disorder lengths,
are collected in Fig. 11. The general behavior is an amal-
gam of key features seen for the vacancy and Einstein pat-
terns. Like the latter, the system matches the separated-
particles expectations at small L followed by a develop-
ing plateau of constant h(L) – but only out to interme-
diate L. At larger L, the scaling then crosses over to
that seen for the vacancy patterns with long-range den-

sity fluctuations: V(L) ∼ 1/L2, R(L) ∼ constant, and
h(L) ∼ L. With increasing φ, the plateau becomes more
pronounces and the long-range density fluctuations de-
crease. If the length of the plateau were to diverge as φ
increases toward random-close packing, then the onset of
jamming would be accompanied by the development of
strong hyperuniformity like in an Einstein pattern. This
is the topic of a following paper [30], where different pack-
ing protocols are used to generate bigger systems with
higher packing fractions than are accessible here. For
now, Fig. 11 serves as demonstration of the HUDLS anal-
ysis method for polydisperse hard or soft particles and,
hopefully, also whets the appetite for its larger scale uses.
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FIG. 11: (Color online) Relative variance (a), variance ra-
tio (b), and hyperuniformity disorder length (c) versus mea-
suring window size for the central-pixel representation of ar-
rangements of non-overlapping a1 = (10po)

2 and a2 = (20po)
2

square particles, in equal numbers, like in the inset, for sev-
eral area fractions. For clarity, error bars are plotted on only
a few data as sets marked in the legend. The red and green
broken curves represent the upper and lower bounds given by
Eqs. (28-30). The separated-particle bound is shown only for
the largest packing fraction.
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V. CONCLUSION

In summary, we have introduced a powerful way to
analyze σφ

2(L) versus L results and thereby diagnose
the extent of hyperuniformity in terms of two real-space
spectra: (a) the ratio R(L) of the variance for the pat-
tern in question to that for a random arrangement of the
same set of particles, and (b) the hyperuniformity disor-
der length h(L). Whereas R(L) is a kind of randomness
index that can also be interpreted as the fraction of space
available for density fluctuations at wavelength L, the
value of h(L) specifies the distance from the boundary
of VΩ = Ld measuring windows over which fluctuations
are important. This connects directly to the original idea
that hyperuniform systems are controlled by particles on
the surface of the measuring windows [1], and it makes
the large-L scaling σφ

2(L) ∝ 〈v〉h/Ld+1 dimensionally
correct. This applies equally well to liquid-like systems
having long-range density fluctuations with R(L)→ con-
stant and h(L) ∼ L, as well as to strongly hyperuniform
systems with R(L) ∼ 1/L and h(L) → constant, and to
systems anywhere between.

Whereas prior work focuses on the form of the large-
L scaling for diagnosing hyperuniformity, an important
feature of our work is to bring meaning to the value
of the variance, though intuitive interpretation of the
corresponding values of R(L) and h(L). These quanti-
ties are even further useful when compared to the exact
bounds we computed for pixelated space, using Poisson
and multinomial statistics. The resulting formulae and
plots are expressed using the pixel length, po, explicitly,
so as to be dimensionally correct.

While pixel patterns are natural for digital images
coming from experiment, they might seem inappropriate
for arrangements of point particles in continuous space.
In fact they literally apply via the realization that limi-
tations on numerical precision effectively set po. But fur-
thermore, there is a well-defined continuum limit where
the particle volume vi = Iipo

d remains constant while
pixel length vanishes and the intensity diverges. The
relevant formulae for a point representation of extended
particles with φi-weighted average volume 〈v〉, and d-
dimensional spherical measuring windows of volume VΩ

and diameter D, then become

V(D) ≡ σφ
2(D)/φ (39)

∆V =

√
〈v3〉/VΩ

3

Sφ
+

2V2

S − 1
(40)

R(D) =
V(D)Dd

[V(Do) + φ]Do
d

(41)

1− φVΩ/〈v〉 ≤ R(D) ≤ 1 (42)

h(D) ≡ (D/2){1− [1−R(D)]
1/d} (43)

where Do is some smallest chosen measuring diameter
that is less than the smallest particle-particle separa-
tion in the pattern, and S is the number of indepen-
dent samples made by the randomly chosen set of mea-
suring windows. The first and last of these are defini-
tions; the others are new results. The upper and and
lower bounds are respectively set by the calculated vari-
ance for the separated-particles and the totally-random
arrangements. The large-L scalings are V(L) ∼ 1/Ld+ε,
R(L) ∼ 1/Lε, and h(L) ∼ L1−ε, where the exponent ε
ranges from zero (liquid-like) to one (strongly hyperuni-
form).

Thus our general advances for analysis of particle ar-
rangements include the concepts of R and h, their in-
tuitive meanings and bounds, and a systematic way to
estimate the expected statistical uncertainty – for both
pixelated and continuum space. It is unclear how this
translates or could be done in terms of the S(q) or χ(q)
spectra. Therefore, we recommend that hyperuniformity
be diagnosed from measurement of the real-space spec-
trum of σφ

2 versus window size. As standard procedure,
essentially-raw variance data are to be plotted in terms
of R±∆R and then further analyzed in terms of h±∆h
versus measuring window size.

To verify expectations for random pixel patterns, and
to build intuition and examine behavior relative to
the bounds, we applied our Hyperuniformity Disorder
Length Spectroscopy (HUDLS) approach to a variety
of simulated two-dimensional patterns. The results are
exactly as expected for both the random binomial and
multinomial patterns, as long as L is small enough for
finite-size effects to be small. The results for the vacancy
and the Einstein patterns can be simply understood, and
capture essential features that emerge in a small-scale
simulation of a bidisperse mixture of extended particles
as the packing fraction is increased. Thus the extent
of hyperuniformity in polydisperse systems may now be
diagnosed by similarly using HUDLS on larger-scale sim-
ulations and experiments. This opens up new lines of
research, including study of foams [31] as well as the jam-
ming transition [30], for both of which polydispersity is
often present and acts to suppress crystallization.
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