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The electroclinic effect in chiral smectic-A liquid crystal elastomers

Noy Cohen∗ and Kaushik Bhattacharya
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA

Chiral smectic-A liquid crystal elastomers are rubbery materials composed of a lamellar arrange-
ment of liquid crystalline mesogens. It has been shown experimentally that these materials shear
when subjected to an electric field due to the electrically induced tilt of the director. Experiments
have also shown that shearing a chiral smectic-A elastomer gives rise to a polarization. Roughly,
the shear force tilts the directors which, in turn, induce electric dipoles. This paper builds on pre-
vious works and models the electro-mechanical response of smectic-A elastomers using free energy
contributions that are associated with the lamellar structure, the relative tilt between the director
and the layer normal, and the coupling between the director and the electric field. To illustrate the
merit of the proposed model, two cases are considered - a deformation induced polarization and an
electrically induced deformation. The predictions according to these two models qualitatively agree
with experimental findings. Finally, a cylinder composed of helical smectic layers is also considered.
It is shown that the electro-mechanical response varies as a function of the helix angle.

I. INTRODUCTION

Smectic-A liquid crystal elastomers are rubbery mate-
rials composed of mesogens that are uniformly oriented
and organized in a layered structure. In their pioneer-
ing work, Garoff and Meyer [1] andGaroff and Meyer
[2] found that low molecular weight smectic-A* liquid
crystals comprising chiral molecules exhibit an electro-
clinic effect, i.e. there is a direct coupling between the
molecular tilt and an applied electric field. In smectic
elastomers comprising chiral mesogens, an electric field
acting along the layer plane induces a shear deformation.
This phenomenon directly emanates from the chirality of
the mesogens. Specifically, the electric field couples to the
transverse dipole of the chiral mesogens and induces a tilt
between the mesogens and the layer normal. As a con-
sequence, the elastomer shears and contracts along the
direction of the layer normal. Typically, such elastomers
are incompressible and subsequently this deformation is
accompanied by an expansion along the transverse direc-
tions. Another consequence of the chirality of the meso-
gens was demonstrated by Lehmann et al. [3], where it
was found that flipping the direction of the electric field
reverses the direction of the mechanical tilt.

Several experimental works were carried out to study
the response of a Smectic-A elastomer subjected to an
electric field. Spillmann, Ratna, and Naciri [4] mounted
a thin sheet of elastomer in a tension clamp with the
smectic layers either perpendicular or parallel to the ten-
sion clamps and applied an electric field normal to the
sheet. An electric field E = 16.7 MV

m was applied to a film
whose layers are parallel to the clamps and a contraction
of ∼ 1% was measured. Next, the sample was placed such
that the layers are perpendicular to the clamps. Upon
application of the electric field, an expansion of ∼ 8.2%
was measured. Hiraoka et al. [5] and Hiraoka et al. [6]
prepared a smectic elastomer film with an initial thick-
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ness t0 = 600µm and applied an electric field E = 1 MV
m .

They measured an electrically induced tilt angle of ∼ 4◦,
a contraction along the layer normal of ∼ 0.2 % and a
shear angle of ∼ 0.08◦. A recent experiment by Spill-
mann et al. [7] demonstrated that smectic elastomers can
also twist in response to an electric field.

Previous works have also investigated the purely me-
chanical behavior of smectic elastomers. The experi-
mental work of Nishikawa, Finkelmann, and Brand [8],
Nishikawa and Finkelmann [9] and Spillmann, Ratna,
and Naciri [4] demonstrated that the mechanical mod-
ulus of Smectic-A elastomers parallel to the layers nor-
mal is significantly higher than that along the layer
plane. This anisotropy emanates from the lamellar
micro-structure of the elastomer. Interestingly, the ex-
periments of Nishikawa and Finkelmann [9] revealed that
the elastomer becomes significantly softer above a thresh-
old of ∼ 3% strain along the layers normal.

On the theoretical side, Adams and Warner [10] de-
veloped an energy-based model for Smectic-A elastomers
which assumes that the layer normal and the director are
locked and may only rotate in response to an external
force. This assumption prevents a tilt and a Smectic-C
like ordering. The work of Stenull and Lubensky [11] ar-
gued that the director is not rigidly coupled to the layer
normal and as a consequence, a shear deformation can
rotate the smectic layers and the director with respect
to the layer normal. The later works of Adams et al.
[12] and Stenull et al. [13] provided another model that
accounts for the stiffness of the smectic layers and the re-
sistance to the tilt by adding appropriate contributions
to the free energy.

From an electric viewpoint, the work of Corbett
and Warner [14] theoretically examined the electro-
mechanical behavior of a nematic elastomer subjected
to electric fields. In this work, it was shown that the
mechanical and electrical anisotropies can cause a thin
film expand in the direction of the electric field rather
than contract. As a result of the Poisson’s effect, the
film shrinks along the two directions in the plane of the
electrodes. Selinger et al. [15] found that under high elec-

mailto:noyco@caltech.edu


2

tric fields the state of uniform induced tilt can become
unstable and lead to chiral modulations. In their work,
they modelled and simulated this phenomenon.

The aim of this work is to model the coupled behavior
of Smectic-A elastomers under finite deformations result-
ing from the electroclinic effect. To this end, we charac-
terize the chirality of the mesogens by a chirality vector
which couples to the tilt of the director. The proposed
model, presented in Sec. II, is based on the minimization
of the free energy of the smectic elastomer. To demon-
strate the behavior predicted by the model, two cases
are examined in Sec. III - an electrically induced de-
formation and a deformation induced polarization. In
the first case, an electric field is applied to the Smectic-
A elastomer and the resulting deformation is determined
through the minimization of the free energy. Subjected to
this loading, the tilt angle is larger than the shear angle.
This trend is in agreement with the experimental findings
of Hiraoka et al. [6]. We also show that the orientation
of the chirality of the mesogens can either enhance or di-
minish the polarization. In the second case, we follow the
experimental work of Kramer and Finkelmann [16] and
consider the response of a Smectic-A elastomer subjected
to a simple shear deformation. The proposed model pre-
dicts that the prescribed deformation rotates the director
with respect to the layer normal and therefore induces a
tilt of the mesogens. Subsequently, the inherent chirality
gives rise to spontaneous dipoles which, in turn, induce
a polarization in the elastomer. In accordance with ex-
perimental findings, the proposed model predicts that
the shear angle is larger than the tilt angle. A cylindri-
cal set-up of a Smectic-A elastomer with helical layers is
considered in Sec. IV. The electro-mechanical response
of an elastomer with various pitches and helix angles is
computed. The main conclusions are summarized in Sec.
V.

II. A COUPLED ELECTRO-MECHANICAL
MODEL

Consider a Smectic-A elastomer that deforms from a
reference to a current configuration due to a coupled
electro-mechanical loading. The material points are de-
noted x and current positions as y (x), so that the de-
formation gradient is defined as F = ∇y (x), where ∇
denotes the gradient operation with respect to the ref-
erential coordinate system. The smectic order is charac-
terized by two order parameters - the director and the
chiral vector. These are denoted n̂0 and q0 in the ref-
erence configuration and n̂ and q in the current config-
uration. Note that bold letters with hats on top denote
unit vectors. The chirality vector is perpendicular to the
director such that q · n̂ = 0. The layer normal at the
current configuration is given as

k̂ =
√

1− q2 n̂− n̂× q, (1)

where q is the magnitude of the chirality vector q. Note

that q = 0 gives k̂ = n̂ and characterizes smectic-A while
q 6= 0 gives rise to smectic-C. This smectic order gives
rise to a spontaneous elongation along the director given
by the step-length tensor ` = r−1/3 (I + (r − 1) n̂⊗ n̂),
where r is a parameter related to the strength of the
ordering [12]. It also gives rise to a spontaneous polar-
ization Ps = C q, where C is a parameter.

We assume that the free energy-density function of an
elastomer subjected to a uniform electric field by surface
electrodes can be viewed as the sum of five contributions,

W = Wtr +Wl +Wt +We +Wm. (2)

The first contribution is the classical elastic free energy
of an anisotropic elastomer [17]

Wtr =
µ

2
Tr
(
F `0F

T `−1
)
, (3)

where µ is the shear modulus and `0 =
r−1/3 (I + (r − 1) n̂0 ⊗ n̂0) is the step-length tensor
before the deformation. Here, I is the identity tensor.

The second contribution to the free energy in Eq. (2)
concerns the change in the layer thickness,

Wl =
B

2

 1∣∣∣F−T k̂0

∣∣∣ √1− q2
− 1

2

, (4)

where B is a measure of the stiffness of the layers. This is
identical to the free energy contribution in the works of
Adams and Warner [10] and Adams et al. [12], but writ-
ten in terms of the magnitude of the physical chirality
vector q. Above FT and F−1 denote the transpose and
inverse of F, respectively. This formulation is advanta-
geous because it is indifferent to the sign of the director
n̂ and therefore satisfies the objectivity requirements as-
sociated with the energy-density function.

The third term in Eq. (2) concerns the change in chi-
rality, or equivalently the tilt (or rotation) of the director
with respect to the layer normal,

Wt =
A

2
q2, (5)

where A is the resistance of the mesogens to tilt. This
is again the same as Adams and Warner [10] and Adams
et al. [12], but written in terms of the magnitude of the
chirality vector. Note that Eq. (5) assumes that the
ground state is smectic-A, but it can be modified if the
ground state is smectic-C.

The fourth term in Eq. (2) pertains to the energetic
contribution of the electrical sources to the total energy,
see for example Shu and Bhattacharya [18]. Specifically,

We = −ε0

2
E ·E−P ·E+

1

2ε0χ
(P−Ps) · (P−Ps) , (6)

where P is the polarization, χ is the susceptibility and
ε0 is the permittivity in vacuum.
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FIG. 1. A schematic of the electro-mechanical response of a
Smectic-A elastomer. The chirality vector q points out of the
plane.

To determine the polarization and the deformation un-
der a prescribed coupled electro-mechanical loading, the
energy-density function is minimized with respect to P,
F and the chirality vector q. By computing ∂W

∂P = 0, we
find that

P = ε0χE + Ps = ε0χE + C q. (7)

The last term in Eq. (2) concerns the external me-
chanical loading,

Wm = −S · F, (8)

where S is the first Piola-Kirchhoff stress tensor.
For convenience, we normalize the energy-density func-

tion by µ
2 and substitute Eq. (7) into Eq. (2) to obtain

w =
2

µ
W = Tr

(
F `0F

T `−1
)

+ b

 1∣∣∣F−T k̂0

∣∣∣ √1− q2
− 1

2

+ a q2 − ε0 (1 + χ)

µ
E ·E− 2

C

µ
q ·E− 2

S

µ
· F,

(9)

where b = B
µ and a = A

µ are the normalized layer stiffness

and the normalized resistance to tilt, respectively.
The constants in the proposed model can be deter-

mined through experiments. The order of magnitude
of the shear modulus and the layer stiffness are µ ∼
0.1 − 1 MPa and B ∼ 10 MPa, respectively [12]. Fit-
ting to experimental findings resulted in a resistance to
tilt parameter A ∼ 0.1 − 1 MPa 19, 20. The anisotropy
parameter r has been measured between 1.05−60 in elas-
tomers composed of prolate chains 10, 17. Lastly, we can
deduce the order of magnitude of the chirality related
parameter from experimental findings. It is found that
C ∼ 10−3 − 10−4 C

m2 .

III. THE ELECTRO-MECHANICAL RESPONSE
OF SMECTIC-A ELASTOMERS

To examine the predictions of the proposed model, con-
sider a thin film of a Smectic-A elastomer with an initial

thickness t0. We prescribe a global coordinate system{
X̂, Ŷ, Ẑ

}
such that at the reference configuration the

director and the layer normal are along the Ẑ- direction,

i.e. n̂0 = Ẑ and k̂0 = Ẑ (See Fig. (1)). The faces of
the film are covered with flexible electrodes such that
an applied voltage induces an electric field E = V

λE t0
X̂,

where λE is the stretch along the thickness of the sheet.
Mechanically, an applied stress s = S Ẑ · Ŷ shears the
film. The elastomer experiences the general deformation
gradient

F =

 λE 0 0
0 λy λyz
0 0 λz

 , (10)

where λz = h
H , λy = l

L , λyz = λz tanφ and φ is the shear
angle (See Fig. (1)). Due to the incompressibility con-
straint λE = 1

λyλz
. As a result of an electro-mechanical

loading, the director rotates such that at the current con-
figuration n̂ = sin θ Ŷ + cos θ Ẑ. The chirality vector is
q = sin (θ) X̂, where θ is the tilt angle between n̂ and

k̂, in accordance to Eq. (1). Note that in accordance
with its definition, the chirality vector is zero when the
layer normal is parallel to the director. By making use
of Eq. (1), we find that the layer normal at the current

configuration k̂ = Ẑ.

With the above definitions, the normalized energy-
density function in Eq. (9) can be written as

w (λy, λz, λyz, θ) =
1

λyλz
+
r + 1

2 r

(
λ2
y + r

(
λ2
yz + λ2

z

))
+
r − 1

2 r

((
λ2
y + r

(
λ2
yz − λ2

z

))
cos (2θ)

− 2 r λyz λz sin (2θ)

)
+ b

(
1

cos θ
− 1

)2

+ a sin2 θ − 2 c V λy λz sin θ

−
(
V

Vd

)2

λyλz − 2 s λyz, (11)

where c = C
µ t0

and V 2
d =

µ t20
(1+χ)ε0

. We also normalize the

polarization (Eq. (7)),

p =
1

µ t0
P =

1

λE

V

V 2
p

X̂ + cq, (12)

where V 2
p =

µ t20
χε0

. The constants Vd and Vp have units of

voltage and are related via 1
V 2
d
− 1

V 2
p

= ε0
µ t20

.

In order to demonstrate the merit of the model, we
adopt the typical values a = 1, b = 5, c = 10−4 1

V and
r = 1.5. The constants Vd = 13.7 kV and Vp = 15 kV
correspond to a film with a thickness t0 = 0.1 mm and a
susceptibility χ = 5.
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A. Voltage induced deformation

Due to the electroclinic effect, Smectic-A elastomers
deform in response to an applied electric field 1, 3, 4, 6, 7.
The aim of this section is to examine the voltage induced
deformations according to the proposed model. To this
end, we take s = 0 and minimize the energy-density func-
tion w (λy, λz, λyz, θ) (Eq. (11)) with respect to λy, λz,
λyz and θ to obtain the equilibrium state. This leads
to nonlinear equations which can be solved numerically.
We can also gain insight by simplifying the expressions
for small voltages and retaining only the leading order
terms in V . We obtain

θ ≈ ξ V, (13)

φ ≈ r − 1

r
ξ V, (14)

λy ≈ 1 +

(
1

2 (3 + b)

(
b+ 2

2

(
1

V 2
d

+ ξ

(
c− 1

r
ξ

))
− 2

r
ξ2

)

+
1

2
ξ2

)
V 2, (15)

λz ≈ 1 +

(
1

2 (3 + b)

(
1

V 2
d

+ ξ

(
c+

3

r
ξ

))
− 1

2
ξ2

)
V 2,

(16)

p · X̂ =

(
1

V 2
p

+ c ξ

)
V, (17)

where ξ = c
a is the initial slope between the tilt angle

and the applied voltage. This quantity is related to the
electroclinic coefficient α = ∂θ

∂E . Specifically, in the ex-
amined parallel plate geometry ξ ≈ α

t0
. Subjected to rela-

tively low voltages, Köhler et al. [21], Spillmann, Ratna,
and Naciri [4] and Hiraoka et al. [6] measured an elec-
troclinic coefficient α = 0.045 m

MV , α = 0.006 m
MV and

α = 0.07 m
MV , respectively. These findings correspond to

tilt angles in the range 4◦ − 10◦. Since the thickness of
the Smectic-A elastomers is around t0 ∼ 0.01−1 mm, we
approximate the order of magnitude of the initial slope
ξ ∼ 0.01− 1 1

kV .
The parameters b and c can be determined from a

curve-fit of λy and λz as a function of the voltage via Eqs.
(15) and (16) in the low voltage regime. The quadratic
dependency of λy and λz on the applied voltage stems
from the initial micro-structural alignment of the direc-
tor and the layer normal in the Smectic-A elastomers.

Fig. (2a) and (2b) depict the shear angle φ and the
tilt angle θ as a function of the applied voltage. The in-
sets plot the electro-mechanical response of the Smectic-
A elastomers under high voltages. The continuous and
the dashed curves correspond to the exact predictions
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FIG. 2. (a) The shear angle φ and (b) the tilt angle θ as a
function of the applied voltage V . The inset plots depict the
predicted response subjected to high voltages. The continu-
ous and the dashed curves correspond to the exact and the
approximated predictions, respectively.

and the approximations (Eqs. (13) and (14)), respec-
tively. A close inspection of the insets shows that the
approximations hold for voltages up to V ≈ 5 KV. It is
noted that the application of the electric field leads to a
tilt angle that is larger that the shear angle.

To explain this, note that Eqs. (13) and (14) reveal
that in the range of small voltages the ratio between the
shear and the tilt angles is φ

θ = r−1
r . Interestingly, in

Smectic-A elastomers with r > 1 the ratio φ
θ < 1. This

implies that the electrically induced deformation is char-
acterized by a tilt angle θ that is greater than the shear
angle φ. This observation is supported by the experi-
mental findings of Hiraoka et al. [6], where the measured

ratio φ
θ ≈ 0.02 led to the anisotropy parameter r = 1.02.

It should also be noted that the obtained value of the
anisotropy parameter is very low.

The predicted polarization is plotted as a function of
the voltage in Fig. (3). As before, the inset plots the
predicted polarization as a result of high voltages. The
continuous and the dashed curves correspond to the po-
larization with c = 10−4 1

V and c = 0, respectively. It
is shown that the electrically induced tilt leads to an
enhancement of the polarization of the elastomer by as
much as 1.8 times. We also find that reversing the electric
field flips the direction of the polarization, as seen in the
experimental findings of Hiraoka et al. [6]. As previously
discussed, this effect emanates from the chirality of the
mesogens. We emphasize that since the direction of the
chirality parameter q is linearly coupled to the polariza-
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FIG. 3. p · X̂ as a function of the applied voltage V . The in-
set depicts the predicted response as a result of high voltages.
The continuous and the dashed curves correspond to the po-
larization (Eq. (12)) with c = 10−4 1

V
and c = 0, respectively.

tion, the spontaneous dipoles in a Smectic-A elastomer
with q→ −q decrease the polarization.

B. Deformation induced polarization

Next, we follow the experiment of Kramer and Finkel-
mann [16] and the theoretical work of Stenull et al. [13]

and apply a shear stress s along the Ŷ direction which de-
forms the elastomer such that λy = λz = 1, correspond-
ing to simple shear. By setting V = 0, the normalized
energy density is

w = w (λy = 1, λz = 1, λyz, θ) . (18)

To determine the equilibrium state, we minimize Eq. (18)
with respect to the shear λyz and the tilt angle θ.

Figs. (4a) and (4b) depict the shear angle φ and the
tilt angle θ as a function of s, respectively. We empha-
size that the non-linear dependence of the shear angle φ
on the shear force s corresponds to a linear dependence
between the shear λyz and s. It is demonstrated that
the mesogens tilt in the direction of the external shear
force, as expected, and negating the force simply flips the
direction of the tilt angle θ.

Interestingly, as opposed to the previous case the pro-
posed model predicts that under the examined deforma-
tion the shear angle is always greater than the tilt angle.
Furthermore, since λz = 1 is fixed and layer rotation is
not permitted, the tilt of the mesogens is not accompa-
nied by a reduction in the layer thickness. These observa-
tions are in accord with the experimental work of Kramer
and Finkelmann [16], where the elastomer was subjected
to a pure shear deformation such that the maximum im-
posed shear angle was φ = 21◦.

An examination of Fig. (4b) reveals that the depen-
dence between the tilt of the mesogens and the applied
shear force can be divided into two regimes. Initially, a
small increase in the applied force leads to a large vari-
ation in the tilt angle. Beyond a threshold s ≈ 5, the
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FIG. 4. (a) The shear angle φ and (b) the tilt angle θ as a
function of the normalized nominal stress s.

cost of further tilting the director becomes very high.
Specifically, a large increase in the shear force is required
to attain a small increment in the tilt of the mesogens.
Practically, elastomers fail at a shear angle φ� 90◦ and
may not reach the second regime.

From Eq. (7) we deduce that the polarization in the
absence of an electric field is directed along the chirality
parameter q, which is perpendicular to the plane spanned

by n̂ and k̂. Fig. (5) plots the normalized polarization

component p · X̂ as a function of s. It is demonstrated
that the direction of the applied shear force determines
the direction of the polarization. Two reasons lead to this
behavior - the first is the anti-symmetric dependency of
the tilt angle on the applied force. As discussed in rela-
tion to Fig. (4b), the directions of the shear force and the
tilt are linearly dependent. Second, the observed trend is
enforced by the direct coupling between the director and
the chirality parameter q. This coupling is defined such
that the magnitude of the polarization is proportional to
sin (θ). We emphasize that the chirality of the mesogens
determines the direction of the polarization. Specifically,
a shear force along the Ŷ-direction induces a polarization
along the −X̂ direction in elastomers characterized by a
flipped chirality vector (i.e. q→ −q).

IV. THE ELECTRICALLY INDUCED
DEFORMATION OF A CYLINDER WITH

HELICAL LAYERS

To illustrate the capabilities of the electroclinic effect,
we explore the electro-mechanical response of a cylindri-
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FIG. 5. p · X̂ as a function of the normalized nominal stress
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FIG. 6. A schematic of the electro-mechanical response of a
cylinder with helical layers.

cal Smectic-A elastomer with helical layers. Consider
a hollow thin-walled cylinder with an initial radius R, a
wall thickness t0 and a height H. The cylinder is made of
a thin incompressible smectic-A elastomer film with he-
lical layers. We prescribe a global cylindrical coordinate

system
{

R̂, Θ̂, Ẑ
}

such that at the reference configura-

tion the director and the layer normal are

n̂0 = k̂0 = sin (ψ0) Θ̂ + cos (ψ0) Ẑ, (19)

where ψ0 is the initial helix angle (see Fig. (6)). The
position of the referential material points are denoted by
{R,Θ, Z}. The inner and outer faces of the cylindrical
film are covered with flexible electrodes such that an ap-
plied voltage induces a radial electric field E ≈ V

t0
R̂. In

addition, an internal pressure p is exerted on the inner
surface. As a result, the cylinder deforms such that at
the current deformation,

r =
√
λR2 + β, θ = Θ + δ Z, z =

1

λ
Z, (20)

where {r, θ, z} denote the material points at the current
configuration. Accordingly, the deformation gradient in
cylindrical coordinates is

F =

 ∂r
∂R 0 0
0 r

R
∂θ
∂Θ r ∂θ

∂Z

0 0 ∂z
∂Z

 =

 λ R
r 0 0

0 r
R δ r

0 0 1
λ

 . (21)

At the current configuration, the chirality vector is

q = sin (ϕ) R̂, (22)

and the director is

n̂ = sin (ψ + ϕ) Θ̂ + cos (ψ + ϕ) Ẑ, (23)

where ϕ is the angle between the director n̂ and the layer

normal k̂ and ψ is the helix angle at the current config-
uration. By employing Eq. (1), we find that

k̂ = sin (ψ) Θ̂ + cos (ψ) Ẑ. (24)

The layer normal at the current configuration is directly
dependent on the deformation gradient via 10, 12

k̂ =
F−T k̂0∣∣∣F−T k̂0

∣∣∣ , (25)

and therefore one finds that the helix angle at the current
configuration is

ψ = arctan

(
R sin (ψ0)

λ r (cos (ψ0)−Rδ sin (ψ0))

)
. (26)

The energy density function can be written as

w(h) (λ, β, ϕ, δ) = w (λ, β, ϕ, δ)− 2

µ
p
( r
R

)2 1

λ
, (27)

where w (λ, β, ϕ, δ) is computed with Eq. (9), p is the

pressure inside the cylinder and
(
r
R

)2 1
λ accounts for

the change in the enclosed volume of the cylinder. The
electro-mechanical response of the cylinder is determined
by minimizing the energy w(h) (λ, β, ϕ, δ) with respect to
λ, β, ϕ and δ.

Figs. (7a) and (7b) depict the twist δ and the change

in the enclosed volume vt
Vt

= π r2 h
π R2H , where h is the cur-

rent height of the cylinder, as a function of the applied
voltage, respectively, for various initial helix angles at
p = 0. It is shown that elastomers with cylindrical layers
(or helical layers with an angle ψ0 = 0◦) experience twist
with a minor increase in the enclosed volume. As the he-
lix angle increases from ψ0 = 0◦ to ψ0 = 45◦, the twist δ
decreases while the enclosed volume increases. Interest-
ingly, the twist angle in the Smectic-A elastomers with a
helix angle ψ0 = 45◦ is extremely small. The proposed
model also predicts that such an elastomer experiences
the largest volumetric expansion. The trend is reversed
as the helix angle increases from ψ0 = 45◦ to ψ0 = 90◦.
Specifically, the cylinder twists in the other direction and
the enclosed volume decreases.

We highlight that the volumetric expansion of the
Smectic-A elastomers is due to the radial expansion and
the longitudinal compression resulting from the ampli-
fication of the voltage. Additionally, it is important to
note that the due to the low voltages that are practically
applied in the actuation of these materials, the twist and
the volumetric expansions are small.
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FIG. 7. (a) The twist δ and (b) the change in the enclosed volume vt
Vt

as a function of the applied voltage for various helix
angles at p = 0.

Next, we study the effects of pressure on the actuation
of Smectic-A elastomers with helical layers at an angle
ψ0 = 45◦. Figs. (8a) and (8b) plot the twist δ and the
change in the enclosed volume vt

Vt
as a function of the

applied voltage, respectively, for a cylinder subjected to
various pressures. Fig. (8a) reveals that the pressure
causes the elastomer to twist. However, the increase in
voltage does not significantly change the twist angle.

As shown in Fig. (8b), the enclosed volume increases
with pressure. This stems from the radial expansion and
the longitudinal elongation of the cylinder in response
to the internal pressure. As the voltage is amplified, a
linear increase in the enclosed volume is observed. In-
terestingly, we find that the linear dependence between
vt
Vt

and V is independent of the pressure in the examined
range of voltages. It is again noted that even under an
applied pressure, an increase in voltage leads to a radial
expansion and a longitudinal compression.

V. CONCLUDING REMARKS

This work proposes a new model that captures the be-
havior of Smectic-A elastomers subjected to an electro-
mechanical loading. Specifically, the energetic formu-
lation of Adams et al. [12] is rewritten in terms of a
new variable q, that describes the chirality of the meso-
gens composing the elastomer, and an additional term is
added to account for the effects of an electric stimulus.
The current configuration of the elastomer is determined
by minimizing the energy.

To demonstrate the merit of the model, two simple
cases are presented. In the first case, an electric field
is applied to the Smectic-A elastomer. In accordance
with experimental findings, the proposed model predicts
a shear deformation of the sample. In the second case,
a mechanical shear deformation is imposed. As a con-
sequence, the mesogens tilt and their inherent chirality
gives rise to a polarization. The predictions qualitatively
capture several experimental observations.

The potential of these elastomers is exhibited in Sec.
IV, where a thin-wall cylindrical configuration of a
Smectic-A film with helical layers is considered. Upon

application of an electric field, we show that the pitch
and the helix angle control the macroscopic behavior.
Specifically, the enclosed volume and the twist depend on
the formation of the lamellar structure. It is also shown
that the application of internal pressure in the tube can
effectively change the macroscopic response.
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