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Abstract

We study the nanoscale terraced topographies that arise when a solid surface is bombarded with

a broad ion beam that has a relatively high angle of incidence θ. We find that the surface is

not completely flat between the regions in which the surface slope changes rapidly with position:

instead, small amplitude ripples propagate along the surface. Our analytical work on these ripples

yields their propagation velocity as well as the scaling behavior of their amplitude. Our simulations

establish that the surfaces exhibit interrupted coarsening, i.e., the characteristic width and height

of the surface disturbance grow for a time but ultimately asymptote to finite values as the fully

terraced state develops. In addition, as θ is reduced, the surface can undergo a transition from a

terraced morphology that changes little with time as it propagates over the surface to an unterraced

state that appears to exhibit spatiotemporal chaos. For different ranges of the parameters, our

equation of motion produces unterraced topographies that are remarkably similar to those seen in

various experiments, including pyramidal structures that are elongated along the projected beam

direction and isolated lenticular depressions.

PACS numbers: 81.16.Rf, 79.20.Rf, 68.35.Ct
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I. INTRODUCTION

When a nominally flat solid surface is bombarded with an obliquely-incident, broad ion

beam, nanoscale ripples often develop on the surface [1]. These ripples form as a result

of a surface instability [2–4]. At early times, the surface is governed by a linear equation

of motion to a good approximation and the ripple amplitude grows exponentially in time.

However, nonlinear effects must be taken into account once the ripple amplitude has become

sufficiently large. The lowest order nonlinearities are quadratic and come from the angular

dependence of the sputter yield [5, 6]. When these terms are included, the equation of

motion for the surface becomes the anisotropic Kuramoto-Sivashinsky (KS) equation. This

equation yields disordered ripples whose amplitude saturates at sufficiently long times.

In experiments in which the ion beam is reasonably close to grazing incidence, the surface

frequently develops a terraced form at the late stages of its time evolution [7–20]. A height

profile taken along the projected ion direction is not sinusoidal. Instead, as we trace along

the profile, the surface slope is nearly equal to a constant positive value m+ for a long spatial

interval. At some point, the slope changes rapidly, and then is nearly equal to a constant

negative value m− for a long interval. The slope once again changes rapidly at some point,

and then is approximately equal to m+. The height profile continues in this fashion, and so

takes on an irregular, sawtooth form. The sawteeth are asymmetric because the magnitudes

of the selected slopes m+ and m− differ.

The anisotropic KS equation does not produce terraced topographies. However, Pearson

and Bradley (PB) recently introduced a model that includes a better approximation to

the sputter yield than the one that is used in deriving the KS equation [21]. This more

refined approximation yields a cubic nonlinearity that does not appear in the KS equation.

Numerical integrations of the PB equation of motion reveal that the cubic term can have a

profound effect on the dynamics — it can lead to the formation of a terraced topography

that coarsens with time, in accord with experimental observations [7–20]. The regions in

which the surface slope changes rapidly are undercompressive shocks [22].

The formation of terraced surfaces is not just of academic interest. Harrison and Bradley

(HB) have advanced a two-stage procedure for producing high efficiency blazed diffraction

gratings that takes advantage of the slope selection that results from bombardment with

a broad ion beam at a relatively high angle of incidence [23]. In the first stage of their
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proposed fabrication method, conventional lithography is used to produce a periodic height

modulation on the surface of the sample. The second stage consists of bombarding this pre-

patterned surface with a broad ion beam of noble gas ions at a high angle of incidence. HB’s

simulations strongly suggest that this serves to transform the initial pattern into the periodic

sawtooth form characteristic of high quality blazed gratings if the ion beam and target

material are selected appropriately. More recently, HB have shown how their fabrication

procedure can be extended to produce multilayer blazed gratings that could perform well in

the extreme ultraviolet and soft X-ray regimes [24].

In this paper, we will carry out an in-depth study of the terraced topographies produced

by ion bombardment of a surface that is nominally flat initially. We begin with the case in

which the surface height does not vary in the direction transverse to the projected ion beam

direction and the surface is governed by the PB equation of motion. We find that the surface

is not completely flat between the undercompressive shocks: instead, small amplitude ripples

propagate along the surface in these regions. Our analytical work on these ripples yields their

propagation velocity as well as the scaling behavior of their amplitude. These predictions

are in good agreement with our numerical integrations of the PB equation. In addition,

our simulations establish that the terraced surfaces exhibit interrupted coarsening, i.e., the

characteristic width and height of the surface disturbance grow for a time but ultimately

asymptote to finite values. Finally, we find that as the coefficient of the cubic nonlinearity γ

is reduced, the time needed for a terraced morphology to develop increases and then diverges

at a critical value γc > 0. For 0 < γ < γc, the surface is not terraced and it appears to

display spatiotemporal chaos akin to that seen in solutions to the KS equation. Because

γ increases with the angle of incidence θ for a range of θ values [21], a transition from an

unterraced to a terraced topography could occur in a sequence of experiments in which θ is

systematically increased.

We next study an equation of motion that generalizes the PB equation to the case in

which the surface height can vary in both the transverse and longitudinal directions. This

extended equation of motion produces terraced ripple morphologies that undergo interrupted

coarsening, just as the PB equation does. For different ranges of the parameters, it yields

other topographies that are remarkably similar to those seen in experiments. For example,

for a certain range of the parameters, the extended equation of motion produces pyramidal

structures which protrude from the surface and that are elongated in the projected ion beam
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direction. Analogous topographies were observed by Carter et al. when they bombarded a

silicon sample with a 40 keV argon ion beam with a 70◦ angle of incidence [8]. Teichmann et

al., on the other hand, bombarded silicon with xenon ions that had an energy of 1.2 keV and

a 75◦ angle of incidence [18]. The isolated lens-shaped depressions they observed are very

similar to structures found in numerical integrations of our extended equation of motion.

This paper is organized as follows. In Sec. II, we develop the equation of motion we will

employ to model the bombardment of an elemental material with a noble gas ion beam.

The behavior of the surface for the case in which the surface height does not depend on the

transverse coordinate y is studied in Sec. III. In Sec. IV, we move on to study the surface

in the general case in which its height depends on both the longitudinal coordinate x and

the transverse coordinate y. We discuss our results and give our conclusions in Sec. V.

II. EQUATION OF MOTION

Consider an initial surface that is perturbed slightly from a completely flat state. We

define the x− y plane so that the unperturbed surface lies in it. Furthermore, we orient the

x axis so that the ion beam direction lies in the positive quadrant of the x − z plane. The

angle of incidence θ is the angle that the ion beam makes with the z axis. We will confine

our attention to the case in which the target is an elemental material and the beam consists

of noble gas ions. We will assume that the target material is amorphous or that a surface

layer is amorphized by the impacting ions.

Let h(x, y, t) be the height of the surface above the point (x, y) in the x− y plane at time

t. The most widely used equation of motion (EOM) for the solid surface is

ut = αux + κ1uxx + κ2uyy −B∇2∇2u+ λ1u
2
x + λ2u

2
y, (1)

where u = u(x, y, t) is the deviation of h(x, y, t) from its unperturbed steady-state value

[1, 5, 6]. The subscripts on u indicate partial derivatives, and the coefficients α, κ1, κ2, B,

λ1 and λ2 depend the ion species, energy and angle of incidence and on the choice of target

material. Equation (1) will be referred to as the two-dimensional anisotropic Kuramoto-

Sivashinsky (AKS) equation since u depends on two spatial coordinates.

The only effect that the term αux in Eq. (1) has is to cause surface features to propagate

laterally at constant velocity. This term can be eliminated by a Galilean transformation,
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and so it will be dropped. We will assume that κ1 and/or κ2 is negative, so that a flat initial

surface is unstable. In this case, the AKS equation generates ripples with an exponentially

growing amplitude at early times. If κ1 < κ2, then the ripple’s wave vector is parallel to

the projection of the ion beam onto the x − y plane. These ripples are therefore called

parallel-mode ripples. Conversely, if κ2 < κ1, then the ripple’s wave vector is perpendicular

to the projection of the ion beam onto the x − y plane and the ripples are referred to as

perpendicular-mode ripples.

We will assume that λ1λ2 > 0 so that unphysical cancellation modes in which the ripple

amplitude grows without limit do not occur [25]. The quadratic nonlinearities in Eq. (1) then

eventually control the exponential growth, the ripple amplitude saturates, and the surface

exhibits spatiotemporal chaos [6]. At any instant during the chaotic behavior, the surface is

statistically invariant under the two transformations x→ −x and y → −y. Additionally, the

surface does not coarsen according to this model. These observations are significant because

experiments carried out at high angles of incidence produce terraced topographies that are

not statistically invariant under the transformation x→ −x and that coarsen [7–20]. Since

the AKS equation fails to reproduce these two important effects, it is insufficient to model

the dynamics produced in these experiments.

In this paper, we investigate the effects of augmenting Eq. (1) with cubic nonlinear terms

proportional to u3x and uxu
2
y. This yields the EOM

ut = κ1uxx + κ2uyy −B∇2∇2u+ λ1u
2
x + λ2u

2
y + γ1u

3
x + γ2uxu

2
y. (2)

The cubic terms in Eq. (2) result from expanding the rate the surface recedes to third

order in ux and uy; as such, Eq. (2) applies only so long as the surface slope remains small.

Equation (2) represents an improvement on the AKS equation (1) since only terms of second

order in the slope are retained in the derivation of the latter equation.

When an elemental material is bombarded by a beam of noble gas ions, a number of

physical effects can influence the surface dynamics. These effects are sputtering, momentum

transfer from the incident ions to atoms near the solid surface [4, 26, 27], surface diffusion,

ion-induced surface viscous flow [28] and ion implantation [29, 30]. The cubic terms in the

equation of motion (2) do not conserve mass, but momentum transfer, surface diffusion

and ion-induced surface viscous flow all do. These effects therefore cannot contribute to

the coefficients of the cubic nonlinearities γ1 and γ2. This means that sputtering and ion
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implantation are the only physical effects that can contribute to γ1 and γ2. In Ref. 21,

Pearson and Bradley found the contribution of sputtering to γ1, but they did not consider

the contribution of ion implantation.

Note that the terms u3x and uxu
2
y are unchanged by the transformations y → −y and u→

u+ const., as they must be. However, they are not invariant under the transformation x→
−x, and so Eq. (2) does not in general produce surface morphologies that are statistically

invariant under this transformation. As we shall see, Eq. (2) reproduces many features that

are observed in experiments in which elemental materials are bombarded with noble gas ions

at relatively high angles of incidence, including terraced topographies that are not invariant

under the transformation x→ −x.

Equation (2) reduces to the PB equation of motion if u does not depend on the transverse

coordinate y [21]. It has already been studied by Harrison and Bradley for the case in which

the initial surface has a periodic height modulation [24]. In this paper, we will study the

complex and intriguing behavior predicted by Eq. (2) when the initial surface is nominally

flat.

Equation (2) does not include all terms that are of lower order than u3x and uxu
2
y and that

are invariant under the transformations y → −y and u → u + const. In particular, it does

not include the terms ux, uxxx, uxyy, uxuxx and uxuyy. As we have already mentioned, the

term proportional to ux can be eliminated from the EOM by a Galilean transformation and

so it is unnecessary to include it. The influence of a term proportional to uxxx has already

been investigated in one dimension (1D): it produces a propagating train of solitons if its

coefficient is sufficiently large [31]. Soliton trains are not observed in experiments and we

are focused on the formation of terraces, and so we will omit the term uxxx in this work.

The effect of a term proportional to uxuxx has been studied in 1D, and it was found that

its inclusion leads to the formation of unphysical singularities in finite time [32]. A detailed

investigation of the effects of adding the terms uxyy and uxuyy to the EOM is left for future

study.

Castro et al. and Muñoz-Garćıa et al. have demonstrated that adding a term

2∑
i=1

2∑
j=1

Ki,j
∂2

∂x2i

(
∂u

∂xj

)2

(3)

to the AKS equation leads to interrupted coarsening [33–35]. They have also shown that

this term can arise as a result of mass redistribution near the surface of the solid and have
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given explicit expressions for the parameters Ki,j. This term will be omitted from our EOM

because its effects are already well understood and because it is expected to play a less

prominent role in the dynamics for high angles of ion incidence. In addition, it does not

break the x → −x symmetry and so cannot produce asymmetric terraced topographies.

Finally, as we shall see, Eq. (2) produces interrupted coarsening even though it does not

include a term of the form (3).

Eq. (2) does not take shadowing of the incident ions into account. Shadowing occurs if

the surface slope ux exceeds cot θ at any point on the surface. If the nonlinearities do not

adequately control the amplitude of the pattern and shadowing does occur, the equation of

motion (2) no longer applies. In these circumstances, Eq. (2) is valid only for sufficiently

early times. The same is true of the widely employed AKS equation (1), however.

It is important to note that shadowing need not occur even at long times. Indeed, in the

careful experiments of Engler et al. [19], shadowing did not occur, and nevertheless terracing

was observed. Our equation of motion (2) applies in just these circumstances. From a

mathematical standpoint, shadowing does not occur if the coefficients of the nonlinear terms

(λ1, λ2, γ1 and γ2) are sufficiently large in magnitude.

In order to study Eq. (2), we integrated it numerically using the fourth-order Runge-Kutta

exponential time-differencing method of Cox and Matthews, starting with small amplitude

white noise as the initial condition [36, 37]. This method uses periodic boundary conditions,

which best approximate the physical system which is effectively infinitely extended. The

linear terms were computed exactly in Fourier space, while the nonlinear terms were evalu-

ated approximately in real space using finite differencing. The finite differences were central

differences accurate to second order in the grid spacing. In the case of our simulations in

two dimensions (2D), this means that the partial derivative ∂u
∂x

(x, y) was approximated by

u(x+ ∆x, y)− u(x−∆x, y)

2 (∆x)2
, (4)

where ∆x is the grid spacing. The temporal step used was ∆t = 0.1 in the 1D simulations,

while ∆t was 0.0025 in the 2D simulations.
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III. TERRACING IN ONE DIMENSION

In this section, we report results and develop predictions for the case in which the surface

does not vary in the transverse direction (i.e., uy vanishes for all x and y). This special

case will be referred to as the “one-dimensional case.” When uy is set to zero in Eq. (2) and

resulting equation is suitably rescaled, we obtain the PB equation of motion

ut = −uxx − uxxxx −
1

2
u2x +

1

6
γu3x, (5)

where the dimensionless prefactor of the cubic nonlinearity

γ =
3|γ1κ3/21 |
2λ21B

1/2
(6)

is real and nonnegative. In our numerical work, we will study solutions to Eq. (5) on the

spatial interval 0 ≤ x ≤ L. The number of spatial grid points will be denoted by N .

A. Small Scale Ripples on Terraces

For sufficiently large values of γ and of the time t, the solutions to Eq. (5) have large

regions in which the surface slope is nearly equal to one of the selected values Φ+ and Φ−,

which are given by

Φ± =
1

γ
±
√

6|str|
γ

, (7)

where

str ' −2.3879 (8)

is a constant [21]. These regions of nearly constant slope are separated by undercompressive

shocks that propagate laterally with the velocity

s = str +
1

γ
. (9)

Hereafter we shall refer to a state in which undercompressive shocks have formed and are

connected by regions of approximately constant slope as a “well formed terraced state.”

While at long times the large scale behavior is characterized by terrace formation, closer

inspection reveals that there exist ripple-like disturbances on the regions of approximately

constant slope. Figure 1 shows a typical surface obtained from a low amplitude spatial white
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noise initial condition as well as its second spatial derivative as a function of position. By

looking at uxx, one can more easily see the deviations from a constant slope. The amplitude

and lateral propagation velocity of the small scale ripples may be determined by a close

examination of Eq. (5).

FIG. 1: (Color online) A plot of u for a simulated surface (the red curve) and its second

spatial derivative uxx (the blue curve) that shows the formation of small scale ripples on a

terraced surface. Note that u has been scaled down for visual clarity. For this simulation,

γ = 0.3 and the elasped time was 103. The sample length L was 100 and the number of

spatial grid points N was 801.

Consider a surface which has

u(x, t) = Φ±x+ v(x, t). (10)

If v were zero, the surface would have a constant slope equal to one of the two selected

slopes Φ+ and Φ−. The term v = v(x, t) is the deviation from this state. Although our

simulations reveal that v is a small correction in a region of nearly constant slope, we will

actually develop predictions which are valid to all orders in v. From Eqs. (5) and (10) we
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obtain the EOM

vt = L̂v − 1

2
(vx + Φ±)2 +

γ

6
(vx + Φ±)3, (11)

where

L̂ ≡ −∂2x − ∂4x. (12)

Collecting terms, Eq. (11) becomes

vt = L̂v + c0 + c1vx + c2v
2
x +

γ

6
v3x, (13)

where

c0 = −1

2
Φ2

± +
γ

6
Φ3

± = − 1

3γ2
±
√

6|str|
2γ

3
2

(2γ|str| − 1) , (14)

c1 = −Φ± +
γ

2
Φ2

± = − 1

2γ
+ 3|str|, (15)

and

c2 = −1

2
+
γ

2
Φ± = ±1

2

√
6|str|γ. (16)

The first conclusion that may be drawn from Eqs. (13) - (16) is that the small scale ripples

have a nonzero lateral propagation velocity equal to −c1. A spacetime plot of local maxima

of uxx is given in Fig. 2; this shows the propagation of the small scale ripples well. A line

with slope equal −c1 is included in the figure; it is close to being parallel to the lines traced

out by the local maxima of uxx, and so the predicted lateral propagation velocity for the

small scale ripples is in good accord with the results of our simulation. This velocity is the

same for the small scale ripples which form on both selected slopes. This too is in agreement

with our simulation. Finally, the line with the steeper slope in Fig. 2 has a slope equal to the

predicted shock propagation velocity given by Eq. (9). This is also in satisfactory agreement

with our simulation.

Turning now to the question of the amplitude of the ripples, we transform Eq. (13) to a

moving frame of reference in order to eliminate c0 and c1. Explicitly, we set

ṽ = v + c0t (17)

and

x̃ = x+ c1t. (18)

The resulting EOM, upon suppression of the tildes, is given by

vt = L̂v ± 1

2
(6|str|γ)

1
2v2x +

γ

6
v3x. (19)
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FIG. 2: (Color online) A spacetime plot of the local maxima of uxx. The blue and green

overlayed lines have slopes equal to the predicted propagation velocities of the small scale

ripples and shocks, respectively. The simulation parameters were γ = 0.3, L = 100 and

N = 801. The initial condition was low amplitude spatial white noise.

Because the coefficient of v2x in Eq. (19) has equal magnitude but opposite sign on surfaces

with the two selected slopes, we expect that ripples that form on terraces with average slope

Φ+ will be inverted (i.e., v → −v) relative to ripples that form on terraces with average

slope Φ−. These ripples nevertheless possess exactly the same propagation velocity. The

qualitative relationship between the shape of ripples on the positive and negative selected

slopes is evident in our simulation results (not shown here).

We bring Eq. (19) to a parameter free form via the substitution

v = ∓ w√
6|str|γ

, (20)

which yields

wt = L̂w − 1

2
w2
x +

1

36|str|
w3
x. (21)

A couple of comments about Eq. (21) are in order: Firstly, it is equivalent to Eq. (5) for

the case in which γ = (6|str|)−1. Equation (21) does not form a terraced surface if the
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initial condition is low amplitude spatial white noise because one of the two selected slopes

predicted for this value of γ is equal to zero. Secondly, Eq. (21) does not depend on γ. We

can therefore predict how the characteristic amplitude of the small scale ripples on terraces

scales with γ. Referring to Eq. (20), we see that the amplitude of the small scale ripples on

the terraces should scale as 1/
√
γ.

This result is interesting in its own right, since it provides insight into how the terraces

persist indefinitely despite being linearly unstable. The terraces develop small scale ripples

whose amplitude eventually saturates to a value that is proportional to 1/
√
γ. Higher values

of γ therefore lead to surfaces which are better approximated by regions of exactly constant

slope connected by undercompressive shocks.

This analysis also highlights an important subtlety of describing solutions to Eq. (5). The

relative positions of the shocks do not change appreciably once the surface has developed into

a well formed terraced state. However, it is not accurate to describe such a state as stable,

because as we have just demonstrated that the regions of approximately constant slope are

in fact linearly unstable. For this reason, we may only say that solutions to Eq. (5) may

be approximated by a steady-state solution, with the error in this approximation stemming

from the small scale ripples on the terraced faces.

One means of characterizing the approximate steady states attained by solutions to

Eq. (5) will be referred to as the “correlation metric” C(t). Let 〈u(t)〉 denote the spa-

tial average of u(x, t) and set w(x, t) = u(x, t) − 〈u(t)〉. The correlation metric C(t) is

defined as follows:

1. Chose a reference surface wref(x) ≡ w(x, tref) at a sufficiently late time tref that a well

formed terraced state has developed.

2. Consider the surface at some time t, given by w(x, t). Both w and wref are subject to

periodic boundary conditions [i.e., w(x, t) = w(x+L, t), where L is the sample length].

3. Consider the function C̃(t, i) ≡ ΣN
j=1|w(x+ j∆x, t)− wref(x+ j∆x+ i∆x)|/N , where

N is the number of gridpoints, ∆x ≡ L/N is the grid spacing, and i and j are integers

that range from 1 to N .

4. Define the correlation metric C(t) to be the minimum value of C̃(t, i), where i ranges

from 1 to N .
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If the surface attained a steady-state form that simply translated laterally and downward,

C(t) would be equal to zero for sufficiently long times. This does not occur because of the

small scale ripples on the terraces. However, C(t) is relatively small when the large scale

terrace features in the surface at time t have nearly the same form as those in the reference

state.

The small scale ripples that form on the terraces seem to exhibit spatiotemporal chaos

similar to the solutions of the KS equation. This is reflected in the apparently chaotic

variations in the value of C(t). A plot that shows the time dependence of C(t) for a well

formed terraced state is shown in Fig. 3.
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FIG. 3: C(t) versus time for a well formed terraced state. The simulation parameters were

γ = 1, L = 100 and N = 801. The reference time tref was 120.

We have argued that the amplitude of the small scale ripples on the terraces should scale

as 1/
√
γ. In a well formed terraced state, the only contribution to C(t) is expected to come

from these ripples. We therefore expect that the temporal average value of C(t) for a well

formed terraced state should also scale as 1/
√
γ. From Fig. 4 we see that this is in fact the

case.

B. Interrupted coarsening

Having analyzed the small scale ripples that form on the terraces, we now concentrate

on the large scale terraces themselves. One of the most interesting features of solutions

to Eq. (5) is that their characteristic amplitude and horizontal length scale grow for a

time, and then asymptote to approximate steady-state values. In what follows, we will
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FIG. 4: (Color online) The temporal average value of C(t) from t = 125 to t = 250

(vertical axis) for well formed terrace states over a range of γ values (horizontal axis). The

reference time is tref = 250. The blue line shows the fit to the form b1γ
−1/2, with

b1 = 0.6637, whereas the red points are individual simulation results.

characterize this approximate steady state by the number of local extrema on the surface.

Our numerical simulations indicate that once solutions to Eq. (5) have evolved into a state

in which every extremum is an undercompressive shock, the number of extrema does not

change. Additionally, the density of extrema seems to be independent of the sample size

provided that the sample size is much larger than the linearly selected wavelength. Figure

5 shows the average density of local maxima for solutions to Eq. (5) for a range of domain

lengths with low amplitude white noise initial conditions.

One interesting feature of the interrupted coarsening is how rapidly the transition between

exponential growth and the approximate steady state occurs. Figure 6 (a) shows the surface

width σ as a function of time averaged over 500 simulations. Initially, the time evolution is

dominated by the linear terms in the EOM, giving rise to exponential growth in σ. Over

a short period of time, the amplitude grows enough that the nonlinear terms begin to

dominate, and the growth of the surface width ceases.

Figure 6 (b) shows evidence of interrupted coarsening in the lateral direction. A char-

acteristic wave number kmax was obtained by computing the average wave number of the

largest amplitude Fourier mode. At early times, the surface develops a periodic structure

whose characteristic wave number is selected by the linear terms in Eq. (5). However, once

the surface amplitude grows large enough that the nonlinear terms become important, the

characteristic length increases (i.e., kmax decreases). This coarsening does not persist indef-
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FIG. 5: (Color online) A plot of the density of local maxima as a function of the sample

length for γ = 1. Notice the minimal variation over the range shown. This indicates that

the density of maxima is likely independent of the sample length L for sufficiently large L.

The error bars show the standard deviation in the density of local maxima at t = 500 in

200 simulations.

initely, and the surface eventually evolves into a state with a constant characteristic length.

Once an approximate steady state has been achieved, the degree to which the large scale

structure of solutions to Eq. (5) remains unchanged as they translate downward and laterally

is striking. To see this, we transform to a co-moving frame of reference with a lateral velocity

s and downward velocity µ given by Eqs. (43) and (50) of Ref. [21], respectively. Figure 7

shows plots of the surface in the comoving frame at thousands of different times. It is clear

that once the surface adopts its asymptotic shape, there is very little subsequent variation

within a single simulation. If we compare simulations with different white noise initial

conditions, we find an appreciable variation in the asymptotic surface shape, however.

C. Time to Form an Approximate Steady State

One observed feature of solutions to Eq. (5) is that the terracing behavior is strongly

dependent upon the value of γ. Previous work [21] showed that the value of this coefficient

determines the selected slopes and propagation velocity of the terraced state that forms.

However, if the equations developed in that work are taken to hold in the limit γ → 0, they

15



10�3

10�1

101

�

0 100 200 300 400 500 600

t

0

5

10

15

k m
ax

(a)

(b)

FIG. 6: (Color online) A semilog plot of the standard deviation of the surface height σ

[panel (a)] and a plot of the average wave number of the largest amplitude Fourier mode

kmax [panel (b)] for solutions to Eq. (5). The points shown each represent an average over

500 simulations. The simulation parameters were γ = 1, L = 150 and N = 251. The

vertical red line is shown as a guide to the eye; it appears at a time when the rapid

crossover from the linear to the nonlinear regime is taking place. The value of k with the

highest linear growth rate was k = L/(
√

8π) ' 16.88.

give impossible predictions. In particular, for γ < (6|str|)−1 ' 0.07, the two selected slopes

have the same sign, and as γ decreases, the predicted lateral propagation and downward

drift velocities grow without limit.

Obviously, as γ decreases in magnitude, the importance of the γu3x term decreases, and

it will not lead to lateral and downward propagation at an infinite rate. The unphysical

predictions of the analysis in Ref. [21] in the limit γ → 0 do not arise from a flaw in the

analysis, but rather are a consequence of the assumption that a terraced state forms. For

small values of γ, the surface behaves similarly to the KS equation, and does not evolve into

a well formed terraced state. In this section, we explore the necessary condition on γ for a
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FIG. 7: 2000 snapshots of a typical surface overlayed in the co-moving frame of reference

with γ = 1. The snapshots were taken one time unit apart from t = 1000 to t = 3000.

There is very little variation in the large scale form of the surface once a terraced state has

been achieved. The values of L and N were 300 and 541, respectively.

terraced state to develop from a low amplitude spatial white noise initial condition and for

the equations developed in Ref. [21] to apply.

In order to analyze the transition from terraced states to KS-like behavior as γ is reduced,

it is necessary to develop a metric that allows us to distinguish these two kinds of states. One

of the primary distinctions between the two is in the time dependence of the number of local

maxima. Local maxima and minima in a terraced state are present only at the shocks since

the amplitude of the small scale ripples is too small relative to the selected slopes Φ+ and

Φ− for there to be extrema at their crests and troughs. Once the approximate steady state

is attained, the number of local maxima does not change. In a KS-like state, by contrast,

local maxima and minima are constantly appearing and disappearing. We identify terraced

states by looking at the number of local maxima versus time. If the number of maxima is

unchanged over a threshold length of time, we declare that a terraced state has formed, and

record the last time at which the number of maxima changed. By setting this threshold
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rather high (t = 103 for the results reported here), we can reliably differentiate between

terraced and non-terraced states.

Figure 8 shows the results of over 12,000 simulations for a range of values of γ. Even on

a semilog plot, the singular behavior is striking. The red curve shows a fit to the functional

form

Ttf = exp [β(γ − γc)α + ∆] , (22)

where Ttf is the time taken to form a terraced state starting from a low amplitude spatial

white noise initial condition and α, β, γc, and ∆ are fitting parameters. The fitted values in

Fig. 8 are α = −0.425, β = 0.527, ∆ = 3.900 and γc = 0.277. Based on these simulations,

we estimate that the critical value of γ is γc = 0.277. Interestingly, this is very close or equal

to the value of γ where the negative selected slope Φ− takes on its minimum value [21].

FIG. 8: (Color online) The time taken for individual surfaces to reach a well formed

terraced state (blue dots) and the fit to the form given by Eq. (22) (red curve). The

optimal fit was obtained for α = −0.425, β = 0.527, ∆ = 3.900 and γc = 0.277.
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IV. TERRACING IN TWO DIMENSIONS

So far, we have studied the solutions to Eq. (2) for the special case in which u is inde-

pendent of the transverse coordinate y, i.e., the 1D case. We will now explore the behavior

predicted by Eq. (2) when u depends on x, y and t. We will refer to this as the 2D case.

In Ref. [21], Pearson and Bradley demonstrated that including the cubic nonlinearity u3x in

the EOM can lead to terrace formation in 1D, but the question of whether this also holds true

in 2D was not addressed. In this section, we present simulation results in 2D which display

topographies that are terraced analogs of parallel-mode ripples. In addition, we find that

inclusion of the cubic nonlinearities u3x and uxu
2
y in the EOM can yield surface morphologies

that resemble those observed in various experiments. Among these are elongated pyramidal

structures [8, 20] and lenticular depressions [18]. We also compare the predictions from the

1D theory with our simulations in 2D when there is smoothing in the transverse direction

and find that key predictions from 1D carry over to 2D.

A. Parallel-Mode Terraces

The most significant effect of including the cubic nonlinearity u3x in the EOM (2) is

that it can lead to the formation of a terraced topography. The results of a simulation in

2D are shown in Fig. 9. The topographies that develop are quite similar to those found

in an experiment in which a silicon sample was irradiated with a 60 keV Ar+ ion beam

with a 60◦ angle of incidence (see Fig. 1 of Ref. [10]). In both the experiments and the

simulations, terraces develop that resemble parallel-mode ripples, except that the regions

between the crests and troughs have nearly constant slope. We call these structures parallel-

mode terraces, in analogy with parallel-mode ripples. Figure 10 shows the mean curvature,

which we shall denote by H, for the surface in Figure 9 (b); the distinctive nearly vertical

dark and light lines are undercompressive shocks that are associated with terrace formation.

In between these shocks is a complicated cellular structure of small scale ripples. Small scale

ripples are ubiquitous in simulations with κ1 < 0 and κ2 < 0 once terraces have formed.

From Fig. 11 we see that the gradient distribution for Fig. 9 (b) (i.e., a 2D histogram of

ux and uy values) has two preferred values for ux: this confirms that the surface is indeed

terraced. The spread in uy occurs because of the transverse instability; if κ2 were positive
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FIG. 9: The surface height obtained from a simulation of Eq. (2) at times (a) t = 1000, (b)

t = 3000 and (c) t = 5000. By the end of the simulation, parallel-mode terraces have

developed, with slight bends in the terrace edges due to the presence of a transverse

instability. The parameter values used were κ1 = −0.5, κ2 = −0.1, λ1 = 0.5, λ2 = 0.5,

B = 1, γ1 = 1 and γ2 = 0.

instead of negative, the gradient distribution would be strongly peaked in the transverse

direction at long times.

B. Steady-state solutions

In the 1D theory, the terraced solutions are traveling waves which propagate and descend

at a constant rate. We assume the same to be true of the terraced solutions to Eq. (2).

Thus, we seek solutions to Eq. (2) of the form u(x, y, t) = f(x − st, y) − µt, where f is a

function that gives the shape of the traveling wave, s is the lateral propagation velocity and

µ is the downward drift speed. This yields the following time-independent partial differential

equation:

κ1fxx + κ2fyy −B∇2∇2f + λ1f
2
x + λ2f

2
y + γ1f

3
x + γ2fxf

2
y + sfx + µ = 0. (23)

Since a terraced surface is dominated by regions of constant slope, we seek solutions in

which the surface is flat, i.e., in which uxx = uxy = uyy. Thus, we expect that the terraced

surfaces’ gradient distributions are most heavily weighted at the values of (fx, fy) satisfying

the algebraic equation

λ1f
2
x + λ2f

2
y + γ1f

3
x + γ2fxf

2
y + sfx + µ = 0. (24)

The set of points (fx, fy) satisfying Eq. (24) is the union of up to three nonintersecting

curves. The gradient distributions are concentrated close to two subsets of these curves, as
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FIG. 10: The mean curvature of a surface obtained from a simulation of Eq. (2) at time

t = 3000. The figure shown is the mean curvature of the surface seen in Figure 9 (b).

shown in Fig. 12 for three different sets of parameter values. This is in direct analogy with

the 1D case in which there are only two selected slopes even though there are three zeros

for the cubic equation which yields the selected slopes [21].

Simulations of Eq. (2) with different values of κ1 and κ2 (and with all other coefficients

held fixed) produce surfaces with gradient distributions that are more heavily weighted on

different subsets of the curves satisfying Eq. (24). This is illustrated in Figs. 12 (a) and (b),

which are gradient distributions obtained from two surfaces produced by simulations with

different values of κ2 but the same parameter values κ1 = λ1 = λ2 = −0.5, B = 1, γ1 = 1 and

γ2 = 0. Equation (24) also works well if γ2 is nonzero, as can be seen in Fig. 12 (c), which

was obtained from a simulation with coefficient values κ1 = 0, κ2 = −0.5, λ1 = λ2 = −0.5,

B = 1, γ1 = 1 and γ2 = −1. The values of s and µ used to produce the red curves in

these figures were determined directly from the simulations. The method we employed to
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FIG. 11: The gradient distribution of the surface obtained from a simulation of Eq. (2) at

time t = 3000. The figure shown was obtained from the surface seen in Fig. 9 (b).

compute s is the same as that introduced in Ref. [21]; essentially, we calculated the lateral

shift that minimizes the difference between the surface at two different times. We calculated

an average s by comparing the surface at each of the final 10 time steps with the surface at

its previous time step. The values of µ were determined by the slope of a linear fit of the

average value of u versus time during the last 10 time steps.

C. Comparison with the predictions of the one-dimensional theory

We now investigate how well the predictions made in Ref. [21] for the 1D case apply to

simulations in 2D, with a focus on the case in which there is smoothing in the transverse

direction. Figure 13 shows a line scan along the x axis of a surface obtained by integrating

Eq. (2) with the parameter values κ1 = −0.5, κ2 = 1, λ1 = −5, λ2 = −5, B = 1, γ1 = 100

22



FIG. 12: (Color online) The gradient distributions of three surfaces obtained from a

simulation of Eq. (2) integrated up to time t = 750 with the solutions to Eq. (24) plotted

as red curves. The parameter values used in the simulations were (a) κ1 = −0.5,

κ2 = −0.5, λ1 = −0.5, λ2 = −0.5, B = 1, γ1 = 1 and γ2 = 0; (b) κ1 = −0.5, κ2 = 0.5,

λ1 = −0.5, λ2 = −0.5, B = 1, γ1 = 1 and γ2 = 0; (c) κ1 = −0.5, κ2 = 0.5, λ1 = −0.5,

λ2 = −0.5, B = 1, γ1 = 1 and γ2 = −1.

and γ2 = 0. From this figure, it is evident that terraces have formed. Moreover, the line

scan is quite similar to surfaces obtained in simulations in 1D [21].

In Ref. [21], Pearson and Bradley derived formulas for the propagation velocity, downward

drift speed and selected slopes of the terraces that form on a surface governed by Eq. (5),

i.e., a surface which has no transverse variations in height. The selected slopes Φ± and

the propagation velocity s they obtained are given by Eqs. (7) and (9) of this paper. The

downward drift speed µ is

µ = − 1

6γ2
− str

γ
; (25)

this is Eq. (50) of Ref. [21].

In Figure 14, we compare Φ±, s and µ as given by Eqs. (7), (9) and (25) with the

values obtained from numerical integrations of Eq. (2) as γ ≡ 6γ1 is varied while the other

coefficients are held fixed at the values κ1 = −1, κ2 = 20, B = 0, λ1 = −0.5, λ2 = −0.5 and

γ2 = 0. (Note the large positive value of κ2 we selected.) We used a smaller domain for these

simulations so that an approximate steady state would be reached at an earlier time than it

was in the figures previously shown. The methods of determining the values of s and µ from

the simulations were the same as we discussed earlier in this section. The error bars for s

are obtained from the standard deviation of the 10 values averaged to give s. The error bars

on µ were calculated from the R-squared value of the linear fit using µerr = (1 − R2)µvalue.
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FIG. 13: A line scan along the x axis slice of a surface with transverse smoothing at time

t = 2000. Note that the vertical scale has been enlarged by a factor of 40 to make the

pattern easily discernable; the magnitude of the surface slope nowhere exceeds 0.1. The

parameter values used were κ1 = −0.5, κ2 = 1, λ1 = −5, λ2 = −5, B = 1, γ1 = 100 and

γ2 = 0.

We used the same method as in Ref. [21] to calculate Φ± from the simulations. The results

from the simulations in 2D with strong smoothing in the transverse direction are in excellent

agreement with predictions of the 1D theory given by Eqs. (7), (9) and (25).

In Subsection III B, we demonstrated that interrupted coarsening occurs in the solutions

of the one-dimensional EOM (5). Our simulations in two dimensions also exhibit interrupted

coarsening. Evidence for this is seen in Fig. 15, which is a plot of the surface width (i.e., the

standard deviation of the surface height) versus time for the simulation that produced the

surface seen in Fig. 9. The surface width grows for some time and then appears to asymptote

to a finite value. Furthermore, inspection of Fig. 9 itself shows that both the lateral and
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FIG. 14: (Color online) (a) Downward drift speeds µ, (b) selected slopes Φ± and (c)

propagation velocities s. The data points are values obtained from simulations of Eq. (2).

The red curves are predictions from the 1D theory: (a) µ as given by Eq. (25), (b) Φ± as

given by Eq. (7) and (c) s as given by Eq. (9). The surfaces were simulated to time t = 500

and the parameter values used were κ1 = −0.5, κ2 = 10, λ1 = −0.5, λ2 = −0.5 and γ2 = 0.

vertical scales of the surface grow from (a) to (b) but are not substantially changed from

(b) to (c). We observed interrupted coarsening in all of our simulations in 2D.

D. Elongated pyramidal structures

Next we present simulation results which resemble a specific topography seen in exper-

iments performed by Carter et al. at high angles of incidence [8]. Both the experimental

surfaces and our simulated surfaces exhibit pyramidal structures which protrude from the

surface and that are elongated in the projected ion beam direction. We see these struc-

tures form in our numerical integrations of Eq. (2) when there is a linear instability in the

transverse direction (i.e., κ2 < 0) and the magnitudes of both γ1 and γ2 are sufficiently

large. Since the pyramidal structures only form in simulations with nonzero values of γ2,

the term uxu
2
y plays an critical role in their formation. One such simulation result is shown

in Fig. 16. Notice that the pyramidal structures that form in our simulation have ends that

tend to line up, just as in the experiments described in Ref. [8]. The gradient distribution

for Fig. 16 is shown in Fig. 17. Clearly, there is a strongly selected negative value of ux

in this simulation. Furthermore, the gradient distribution demonstrates that the elongated

portion of the pyramidal structures have ux > 0 and the ends of the elongated pyramids

have ux < 0; i.e., these pyramidal structures protrude from the surface with their ends facing

the ion source. This is again consistent with Carter et al.’s experimental observations. The
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FIG. 15: The surface width versus time obtained from a simulation of Eq. (2). The figure

shown is produced from the same simulation that yielded Fig. 9.

mean curvature of the surface — which is shown in Fig. 18 — shows that shocks which are

elongated in the longitudinal direction can form. These shocks are close to being aligned

with the x-axis but are not parallel to it. To see this, note that if we consider a surface

which has no longitudinal variations, then Eq. (2) reduces to

ut = κ2uyy −Buyyyy + λ2u
2
y. (26)

This is the KS equation and it does not lead to shock formation.

In the simulation we just discussed, perpendicular-mode ripples formed at early times.

However, elongated pyramidal structures can also form when parallel-mode ripples are

present for low fluences. Figure 19 demonstrates this with two snapshots of a surface ob-

tained by simulating Eq. (2): (a) shows the surface at time t = 150 and (b) shows the

same surface at a later time (t = 850). Our simulation results are remarkably similar to the

topographies obtained by Datta et al. when they irradiated a germanium surface with 100
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FIG. 16: A surface obtained by integrating Eq. (2) up to time t = 1800, starting from a

low amplitude white noise initial condition. At early times, perpendicular-mode ripples

formed. Later, these ripples evolved into the elongated pyramidal structures seen in the

figure. The parameter values used were κ1 = 0, κ2 = −0.6, B = 1, λ1 = 0.5, λ2 = 0.5,

γ1 = 1 and γ2 = −3.

keV krypton ions at a 60◦ angle of incidence: see Fig. 3 of Ref. [20]. Datta et al. found that

the parallel-mode ripples that developed at early times ultimately evolved into elongated

pyramidal structures, just as in our simulations.

E. Lenticular Depressions

Lenticular depressions are another interesting topographical feature that have been ob-

served in experiments. These lens-shaped depressions are prominent, for instance, in Fig. 3

(f) of Ref. [18], in which silicon was bombarded with a 1.2 keV xenon ion beam with a 75◦
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FIG. 17: The gradient distribution of the surface obtained from a simulation of Eq. (2),

integrated up to time t = 1800. The figure was obtained from the surface seen in Fig. 16.

angle of incidence. We have also seen lenticular depressions in some simulations of Eq. (2)

in which the initial condition was low amplitude spatial white noise — see Fig. 20 (a) for

an example. The mean curvature of that surface is shown in Fig. 20 (b). This figure shows

that the pit’s edge is a shock and there is a complicated cellular structure outside of the pit.

There is also a shock that crosses the bottom of the pit. In the experiments, the outlines of

the lenticular depressions appear to be shocks and shocks traverse the base of the pits, just

as in our simulations.

Lenticular features arise in our simulations if the value of γ1 is slightly larger than the

threshold value for terrace formation. They are transient structures which appear when

the surface is transitioning from KS-like behavior to a terraced topography. In fact, in

this simulation, the emergence of the depression corresponds to the emergence of the first

undercompressive shock. Since γ2 = 0 in the simulation that produced Fig. 20, it is clear
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FIG. 18: The mean curvature H of the surface shown in Fig. 16. Shocks that are elongated

in the longitudinal direction are evident.

that the term uxu
2
y is not necessary for the formation of lenticular depressions. However, its

inclusion can modify their shape.

V. CONCLUSIONS

In this paper, we analyzed the solutions to the PB equation (5), the equation of motion

that governs the formation of terraced structures on solid surfaces that are bombarded with

a broad ion beam with a high angle of incidence when the surface height does not depend

on the transverse coordinate y. Our work builds upon Ref. [21], in which Eq. (5) was first

studied in this context.

We found that between the undercompressive shocks where the surface slope changes

rapidly, the terraced surfaces are not perfectly flat, but instead develop small scale ripples

29



FIG. 19: (a) A surface obtained by integrating Eq. (2) up to time t = 150, starting from a

low amplitude white noise initial condition. Parallel-mode ripples are evident. (b) At time

t = 850, the surface exhibits elongated pyramidal structures. The parameter values used in

this siumulation were κ1 = −0.5, κ2 = −0.3, B = 1, λ1 = −0.05, λ2 = −0.5, γ1 = 1 and

γ2 = −3.

FIG. 20: (a) A surface obtained by integrating Eq. (2) up to time t = 465, starting from a

low amplitude spatial white noise initial condition. A lenticular depression is shown,

surrounded by a region of the surface which looks very much like what would be seen in

simulations of the isotropic KS equation. (b) The mean curvature H of the surface in (a).

The parameters were κ1 = −0.5, κ2 = −0.5, B = 1, λ1 = −0.5, λ2 = −0.5, γ1 = 0.11 and

γ2 = 0.
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which propagate along the surface. Our analysis predicts the amplitude and propagation

velocity of these ripples. The accuracy of these predictions was confirmed by numerical sim-

ulations. We also presented numerical evidence that shows that solutions to the PB equation

exhibit interrupted coarsening, i.e., the lateral length scale and characteristic amplitude of

the solutions grow for a time, and then asymptote to finite values. The characteristic length

scale of the solutions to Eq. (5) in the long-time limit was shown to not depend on the size

of the sample considered.

The one free parameter in the PB equation (γ) is a dimensionless measure of the strength

of the cubic nonlinearity. From the results of extensive numerical simulations, we were able

to identify a critical value of this parameter: γc ' 0.277. For γ greater than γc, the surface

becomes fully terraced at sufficiently long times. The time Ttf needed for solutions to the

PB equation (5) to reach a well formed terraced state diverges rapidly as γ tends to γc from

above. Conversely, no terrace formation was observed in simulations with γ values below

γc; instead, the solutions appear to display the spatiotemporal chaos that is characteristic

of the Kuramoto-Sivashinsky equation, the equation that is obtained in the γ → 0 limit.

The parameter γ depends on the angle of ion incidence θ. It is expected to increase from

small to rather large values as θ is increased through a range of values [21]. Thus, γ should

pass through the critical value γc as the angle of incidence increases. If this indeed occurs,

our theory predicts that as θ is increased, the surface morphology at a given ion fluence

will undergo a transition from an unterraced to a terraced state. There is already indirect

experimental evidence that such a transition does in fact occur, since terraced morphologies

have only been observed at relatively high angles of incidence [7–20]. Systematic experiments

in which θ is increased for a given choice of target material and of ion species and energy

would be a valuable test of our theory.

We also studied an equation of motion that generalizes the PB equation to the case

in which the surface height depends on both the longitudinal and transverse coordinates.

This equation differs from the usual equation of motion (the anisotropic two-dimensional

Kuramoto-Sivashinsky equation) by the inclusion of the cubic nonlinearities u3x and uxu
2
y.

Although it is not the most general equation of motion that includes terms up to cubic

order in u, the generalized PB equation captures many of the features that are observed in

experiments in which the angle of ion incidence is relatively high. For example, for a range

of parameter values, it yields parallel-mode ripples at early times. These ripples then evolve
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into a terraced structure which coarsens with time. For other ranges of the parameters,

the surface develops other morphologies reminiscent of those seen in experiments, such as

isolated lenticular depressions and elongated pyramidal structures that tilt up out of the

surface and towards the beam.

The strong similarities between the surfaces produced by our model and those observed

in experiments indicates that the cubic nonlinearities u3x and uxu
2
y play a crucial role in

the dynamics for sufficiently high angles of ion incidence. These nonlinearities could be

eliminated in an experiment by bombarding the surface with identical, diametrically opposed

beams, or by periodically and rapidly rotating the sample through 180◦ increments about its

surface normal. In experiments of this kind, the equation of motion is invariant under the

transformation x → −x and the morphologies produced should differ markedly from those

that develop when the sample is stationary and a single, near glancing incidence ion beam

is employed.
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