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We investigate the phase behavior of suspensions of poly(N -isopropylacrylamide) (pNIPAM) mi-
crogels with either bimodal or polydisperse size distribution. We observe a shift of the fluid-crystal
transition to higher concentrations depending on the polydispersity or the fraction of large par-
ticles in suspension. Crystallization is observed up to polydispersities as high as 18.5%, and up
to a number fraction of large particles of 29% in bidisperse suspensions. The crystal structure is
random hexagonal close-packed as in monodisperse pNIPAM microgel suspensions. We explain our
experimental results by considering the effect of bound counterions. Above a critical particle con-
centration, these cause deswelling of the largest microgels, which are the softest, changing the size
distribution of the suspension and enabling crystal formation in conditions where incompressible
particles would not crystallize.

I. INTRODUCTION

A detailed understanding of the fluid to crystal transi-
tion and, more generally, of the phase behavior is of fun-
damental importance for the application of any material.
Factors controlling this include thermodynamic variables,
like temperature and pressure, and internal parameters
of the material under consideration, like the presence of
dopants or impurities, and polydispersity in size. Indeed,
size polydispersity often limits or suppresses crystalliza-
tion. In metal melts, the presence of point defects caused
by a size mismatch of 15% suppresses crystallization [1]
and in hard spheres, an important model system for con-
densed matter, crystallization is suppressed for polydis-
persities > 12%. Furthermore, the polydispersity in a
monocrystal of hard spheres is not higher than 5.7%,
as particle segregation occurs during crystallization [2–
6]. Since size mismatch strongly limits the formation of
crystals, it came as a big surprise that this limitation
does not apply for soft, colloidal microgels. In this case,
particles that were too large to fit in the crystal lattice
formed by smaller particles spontaneously deswelled to fit
in the crystal without causing point defects that would
otherwise have prevented crystallization [7].

Microgels are cross-linked polymer particles immersed
in a solvent, which can exist in a soft and swollen or
in a stiff and deswollen state depending on external pa-
rameters like temperature [8, 9], pH [10, 11], and pres-
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sure [12–14]. The spontaneous deswelling of large micro-
gels has been observed in aqueous suspensions of poly(N-
isopropylacrylamide) (pNIPAM) microgels, and we have
recently provided an explanation for this deswelling
mechanism [15]. Despite pNIPAM is an uncharged poly-
mer, pNIPAM microgels used in this work carry charged
groups in their peripheric, fuzzy corona, which are due
to the initiator employed in the synthesis, ammonium
persulfate [APS, (NH4)2S2O8]; this is schematically il-
lustrated in Fig. 1A with 	 symbols. Once the micro-
gels are in suspension, the ammonium counterions, NH+

4 ,
that are weakly attracted to the microgel can escape and
contribute to the suspension osmotic pressure [15–17].
Most counterions, however, remain bound to the particle
(see Fig. 1B). Interestingly, at sufficiently high microgel
concentrations, the clouds of bound counterions overlap
and eventually percolate through the system, as schemat-
ically illustrated in Fig. 1C. At this point, the bound
counterions are effectively free to explore the space out-
side the particles. This causes a strong increase in the
suspension osmotic pressure that, in addition, produces
an osmotic pressure difference, ∆Π, between the inside
and outside of the particles. If ∆Π exceeds the bulk mod-
ulus of the particles, then deswelling occurs. The softest
particles deswell first, and more particles are affected as
the concentration and hence the osmotic pressure differ-
ence increases.

In this paper, we study the effect of spontaneous
deswelling on the phase behavior of pNIPAM suspensions
with controlled polydispersity or bimodal size distribu-
tion. Varying the microgel concentration and the poly-
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FIG. 1. (A) Microgel particle and its counterion cloud that extends towards the outside (dark red shell) and the inside (light
red shell) of the particle. The fixed charges and the counterions are represented by 	 and ⊕, respectively. (B) Dilute condition
where only a small fraction of the counterions ( ) can leave the particle due to thermal fluctuations. (C) Concentrated sample
with percolated counterion clouds. The bound counterions freely explore the volume between the microgels.

dispersity, or the number ratio of large and small parti-
cles, we determine the phase behavior using structure fac-
tors obtained from small-angle X-ray scattering (SAXS)
and visual inspection of the crystalline fraction in the
suspension. With increasing microgel concentration, the
largest particles in the suspension, which are also the soft-
est, are observed to deswell before the smaller particles
do. This implies a reduction in size polydispersity that
enables crystallization under conditions that would sup-
press crystallization in other materials. Whether crys-
tallization takes place depends on the stiffness of the
particles and the initial size distribution. For example,
in bidisperse suspensions with a fixed size ratio of large
and small particles, the freezing point increases with the
number fraction of large particles. In contrast, for poly-
disperse suspensions with an approximate Gaussian size
distribution, the freezing point does not depend much on
polydispersity. We observe crystallization up to a num-
ber fraction of large particles of 29% in the bidisperse
case, and find an upper polydispersity limit for crys-
tallization of polydisperse suspensions with approximate
Gaussian distributions of about 18.5%, which is consid-
erably higher than the limit of 12% in hard spheres [2, 3].

II. EXPERIMENTAL

A. Particle synthesis and samples

All pNIPAM microgels used in this study have been
synthesized by precipitation polymerization [18, 19]. N -
isopropylacrylamide (NIPAM, 98 wt%) andN ,N ′-methy-
lenebis(acrylamide) (BIS, 2 wt%) at a total concentration
of 100 mM, together with sodium dodecyl sulfate (SDS),
are dissolved in 995 mL of distilled, deionized water. The
amount of SDS is varied from 0.50 mM to 1.25 mM to
control the particle size [19]. The solution is initially fil-
tered through a 0.2 µm Supor membrane filter into a 2 L
three-neck round bottom flask, heated to 70◦C, and kept

under a nitrogen atmosphere while continuously stirred.
After 1 hour, the reaction is initiated by adding 5 mL
of ammonium persulfate (1.0 mM). Therefore, the final
suspension volume for the reaction is 1L. The reaction
takes place for 6 hours and is terminated by cooling to
room temperature. Undesired aggregates are removed
by filtering with a 0.8 µm Supor membrane filter, and
the resulting particle suspension is purified using dialy-
sis, with water being changed daily for 10 days, to re-
move the surfactant and purify the suspension. We note
that SDS is an ionic surfactant. As a result, in addition
to the NH+

4 coming from the initiator, the solution will
also contain counterions resulting from the ionization of
SDS; these are Na+ ions. Therefore, the microgel electric
double layer is complex and will contain both NH+

4 and
Na+ ions. Hence even if, for simplicity, we may refer to
NH+

4 ions, it is to be understood that we more generally
refer to the counterions, which could either be NH+

4 or
Na+ ions. Finally, the particles are freeze-dried, and the
resulting powder is used to prepare the samples.

To study the dependence of the phase behavior on
polydispersity, particles have been synthesized with radii
in the range from 71 to 192 nm, as listed in Table I.
We refer to the samples as obtained from synthesis as
s-samples. These have polydispersities between 7% and
12%, which are the lowest polydispersities in our study.
Only the smallest particles, sample s21, show a higher
polydispersity. In the synthesis, polydispersity is limited
by controlling the size of the primary pNIPAM particles
with the addition of SDS; this is more difficult to achieve
when synthesizing smaller particles [20] and explains the
larger polydispersity of sample s21.

Samples with a bimodal size distribution, named b-
samples, are obtained by mixing two s-samples with dif-
ferent radii in ultra-pure water with a resistivity of 18.2
MΩ·cm. The large and small particles have hydrody-
namic radii in the range from Rl = 182 nm to 192 nm
and from Rs = 137 nm to 146 nm, respectively, resulting
in size ratios Rl/Rs between 1.30 and 1.37, as listed in
Table II. An important quantity is the number fraction of
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TABLE I. Radii and polydispersities for the s-samples obtained from DLS using CONTIN, SANS, and SAXS. Also shown are
conversion constants, k, to calculate the volume fraction, and the collapsed radii as obtained from viscosimetry. The errors of
the SANS and SAXS results have been obtained form fits to the measured data using Eqs. 6 and 7. “–” indicates that the
corresponding SAXS measurement was not performed.

Sample
DLS SANS SAXS Viscosimetry

Rh (nm) p (%) RSANS (nm) σp (%) RSAXS (nm) σp (%) k Rcoll (nm)

s1 131.7±0.8 11.6± 2.9 124±4 11±1 127±3 10.2±0.2 17.3±0.3 47±1

s2 139± 1 11± 3 133.2±2 10.0±0.5 133±2 10.9±0.4 16.9±0.3 50.0±0.6

s3 144± 2 11.4± 3.4 137±5 10.1±0.6 140±1 10.8±0.6 17.2±0.5 51.5±0.8

s4 139.5± 0.8 11.2± 3.2 120± 2 11.0± 0.4 – – 20.6±0.9 46.5±0.2

s5 137± 1 10.4± 1.0 131±5 10.1±0.7 – – 18.1±0.6 48.5±0.4

s6 143± 1 8.9± 1.1 132±3 8.5±0.8 133.8±0.3 8.7±0.1 19.0±0.5 49.5±0.9

s7 141± 1 10.2± 2.2 134±3 10.8± 0.4 137.6±0.5 10.7±0.1 17.9±0.3 49.8±0.2

s8 140.4± 0.9 8.0± 2.3 135±3 7.0±0.4 – – 17.9±0.8 49.5±0.9

s9 146± 1 7.1± 1.1 133± 2 8.1± 0.6 140±2 8±1 17.9±0.4 51.5±0.9

s10 142.9± 0.9 11± 3 137±4 10.2±0.4 138.4±0.7 9.5±0.8 17.3±0.8 51.0±0.6

s11 182± 2 9.8± 2.5 176±4 11.6±0.5 173±4 10.3±0.8 16.9±0.1 65.5±0.4

s12 185± 7 9.2± 1.6 180±6 9.3±0.6 180±1 10.6±0.4 19.2±0.3 63.7±0.7

s13 192± 2 9.0± 2.6 180±6 10±1 179.8±0.4 9.6±0.7 18.1±0.7 67.5±0.9

s14 187± 3 10.3± 1.4 180±8 11±2 181.4±0.5 9.7±0.6 18.0±0.3 65.9±0.7

s15 134.1± 0.9 7.8± 1.2 129±3 9.1±0.9 134.1±2 9.6±0.5 19.1±0.7 46±1

s16 167± 2 10.4± 1.8 158±3 8.5±0.9 – – 20.0±0.5 55.8±0.6

s17 126± 1 10.4± 1.8 126±2 10.8±0.5 116.0±0.6 10.6±0.2 19.3±0.3 43.3±0.6

s18 170± 2 10.9± 2.6 158±5 11±1 158.5±0.5 10±1 20.3±0.2 57.5±0.4

s19 119± 1 8.5± 1.6 115±4 10.1±0.4 112±1 10.1±0.4 19.5±0.8 41±1

s20 113± 1 9.1± 1.6 111±3 12±1 – – 16.2±0.3 41.2±0.8

s21 78.6± 0.6 17± 4 71±2 22.2±0.8 72.4± 0.5 20.7± 1 22±1 25±2

the large microgels: nl = Nl/Ntot = Nl/(Nl +Ns), where
Nl and Ns are the number of large and small particles
in the suspension, respectively. With our b-samples, we
cover the range 0.1% . nl . 80%, as seen in Table II.
This allows a systematic study of the phase behavior as
a function of nl.

Samples with monomodal, Gaussian-like, size distribu-
tion and polydispersity p > 12% are realized by mix-
ing from two up to five different s-samples and are
listed in Table III. We refer to these samples with in-
creased polydispersity as p-samples. Although they have
a monomodal size distribution, they are composed of s-
samples; for example, sample p11 is obtained by mixing
samples s5, s16 and s19 at the mass fractions indicated in
the third column of Table III. It is thus still useful to re-
fer to the smallest and largest particles in the p-samples
as we do in the b-samples; for sample p11, these are the
particles from samples s19 and s16, respectively.

The polydispersity of our samples has been obtained
using dynamic light scattering (DLS) and small-angle
neutron and X-ray scattering (SANS and SAXS, respec-
tively). The DLS correlation functions have been an-
alyzed using a modified CONTIN method [21], which
directly gives the size distribution of the microgel sus-

pension and allows for a direct calculation of the poly-
dispersity, p =

√
〈R2〉 − 〈R〉2/〈R〉, with 〈. . . 〉 referring

to the mean. For SANS and SAXS, the scattering curves
of dilute samples were fitted with a model for the particle
form factor that accounts for a Gaussian size polydisper-
sity of the microgel core, σp. The three techniques lead
to consistent values for the polydispersity. The highest
polydispersity reached for the p-samples is 22%.

B. Generalized volume fraction

pNIPAM microgels are temperature sensitive and show
a volume phase transition at T ≈ 32◦C [22, 23]. In the
work reported here, we have kept the temperature in the
range 18◦C < T < 21◦C, where the microgels are in
the fully swollen state. The suspension phase behavior
is then controlled by the volume fraction, φ, which is
hard to define for a microgel suspension, given that the
particles can interpenetrate [24, 25], compress [7, 26] and
change shape [27, 28]. Hence, we use the generalized
volume fraction, ζ:

ζ =
Ntot · V
Vtot

≈ mpNIPAM

mtot

ρsolvent

ρpNIPAM

R3

R3
coll

, (1)
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TABLE II. Composition, fraction of large particles, radii, and size ratios of large and small particles of the b-samples. “–”
indicates that the corresponding SAXS measurement was not performed. The figure number is given in the last column for
samples shown in Fig. 8.

Sample Composition nl (%)
DLS SAXS SANS SANS

Fig.
Rs (nm) Rl (nm) Rs (nm) Rl (nm) Rs (nm) Rl (nm) Rl/Rs

b1 s6, s11 0.10±0.07 143± 1 182± 2 133.8± 0.3 173± 4 132± 3 176± 4 1.33± 0.07 -

b2 s6, s11 0.4±0.1 143± 1 182± 2 133.8± 0.3 173± 4 132± 3 176± 4 1.33± 0.07 -

b3 s6, s11 0.6±0.1 143± 1 182± 2 133.8± 0.3 173± 4 132± 3 176± 4 1.33± 0.07 -

b4 s5, s11 1.4±0.1 137± 1 182± 2 − 173± 4 131± 5 176± 4 1.34± 0.09 -

b5 s7, s11 2.3±0.2 141± 1 182± 2 137.6± 0.5 173± 4 133± 4 176± 4 1.32± 0.08 -

b6 s7, s14 2.6±0.2 141± 1 187± 3 137.6± 0.5 181.4± 0.5 133± 4 180± 8 1.35± 0.07 -

b7 s5, s13 4.7±0.5 137± 1 192± 2 − 179.8± 0.4 131± 5 180± 6 1.37± 0.09 8A

b8 s8, s11 6.6±0.7 140.4± 0.9 182± 2 − 173± 4 135± 3 176± 4 1.30± 0.05 -

b9 s7, s12 10.1±0.9 141± 1 185± 7 137.6± 0.5 180± 1 133± 4 180± 8 1.35± 0.07 -

b10 s7, s11 18±2 141± 1 182± 2 137.6± 0.5 173± 4 133± 4 176± 4 1.32± 0.08 8B

b11 s10, s12 29±3 142.9± 0.9 185± 7 138.4± 0.7 180± 1 137± 4 180± 8 1.36± 0.09 8C

b12 s9, s13 38±4 146± 1 192± 2 140± 2 179.8± 0.4 133± 2 180± 6 1.35± 0.07 8D

b13 s9, s13 79±8 146± 1 192± 2 140± 2 179.8± 0.4 133± 2 180± 6 1.33± 0.08 8E, 8F

where V = 4πR3/3, Vtot, mpNIPAM and mtot are the
microgel particle and sample volumes, and the masses
of pNIPAM in suspension and the total sample, respec-
tively. The quantity ρsolvent is the density of the solvent,
which in our experiments is either water or heavy wa-
ter, and ρpNIPAM = 1.269 g/cm3 [29] is the density of
dry pNIPAM. We assume the densities of the suspension
and the solvent are equal, as the polymer concentration
is always lower than 5 wt%. The symbols R and Rcoll

represent the particle radii in the swollen and collapsed
state, respectively. The latter is the radius of the dry
particle, which is smaller than the particle radius in the
deswollen state, where the particle still contains some
solvent [30]. Note that ζ agrees with φ for dilute sam-
ples with particles in the fully swollen state. However,
since microgels can compress and deform, ζ can exceed
1, despite the volume fraction is limited to φ ≤ 1.

Since b- and p-samples are prepared by mixing the
powder of different s-samples, their generalized volume
fraction is determined as the sum of the generalized vol-
ume fractions of the involved s-samples: ζtot =

∑
i ζi,

where ζi is computed using Eq. 1 for the i ’th s-sample,
always using the same total sample volume.

C. Dynamic Light Scattering

To obtain ζ using Eq. 1, the radius of the swollen parti-
cle is needed, which we obtain from DLS measurements.
The instrument used is a LS-Instruments 3D DLS-Pro
spectrometer equipped with a vertically polarized He-Ne
laser of vacuum wavelength λ0 = 632.8 nm. All measure-
ments were taken in water, which has a refractive index
n(λ0) = 1.33 and a viscosity ηH2O = 1.002 · 10−3 Pa · s at

temperature T = (20.0±0.5)◦C. The samples for DLS are
dilute, ζ ≈ 0.02, such that the interaction between par-
ticles can be neglected. We analyze the DLS data using
both cumulants [31, 32] and a modified CONTIN method
[21], which uses the original CONTIN algorithm [33, 34]
together with the L-curve criterium to choose the regu-
larizer [21]. In this way, we can obtain the hydrodynamic-
radius distribution and, from it, the polydispersity p. For
the s-samples, we obtain 7% < p < 12%; this agrees with
sedimentation time measurements [35] and SANS mea-
surements [36] of microgels synthesized with a similar
protocol. The values of the hydrodynamic radii and the
polydispersities obtained by means of the CONTIN anal-
ysis are reported in Tables I and III for s- and p-samples,
respectively. The values and their associated errors are
the mean and the standard deviation of ten independent
measurements taken at scattering angles between 20 and
140 degrees.

D. Viscosimetry

We determine the collapsed radius in Eq. 1 from vis-
cosimetry data obtained with dilute samples and the
swollen hydrodynamic radius [30]. The suspension vis-
cosity, η, is measured using an Ubbelohde tube im-
mersed in a water bath with a fixed temperature of
T = (22.00 ± 0.01)◦C [35, 37]. Series of five or six sus-
pensions with polymer mass fractions c = mpNIPAM/mtot

between 10−3 and 4·10−3 are measured for each s-sample,
as done in earlier work [22, 30]. From the Einstein-
Batchelor relation [38], we know that the relative vis-
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TABLE III. Composition, mass fraction of the components, and radii and polydispersities of the p-samples obtained from DLS
using CONTIN, SANS, and SAXS. The errors of the SANS and SAXS results have been obtained form fits to the measured
data using Eqs. 6 and 7. The figure number is given in the last column for samples shown in Fig. 9.

Sample Comp. mpoly (%)
DLS SANS SAXS

Fig.
Rh (nm) p (%) RSANS (nm) σp (%) RSAXS (nm) σp (%)

p1 s10, s15 66.13± 0.02, 33.87± 0.02 142± 7 11± 3 131± 1 11.0± 0.6 132.1± 0.3 11.0± 0.3 -

p2 s7, s19 54.96± 0.04, 45.04± 0.04 134± 4 10.8± 3.1 127.9± 0.9 11.8± 0.4 132.6± 0.5 11.1± 0.1 -

p3 s9, s20 50.94± 0.04, 49.06± 0.04 132± 9 11.1± 4.8 130.2± 0.9 13.1± 0.4 131.7± 0.3 14± 2 -

p4 s15, s18 50.01± 0.04, 49.99± 0.04 147± 7 13.9± 4.3 136± 1 14.1± 0.6 135± 2 14.0± 0.8 9A

p5 s16, s17 55.44± 0.04, 44.56± 0.04 143± 7 13.3± 2.7 130.8± 0.9 12.9± 0.4 132± 2 13.5± 0.8 9D

p6 s15, s18 53.00± 0.04, 47.00± 0.04 150± 7 16.4± 4.1 139± 1 16.8± 0.7 140± 2 16.2± 0.9 -

p7 s9, s20 35.18± 0.03, 64.82± 0.05 139± 14 14.4± 1.7 125± 1 14.2± 0.5 128.7± 0.2 14.9± 0.1 9B, 9E

p8 s4, s20 67.12± 0.05, 32.88± 0.03 137± 6 13.7± 2.2 135± 1 14.1± 0.4 136± 2 14.7± 0.8 9C

p9 s16, s17 50.18± 0.04, 49.82± 0.04 152± 13 15.0± 1.9 136± 1 15.4± 0.6 137± 1 16.2± 0.4 -

p10 s1, s16 50.25± 0.04, 49.75± 0.04 145± 16 16.5± 1.4 138± 2 17± 1 145± 2 18.5± 0.9 -

p11
s5, s16, 60.20± 0.05, 14.88± 0.02,

138± 10 17.2± 1.6 128± 1 18.3± 0.7 126± 4 17± 2 -
s19 24.92± 0.03

p12
s7, s18, 50.96± 0.05, 38.79± 0.04,

148± 14 16.6± 1.3 125± 2 16.6± 0.8 129± 2 17± 1 9F
s20 10.25± 0.03

p13
s4, s16, 22.98± 0.06, 28.10± 0.02,

140± 6 20± 4 128± 6 19± 4 122± 1 22± 1 -s17, s20, 31.22± 0.05, 15.27± 0.05,

s21 2.43± 0.09

p14
s2, s16, 40.18± 0.04, 23.04± 0.06,

127± 4 19± 5 132± 5 20±4 123± 3 21.4± 0.7 -
s17, s20 8.41± 0.06, 28.37± 0.05

cosity, ηr = η/ηH2O, depends on ζ as [17, 22]:

ηr = 1 + 2.5ζ + 5.9ζ2

= 1 + 2.5(kc) + 5.9(kc)2. (2)

Here we have used Eq. 1 to write ζ = kc with k =
(ρsolventR

3)/(ρpNIPAMR
3
coll) the conversion constant re-

lating ζ and c. This constant k is obtained by fitting the
measured ηr(c) data with Eq. 2, as shown in Fig. 2. We
then recall that k = ζ/c ≈ (Vpρsolvent)/mp, where mp

is the polymer mass of one particle and Vp = 4πR3
h/3

its volume in the swollen state, which we obtain us-
ing the hydrodynamic radius. We then see that mp =
(Vp ρsolvent)/k and thus:

Rcoll =

(
3

4π

mp

ρpNIPAM

)1/3

. (3)

The values of the conversion constant and the collapsed
radii obtained from the analysis of the viscosimetry data
are reported in Table I. Note that k has similar values
for all s-samples, since all particles were synthesized with
the same protocol and the same amount of crosslinker.
This further indicates that all particles have comparable
swelling ratio. Note also that we use mp to calculate the
number of particles in b- and p-samples: Ni = mi/mp,i,
where mp,i and mi refer to the polymer mass per particle
and the total polymer mass of the i’th s-sample used.

E. Form factors from small-angle neutron and
X-ray scattering

The determination of the size polydispersity is of fun-
damental importance in this work, since we are interested
in its effect on the phase behavior and, in particular,
on crystallization. Therefore, we use SANS and SAXS
as additional and independent tools to measure polydis-
persity. These methods also allow probing the internal
structure of our microgels. During the synthesis, the
crosslinker reacts faster than the NIPAM monomer and,
therefore, pNIPAM microgels have a more crosslinked
spherical core with a denser polymer concentration com-
pared to the surrounding softer, fuzzy shell. This gives
the microgel its characteristic core-shell structure. We
use a widely accepted model for the particle form factor
P (q) [9, 36], which assumes a spherical core with radius
Rc surrounded by a fuzzy shell with a decreasing polymer
density. The fuzzy shell is obtained by convoluting the
core with a Gaussian with standard deviation σs. The
width of the shell is 2σs, and the total radius of the par-
ticle is Rc + 2σs. In reciprocal space, the resultant form
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FIG. 2. Relative viscosity ηr as a function of microgel con-
centration given by the polymer mass fraction c for (A) s21,
Rh = (78.6 ± 0.6) nm, mp = (0.9 ± 0.1) · 10−19 kg; (B) s2,
Rh = (139 ± 1) nm, mp = (6.3 ± 0.6) · 10−19 kg; (C) s16,
Rh = (167 ± 2) nm, mp = (9.2 ± 0.7) · 10−19 kg; (D) s11,
Rh = (182 ± 2) nm, mp = (14 ± 2) · 10−19 kg. The experi-
mental data ( ) are fitted with Eq. 2 (lines).

factor P1(q) is given by:

P1(Rc, q) =

[
3(sin qRc − qRc cos qRc)

(qRc)3

× exp

{
− (σsq)

2

2

}]2

. (4)

Size polydispersity is taken into account assuming a
Gaussian distribution for the core radius with standard
deviation σp · 〈Rc〉:

D(Rc) =
1√

2πσp〈Rc〉
exp

[
− (Rc − 〈Rc〉)2

2(σp〈Rc〉)2

]
, (5)

where 〈Rc〉 and σp are the mean core radius and the
relative distribution width, respectively.

For q & π/σs, inhomogeneities within the particle
make a measurable contribution to the scattering signal.
This contribution is considered by adding a Lorentzian
term to the scattered intensity, Ichain(q) = Ichain(0)/[1 +
(ξq)2], where ξ and Ichain(0) are a correlation length re-
lated to the mesh size of the polymer network and the
zero-q intensity contribution of the internal mesh, respec-
tively [39–41]. With this, the model for the form factor
of the particle becomes:

P (q) =
1

〈V 2〉

∫ ∞

0

dRcD(Rc)V 2(Rc)P1(Rc, q) +

Ichain(q) +B (6)

with V (Rc) = 4πR3
c/3 the volume of the core and

〈V 2〉 =
∫∞

0
dRc V

2(Rc)D(Rc) the average squared core
volume. The constant B accounts for the background

due to incoherent scattering. Finally, we consider the in-
strument resolution by convoluting P (q) with a Gaussian
[42]:

Ps(q) =
1√

2πσr(q)

∫ ∞

0

dq′ exp
[
− (q − q′)2

2σ2
r (q)

]
P (q′),(7)

where σ2
r (q) is the q-dependent variance with contribu-

tions due to the wavelength resolution, the geometrical
resolution, and the downward-shift of the neutron beam
due to gravity [43].

SANS measurements were performed at SINQ, Paul
Scherrer Institut (Villigen, Switzerland), on the instru-
ments SANS-I and SANS-II. We have covered the q-range
of interest using two configurations: sample-detector dis-
tance dsd = 18 m with wavelength λ = 0.8 nm and
dsd = 4.5 m with λ = 0.8 nm on SANS-I, and dsd = 6 m
with λ = 1.05 nm and dsd = 3 m with λ = 0.53 nm on
SANS-II. Both instruments are equipped with 3He de-
tectors with 128 × 128 pixels and pixel sizes of 7.5 mm
and 4.3 mm, respectively. The temperature was fixed to
(18.0 ± 0.5)◦C for all SANS measurements. The form
factors are measured using dilute samples with ζ ≈ 0.08,
such that the structure factor S(q) ≈ 1 and P (q) can be
measured directly.

Form factors were also measured using SAXS on the
cSAXS beamline of the Swiss Light Source, Paul Scherrer
Institut (Villigen, Switzerland). The instrument was set
up with wavelength λ = 0.145 nm and wavelength resolu-
tion ∆λ/λ ≈ 0.0002. The sample-detector distance was
dsd = 7.12 m. The beam was collimated to illuminate
an area of about 200 × 200µm2 on the sample. The 2D
detector has 1475 × 1679 pixels and a pixel size of 172
µm [44].

As an example, the particle form factors obtained from
SANS (◦) and SAXS (2) for sample s2 are shown in Fig.
3. Both curves can be described with the form factor
model in eq. (6). Note, the SANS data has a higher
background than the SAXS data, which is mostly due to
incoherent scattering from hydrogen.

From the analysis of the SANS and SAXS measure-
ments, we see that: (i) Rh is larger than both RSANS

and RSAXS (see Tables I, II and III); this is likely be-
cause small-angle scattering techniques are less sensitive
to the dangling polymer chains at the particle periphery.
(ii) Polydispersities determined using the three different
techniques all agree within experimental error.

F. Structure factors from small-angle X-ray
scattering

We measure the suspension structure factor using
SAXS to explore the phase behavior and the behavior
of the large particles in fluid, crystalline, and glassy sam-
ples with either bimodal or polydisperse size distribu-
tion. The q-resolution on cSAXS allows resolving Bragg
spots of single crystals in the scattering volume [45]. We
prepare samples in quartz capillaries with a diameter of
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FIG. 3. Scattered intensity (�) and structure factor (3) of sample s2 in (A) the fluid state at ζ = 0.51±0.01, (B) the crystalline
state at ζ = 0.64± 0.02, and (C) the disordered solid state at ζ = 0.82± 0.02. The form factors measured using SANS (◦) at
ζ = 0.08± 0.01 and SAXS (2) at ζ = 0.06± 0.01 are shown in each panel.

(1.0 ± 0.1) mm, and take measurements at 10 different
points along the capillaries. At each point, we take a se-
ries of 10 measurements of 0.1 s each. For the analysis,
only the data of the first 0.4 s is used to avoid artifacts
due to X-ray damage or local heating. The temperature
is fixed at (18.0 ± 0.5)◦C.

At high concentrations, the scattered intensity exhibits
oscillations due to the form factor and the structure of the
microgel suspension, as shown with �-symbols in Fig. 3.
We obtain approximate structure factors from the SAXS
data by dividing the scattered intensity by the form fac-
tor: S(q) = I(q)/P (q); these are shown with 3-symbols
in all panels of Fig. 3. We see that the structure factor
peaks are broad in fluid (Fig. 3A) and glassy samples
(Fig. 3C), while there are sharper peaks in crystalline
samples (Fig. 3B), which are due to Bragg reflections
and Bragg rods as explained in section III D. The posi-
tion of the first peak in S(q), qpeak, is directly related to
the nearest-neighbor distance: dnn = 2π/qpeak. We em-
phasize that using a form factor measured with a dilute
sample, at high ζ, only allows obtaining an approximate
structure factor. However, the error in the peak positions
of S(q) that result from doing this is small. From direct
form factor measurements in highly concentrated pNI-
PAM suspensions using SANS with contrast matching
[15], we know how the form factor changes up to ζ ≈ 1.2
and estimate that the position of the first peak in S(q) at
ζ ≈ 0.8 is displaced by only ≤ 0.0004 nm−1 when we use
a form factor obtained from a dilute suspension. This
results in an error of dnn of less than 2%.

III. RESULTS AND DISCUSSION

A. Phase behavior

To obtain an overview of the phase behavior of s-, b-,
and p-samples, we prepared 10 to 15 suspensions at differ-
ent concentrations for each sample, covering the freezing

and melting points. All suspensions were kept at a fixed
temperature of T = (18.5 ± 0.5)◦C and all show a qual-
itatively similar phase behavior. An example is shown
in Fig. 4: Samples are fluid for concentrations below the
freezing point, ζf, and show fluid-crystal coexistence from
ζf up to the melting point, ζm. With further increase in
concentration, the samples are fully crystalline or form a
disordered, glassy phase. The crystalline samples show
Bragg scattering in the visible spectrum and, therefore,
the freezing-point, ζf, and the melting-point, ζm, have
been identified by visual inspection of the samples. The
s-samples have similar ζf and ζm, as shown in Fig. 5A.
By averaging the values for all samples, which have poly-
dispersities 7% < p < 12%, we obtain ζf = 0.58 ± 0.02
and ζm = 0.62 ± 0.03. The freezing and melting points
agree with those found in other studies of pNIPAM mi-
crogels, where 0.56 ≤ ζf ≤ 0.59 and ζm = 0.61 [22, 46];
these values are higher than in the hard-sphere system,
where φf = 0.494 and φm = 0.545 [47, 48]. The s-samples
show the fastest crystallization of all our samples, with
crystals typically forming within two days.

ζ
1.690.59

Crystal Disordered SolidFluid

0.61 1.05

Coex.

FIG. 4. Concentration series of sample s3 showing, with
increasing ζ, the fluid, fluid-crystal coexistence, fully crys-
talline, and glassy state. In crystalline samples, the irides-
cence due to Bragg peaks is visible.

Like the s-samples, the bidisperse b-samples, kept at
the same temperature, also change from fluid to partially
crystalline, to fully crystalline, and then to a disordered
solid state, with increasing concentration. From visual
inspection of the samples, we find the phase behavior
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FIG. 5. Freezing (◦) and melting (2) points observed in (A) s-samples with particle radii in the range from 110 nm to 200 nm,
(B) b-samples with varying fraction of large particles, nl, and (C) p-samples with polydispersities between 11 and 18.5%. The
behavior of the freezing and melting points is highlighted by the dotted blue and dashed black lines, respectively. The magenta
lines in (B) represent the freezing and melting-line for nl . 2.5%. All phase behavior data is taken at T = (18.3± 0.5)◦C.

shown in Fig. 5B. We recognize that: (i) for nl . 2.5%,
the freezing- and melting-point (magenta lines) agree
with those of the s-samples shown in Fig. 5A; (ii) for
nl & 2.5%, ζf and ζm shift to higher ζ with increasing nl;
(iii) crystals are not observed for nl & 30%. Hence, for
nl & 2.5%, the presence of the large particles causes an
increase in ζf and ζm and plays a role in the narrowing
and disappearance of the coexistence region.

The phase behavior of the polydisperse p-samples also
differs from that of the s-samples. As shown in Fig. 5C,
we find that: (i) for σp < 14%, ζf = 0.58 ± 0.02 and
ζm = 0.65 ± 0.03, consistent with the phase behavior
of the s-samples. (ii) In the range 14% . σp . 15%,
ζm remains constant at 0.68±0.02 within the accuracy of
our measurements, while the polydispersity has a strong
effect on the freezing point that increases to 0.65±0.02.
(iii) For σp > 15%, we do not observe coexistence of fluid
and crystal with our ζ resolution. (iv) Finally, for σp >
18.5%, crystallization is suppressed, a value considerably
higher than the 12% polydispersity limit for hard spheres
[1, 2, 49].

The phase behavior illustrated in Figs. 5B and C indi-
cates that both nl and σp influence the freezing and melt-
ing points with respect to the s-samples shown in Fig. 5A.
Comparing the phase behavior of p- and b-samples, we
find that, in the b-samples, both ζf and ζm strongly de-
pend on nl, while for the p-samples ζm remains virtually
unchanged and ζf is shifted very close to ζm, as σp is
increased.

The crystallization time of the b- and p-samples is con-
siderably longer than that of the s-samples: Crystals typ-
ically form within 2 weeks. In hard spheres, an increased
polydispersity is also found to strongly delay crystalliza-
tion [4, 5, 50, 51].

B. Microgel deswelling in concentrated suspensions

The swelling of a neutral microgel particle is deter-
mined by the interplay between the polymer-solvent mix-

ing and the elasticity of the polymer network [52]. These
two contributions are expressed in terms of osmotic pres-
sures, Πmix and Πel, respectively. The equilibrium size
of the microgel corresponds to having a zero osmotic
pressure difference between the inside and the outside
of the particle: ∆Π = Πmix + Πel −Πout = 0 [30], where
Πout is the osmotic pressure outside the microgel. Im-
portantly, although pNIPAM microgels are neutral, they
posses peripheric charges due to the initiator employed in
the synthesis. Due to the electrostatic attraction between
these fixed charges and the counterions, the microgel is
surrounded by a counterion cloud. Within this cloud,
there are counterions that are attracted with a strength
larger than kBT and are thus bound to the particle. How-
ever, there are also counterions that are attracted with
a strength comparable to or lower than kBT ; these are
able to leave the particle due to the entropic gain as-
sociated with doing so. Note that the counterion cloud
extends both inside and outside the particle. In Fig. 1A,
the charges at the periphery of the particle and the coun-
terions are represented by 	 and ⊕, respectively, while
the microgel is represented by the inner white area and
the light red shell.

Fig. 1B illustrates the situation in a dilute sample,
where the free counterions ( outside the red clouds) set
the osmotic pressure of the suspension, Πout [16, 17, 53];
they are essentially free to explore the inside as well as
the outside of the microgel particles. Therefore, they do
not give rise to a significant osmotic pressure difference
between the inside and outside of the particles and cause
no particle deswelling. When ζ is increased, however, the
clouds of bound counterions start to overlap to eventu-
ally percolate through the sample, as illustrated in Fig.
1C. At this point, the bound counterions become effec-
tively free to explore all the volume outside the microgels
and contribute to the osmotic pressure of the suspension.
This increase in Πout is not compensated by a pressure
increase inside the particles, as the electrostatic potential
there is too high for the ions in the cloud of bound coun-
terions to appreciably populate this region. This effect is
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observed in Monte Carlo simulations of a microgel mod-
eled as a charged spherical surface surrounded by mobile
counterions, see supporting information in Ref. [15]: At
volume fractions & 0.5, the electrostatic potential in the
space between neighboring microgel particles was found
to be lower than in the center of a particle as a result
of the proximity of other particles. Hence, at a criti-
cal generalized volume fraction, if the osmotic pressure
difference between the inside and the outside of the parti-
cle becomes larger than the bulk modulus of the microgel
particle, the microgels appreciably deswell. We note that,
depending on the thickness of the cloud of bound counte-
rions, the percolation of the counterion clouds can occur
below random close packing, φrcp ≈ 0.64. Therefore, the
critical generalized volume fraction may be reached for ζ
below or above φrcp, depending on the bulk modulus of
the microgels and the amount of peripheric charge they
have.

To determine the limiting concentration for the perco-
lation of counterion clouds, we think of effective microgel
particles composed of the microgel itself and the cloud
of bound counterions at its periphery [15]. The radius of
this effective particle is Reff = R + ∆r, where R is the
radius of the microgel and ∆r is the width of the coun-
terion cloud outside the particle. This effective particle
is sketched in Fig. 1A; it consists of the inner white and
the light- and dark-red volumes. To explain the behavior
of samples with bimodal size distribution or polydisper-
sity larger than 12%, we define the effective generalized
volume fraction of the small effective particles in their
accessible volume as ζeff

s = (Reff
s /Rs)

3 ζs/(1 − φl), where
we take into account that the small particles cannot ac-
cess the volume taken by the large particles; φl repre-
sents the volume fraction taken by the large particles.
We expect the counterion clouds to percolate, when the
effective small particles fill all available space at ζeff

s ≈ 1.
Consequently, particle deswelling is expected for ζeff

s & 1,
provided ∆Π exceeds the microgel bulk modulus.

Furthermore, small particles are more rigid than large
ones, when both are synthesized following the same pro-
tocol, which is the case in our work. The size of the
microgel particles is controlled by the amount of SDS
added, as it helps stabilize the pNIPAM particles at a def-
inite size, preventing any subsequent growth [19]. Since
particle growth is stopped earlier for small particles, the
crosslinker concentration decays less from the center to-
wards the periphery than in larger particles. It follows
that larger particles have a softer periphery than smaller
ones and, therefore, in the swollen state, small particles
have a higher bulk modulus than large particles. When
the osmotic pressure in a polydisperse suspension is in-
creased, the large particles deswell first [7, 15]. This re-
duces the size-mismatch of small and large particles and
can allow the suspension to crystallize.

FIG. 6. Representation of the size distribution of (A) a b-
sample with nl = 10% and (B) a p-sample with p = 15%
with all particles fully swollen (thin green curve) and with
large particles deswollen (thick black curve). The blue dashed
curve and red dash-dotted curve show the size distributions
of the involved small and large s-samples with maxima at
130 and 180 nm, respectively. The light gray areas highlight
the fraction of large particles that deswell, whereas the dark
dark gray areas represent the fraction of large particles that
cooperate with the small ones in the deswelling mechanism.

C. Effect of particle deswelling on the phase
behavior

To understand the shift of ζf and ζm observed in the b-
samples (see Fig. 5B), we consider particle deswelling. In
particular, we look at the size distribution of b-samples.
Fig. 6A is a representation using Gaussian size distribu-
tions and the experimental hydrodynamic radii and poly-
dispersities of the large and small particles involved in the
b-samples. The fraction of large microgels that needs to
be deswollen to reduce the size mismatch and to allow
for crystallization is indicated by the light gray area, as
in this case, the size distribution of the suspension after
the compression of the large particles (thick black curve)
has an average size close to the size of the small par-
ticles (blue dashed curve). In samples with higher nl,
the deswelling of the large particles occurs at a higher
ζ, because a larger number of large particles needs to be
compressed and, therefore, a larger volume needs to be-
come free. This implies that a higher concentration of
small particles is needed to maintain the percolation of
the counterion clouds and the osmotic pressure difference
enabling the deswelling of the large particles. Therefore,
the freezing point shifts to higher ζtot when nl increases,
as shown in Fig. 7A with blue dots. The direct con-
nection between crystallization and particle deswelling is
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apparent from looking at the values of ζeff
s for each ζf. In

contrast to the behavior of ζf, ζ
eff
s does not depend on nl

and is constant and equal to ζeff
s = 1.13± 0.07 for all nl,

as shown with black squares in Fig. 7A. The observed
constancy of ζeff

s and the fact that ζeff
s > 1 at freezing

agrees with our expectations and reflects the fact that,
before crystallization can start, the large particles have
to be compressed to a size close to the size of the small
particles.
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FIG. 7. Freezing-point ( ) and the corresponding value of
ζeff
s (�) for (A) b-samples vs. the number-fraction of large

particles, nl, and (B) p-samples vs. the polydispersity σp. The
horizontal solid lines represent the mean value of ζeff

s . In B,
the dashed horizontal line highlights the increase of ζf at σp ≈
14%, and the vertical line shows the limiting polydispersity
for crystallization in hard spheres.

While ζf strongly depends on nl in the b-samples, the
influence of polydispersity in the p-samples is less pro-
nounced. The freezing point does not appreciably de-
pend on ζ for polydispersities σp & 14% (see Figs. 5C
and 7B). To understand this difference, we consider the
composition of the p-samples. As schematically shown
in Fig. 6B, the size ratio Rl/Rs of the largest and small-
est particles in p-samples is considerably smaller than in
b-samples. This implies that the particles have similar
bulk moduli, and a high particle concentration is needed
to reach the osmotic pressure difference necessary for the
deswelling of the largest particles. Crystals may form
when sufficient large particles have deswelled and the fi-
nal size distribution corresponds to about the black curve
in Fig. 6B. The number of large particles that have to be

compressed is represented by the light gray area and is
smaller than for a b-sample. This may somewhat reduce
the ζtot needed for particle deswelling for the p- relative
to the b-samples. In addition, the ratio of the bulk mod-
uli of large and small particles, Kl/Ks, is expected to
decrease with increasing σp: While this ratio is about
constant in the b-samples, it varies in the p-samples, be-
cause the size ratio Rl/Rs increases with σp. An increase
of σp thus implies that the large particles become softer
relative to the small ones, which tends to reduce the crit-
ical concentration for deswelling. This effect contributes
towards preventing the increase of ζf. Furthermore, in
p-samples, a fraction of the large microgels indicated by
the dark dark gray areas in Fig. 6 can cooperate with the
small ones to deswell the largest particles. This effect is
negligible in the b-samples, where the fraction of large
particles with elastic properties similar to the small par-
ticles is small (dark gray areas in Fig. 6). These effects
could all contribute towards keeping ζf virtually constant
in the p-samples with σp > 14%.

The shift of the freezing point in the p-samples from
ζf = 0.58±0.02 up to 0.67±0.04 corresponding to a poly-
dispersity increase from about 11% to 15% (see points
above and below the dashed line in Fig. 7B) indicates that
polydispersity is indeed limiting crystallization and that
the deswelling of the largest particles is a prerequisite for
crystallization. This can be seen from the data shown in
Fig. 7B: For σp < 14%, ζf is consistent with, or slightly
larger than the value in the s-samples. However at higher
polydispersities, crystallization is limited by the polydis-
persity. In this region, we find ζeff

s = 1.08 ± 0.09. As
in the b-samples, ζeff

s is essentially constant and slightly
above 1. This indicates that the particles in the light gray
area of Fig. 6B have to be compressed to a size close to
that of the small particles before crystals can form.

D. Structure factor of bidisperse samples

Due to deswelling, the polydispersity of a microgel
suspension decreases. This occurs when ζtot exceeds
a critical value and affects the phase behavior. We
study the behavior of large particles in dense suspen-
sions (0.5 . ζ . 1) by measuring structure factors of b-
and p-samples using SAXS. In fluid-like samples, the po-
sition of the first peak qpeak is used to calculate the mean
nearest-neighbor distance dnn. In crystalline samples, we
observe random hexagonal close packed (rhcp) crystals,
as expected from other studies with similar microgels
[26, 45, 54]. We use a model for the corresponding struc-
ture factor to get the lattice constant and dnn [55]. The
structure factor of rhcp crystals contains Bragg peaks
and Bragg rods. The latter are due to random stack-
ing of hexagonal planes and are oriented perpendicular
to the hexagonal planes, along the direction of random
stacking. Importantly, the value of dnn provides informa-
tion about the deswelling of the large particles. When the
large particles shrink and fit into the structure formed by
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FIG. 8. (A) dnn versus ζtot for suspensions with small (◦) and large (�) s-samples as well as the bidisperse b-samples (2) with
nl = (4.7± 0.5)%. Solid symbols represent crystalline samples while the open symbols represent disordered samples, both fluid
and glassy. (B) S(q) of (2) bidisperse suspension with nl = (18± 2)% and ζ = 0.65± 0.02, (◦) crystal of s-sample with small
particles at ζ = 0.62±0.01, and (�) crystal s-sample with large particles at ζ = 0.64±0.02. The detector image of the bidisperse
sample is shown in the inset. (C-E) dnn versus ζtot with symbols as in (A) and with (C) nl = (29±3)%, (D) nl = (38±4)%, (E)
nl = (79± 8)%. In panels (A), (C-E), the effective volume fraction of the small particles, ζeff

s , is given in the upper x-axis. The
violet vertical lines correspond to ζeff

s = 1. The dashed, dotted, and dash-dotted curves show fits of the data to the function
aζ−1/3 for suspensions with small particles only, large particles only, and bidisperse samples, respectively. (F) S(q) of glassy
samples: (2) bidisperse suspension with nl = (79± 8)% and ζ = 0.60± 0.2, (◦) small s-sample at ζ = 0.60± 0.01, and (�) large
s-sample at ζ = 0.60± 0.01. The temperature is fixed to T = (18.0± 0.5)◦C in all measurements.

the small ones, there is no increase in dnn with respect
to a sample made of small particles only. The dnn of a
b-sample with nl = (4.7±0.5)% versus ζtot is shown with
2-symbols in Fig. 8A; it agrees with the dnn measured
for the s-sample made of the small particles in the bidis-
perse sample (◦-symbols). This indicates that the large
particles deswell and do not disturb the structure formed
by the small particles. Indeed we find ζeff

s > 1 for all
the crystalline bidisperse samples, as shown by the ver-
tical line, corresponding to ζeff

s = 1, in the same figure.
Deswelling of the large particles is, therefore, expected
according to our model. We use closed symbols for fully
crystalline samples or samples exhibiting fluid-crystal co-
existence, and open symbols for samples in fluid or glassy
states. The dashed, dash-dotted and dotted lines are fits
to the data for small, large and small/large mixtures, re-
spectively, with the function aζ−1/3 with a the nearest-
neighbor distance at ζ = 1, which is left as fitting pa-
rameter. We obtain a ratio a/(2RSAXS) = 0.75±0.06 for
all s-, b-, and p-samples, which reflects that the particles
are compressed at ζ = 1, consistent with the SANS data
presented in our earlier work [15].

By comparing the structure factors of the bidisperse
and the corresponding monodisperse samples, we con-
firm that segregation of large and small particles does
not take place in the b-samples; such a comparison for
a bidisperse crystalline sample with nl = (18 ± 2)% is
shown in Fig. 8B. The positions of all Bragg peaks of
the bidisperse sample (2-symbols) agree with those of
the sample made of only small particles (◦-symbols). No
peaks due to crystals of large particles are detected. This
confirms that the large particles are compressed and fit
into the crystalline lattice formed by the small micro-
gels, consistent with the real-space imaging observations
in Ref. [7].

For the sample with nl = (29 ± 3)%, we identify two
regions in the behavior of dnn: For ζ & 0.67, the nearest-
neighbor distance of the bidisperse suspension (2) virtu-
ally coincides with that of the small monodisperse parti-
cles (◦), as shown in Fig. 8C. However, for ζ . 0.67, the
nearest-neighbor distance of the bidisperse suspension is
larger than that of the suspensions with only small par-
ticles, indicating that the large particles are not or only
partially deswollen, as highlighted by the green dotted
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line above the blue dashed line. This sample confirms
our model: The value of ζtot separating the region where
there is overlap in dnn from the region without this over-
lap corresponds to ζeff

s ≈ 1, as shown by a vertical line in
Fig. 8C [15].

Increasing nl to (38±4)% (Fig. 8D), and (79±8)% (Fig.
8E), causes the dnn of the b-samples to always be above
that of the small s-sample suspensions. This shows that
the large microgels are not or only partially compressed.
The S(q) of the sample with nl = (79 ± 8)%, shown
in Fig. 8F, also confirms our interpretation of the data;
the position of the first peak of the bidisperse S(q) (2-
symbols) coincides with that of the sample made of large
particles only (�-symbols). The large particles do not
deswell, since ζeff

s < 1 in the considered ζtot range; the
vertical line in Fig. 8D and 8E, corresponding to ζeff

s = 1,
is always above any of the ζtot values considered. The
osmotic pressure difference necessary for deswelling of the
large particles has thus not been reached.

E. Structure factor of polydisperse samples

The SAXS data of representative p-samples is shown
with 2-symbols in Fig. 9A-D for σp = (14.0 ± 0.8)%,
(14.9± 0.1)%, (14.7± 0.8)% and (13.5± 0.8)%. The be-
havior is similar to that found in the b-samples, except
that in these polydisperse samples the nearest-neighbor
distance, dnn, is above the value obtained for the s-sample
comprised of the smallest particles (◦-symbols) and be-
low the value obtained for the s-sample comprised of the
largest particles (�-symbols). This suggests that the large
particles in our p-samples deswell but do not reach the
size of the small ones. Compared to the b-samples, where
the particles have a large size difference and hence a large
difference in bulk modulus, the size difference and hence
the difference in bulk modulus is small in the p-samples.
This could imply that in these samples the large parti-
cles do not need to deswell as much as they do in the
b-samples for crystallization to occur. Crystalline sam-
ples, shown with solid symbols, are only observed in the
ζ-range with ζeff

s & 1, as indicated by the vertical line
at ζeff

s = 1 in all panels. In this range, our model pre-
dicts the largest particles to deswell such that crystals
can form.

As in the b-samples, we exclude segregation of small
and large particles by comparing the structure factors of
the p-samples with those of the samples containing only
small or large particles. This is shown in Fig. 9E for a p-
sample with σp = (14.9± 0.1)% (2-symbols). The peak
at q ≈ 0.027 nm−1 of the p-sample coincides with the
corresponding peak of the s-sample with small particles
(◦-symbols); no peaks due to a lattice of large particles
are detected. In contrast to the s-sample with small par-
ticles (◦-symbols), the structure factor of the p-sample
(2-symbols) has a weak second order reflection and the
higher order reflections are not visible. This must reflect
an increased disorder in the p-sample. A similar effect

has been observed for hard spheres with highly skewed
size distribution, where the absence of higher order re-
flections was attributed to the large number of defects
within the crystallites [50]. For all the studied b- and
p-samples, we find the p-samples to have weaker second
order reflections than the b-samples and, therefore, we
expect crystals in the p-samples to have more defects
than those in the b-samples.

Fig. 9F shows the dnn of a sample with σp = (17 ±
1)% (2-symbols). This p-sample is composed of three
s-samples with small (◦-symbols), medium (M-symbols),
and large size (�-symbols). As the dnn of the p-sample
virtually coincides with that of the medium size sample
(M-symbols), mainly the large s-particles (�-symbols) are
deswollen. Therefore, we calculate ζeff

s from the effective
sizes of both small (◦-symbols) and medium (M-symbols)
s-samples. As expected, we find crystalline p-samples
only in the region with ζeff

s > 1.

F. Discussion

As the bulk modulus of microgel particles decreases
with increasing particle size, the largest particles in bidis-
perse or polydisperse suspensions deswell first [7, 15], lim-
iting their disturbing effect for crystallization. If the vol-
ume fraction after particle deswelling is below the glass
transition and the polydispersity is sufficiently low, crys-
tals can form. The freezing point, ζf, necessarily ap-
pears at a concentration higher than the onset of particle
deswelling and is limited by the deswelling mechanism.

Once a narrow size distribution is reached due to
deswelling of the largest particles, p- and b-samples show
the phase behavior of more monodisperse pNIPAM mi-
crogels [22, 46, 56] but with freezing and melting points
shifted to higher concentration. Also, the observed crys-
tals are compatible with the rhcp structure observed
in more monodisperse microgel suspensions [26, 45, 54].
However, the disorder in the crystal appears to increase.

In samples composed of particles with quite different
bulk moduli, as in the b-samples, ζf is clearly shifted to-
wards higher ζ with increasing nl: With more large par-
ticles to be compressed, a larger volume is freed by the
deswelling of the large particles and, therefore, a higher
concentration is needed to reach the osmotic pressure dif-
ference necessary for deswelling. We find that the freez-
ing point shifts up to ζf ≈ 0.79 at nl = 29 ± 3% and
crystallization does not take place for number fractions
of large particles nl & 30%. The suppression of crystal-
lization may be due to the true volume fraction at the
freezing point, φf, taking particle deswelling into account,
increasing above the glass transition for nl & 30%. In
addition, the isotropic compression of the large spheres
is expected to be hindered when nl increases and most
of the large particles have large neighboring particles:
While a single large particle surrounded by small par-
ticles is expected to remain spherical when it deswells,
a small number of large particles in direct contact may
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FIG. 9. (A-D) dnn versus ζtot for suspensions with (◦) small and (�) large s-samples as well as the (2) polydisperse p-sample
with (A) σp = (14.0± 0.8)%, (B) σp = (14.9± 0.1)%, (C) (14.7± 0.8)% and (D) (13.5± 0.8)%. (E) S(q) of (2) p-sample with
σp = (14.9± 0.1)% and ζ = 0.64± 0.01, (◦) crystal of only small monodisperse particles at ζ = 0.67± 0.02, and (�) crystal of
only large monodisperse particles at ζ = 0.64± 0.02. In the inset of (E), we show the detector image of the bidisperse sample.
(F) dnn versus ζtot for σp = (17± 1)% and with symbols as in (A-D). 4-symbols represent the third s-sample involved in the
p-sample. (A-D), (F) Solid symbols represent crystalline samples, while open symbols represent disordered samples, both fluid
and glassy. The vertical violet lines correspond to ζeff

s = 1. The dashed, dotted, and dash-dotted curves show fits of the data
to the function aζ−1/3, for suspensions comprised of small and large particles, and polydisperse suspensions, respectively

. The temperature is fixed to T = (18.0± 0.5)◦C in all measurements.

behave differently. As the large particles are softer than
the surrounding small ones, the large particles may de-
form and become anisotropic as they form facets with
neighboring large particles when they are compressed
[57]. Such deformed large particles in direct contact may
hinder crystallization, explain the observed increase in
crystallization time in b- and p-samples, and may con-
tribute to the suppression of crystallization for nl & 30%.
More experimental work, however, is needed to clarify the
suppression of crystallization at high nl.

When we mix particles with similar sizes and bulk
moduli, as in the p-samples, the effect on the freezing
point is strong for σp . 14%, as ζf shifts from 0.58 to
0.67 with σp increasing from 11% to 14%. For higher
polydispersities, however, we find the freezing point to
remain at ζf ≈ 0.67 virtually independent of σp, until
crystallization is suppressed at σp & 18.5%. For polydis-
persities in the range from 11% to 14%, the polydispersity
of the fully swollen particles becomes limiting for crystal-
lization and, with increasing σp, deswelling of the large
particles becomes a prerequisite for crystallization and
causes ζf to shift up to ζf ≈ 0.67, as shown in Fig. 5C.
In the p-samples, the size ratio of largest and smallest

particles, Rl/Rs, is significantly lower than in the bidis-
perse b-samples, and the largest particles are only slightly
softer than the small particles. Therefore, one would ex-
pect a distinctive shift of the freezing point, as a high ∆Π
and ζtot are required for the deswelling of the largest par-
ticles. For σp increasing above 14%, we find that (i) the
number of large particles that have to deswell for crys-
tallization increases and (ii) these large particles become
softer relative to the small particles, as the size ratio of
large and small particles, Rl/Rs, increases. These two ef-
fects appear to cancel each other and, as a consequence,
the concentration where ζeff

s = 1 is reached and the freez-
ing point remain virtually unchanged. The fluid-crystal
coexistence regime appears to become very narrow, and
we cannot resolve it for σp > 14% within the accuracy
of our concentration series. A narrowing of the coexis-
tence region with increasing σp is also observed in hard
spheres [2]. We find crystallization to be suppressed for
σp & 18.5%. In the p-samples, the largest particles ap-
pear to deswell to a size somewhat larger than that of the
smaller s-particles, as shown by our SAXS results in Fig.
9, where the p-sample data (2) always appears above the
s-sample data with smaller particles (◦). Therefore, the
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polydispersity may be growing with increasing σp in spite
of the selective deswelling. As for the b-samples, more
work is needed to clarify the reason for the suppression
of crystallization at high σp.

In the literature, the phase behavior and the interac-
tion of soft spheres is modeled with different potentials.
Monte Carlo (MC) simulations of monodisperse particles
interacting with soft sphere interactions find the freez-
ing point at higher concentrations and a narrower fluid-
crystal coexistence region compared to the hard-sphere
system. In addition, they also find formation of body-
centered cubic (bcc) crystals for polydispersities lower
than 12% [58, 59], and an inhomogeneous, disordered
solid phase coexisting with fcc crystals at higher poly-
dispersities [60]. The Hertzian potential applies to de-
formable particles. To the best of our knowledge, there
are no studies of polydisperse spheres interacting with
the Hertzian potential, but in monodisperse, Hertzian
spheres [61], several re-entrant melting and first-order
transitions between face-centered cubic (fcc), bcc, hexag-
onal, simple cubic, body-centered tetragonal and trigonal
crystalline structures have been predicted. A transition
from loose fcc to bcc to compressed fcc has been found
in a MC simulation study of spheres with a smooth po-
tential with a repulsive shoulder and an attractive well
[62]. In addition, by tuning either the depth of the at-
tractive well or the length of repulsion, several other crys-
talline structures are expected: The simple cubic, face-
centered tetrahedral, and hexagonal lattice. A rather
general model of soft polymer particles interacting like
polymer brushes and minimizing their contact area to
maximize entropy [63, 64] predicts the appearance of bcc
crystals in between a low- and a high-density fcc phase.
Consistent with this, there is experimental evidence for
bcc and fcc/rhcp crystals [11, 45].

Theoretical treatments of soft particles reported in lit-
erature include interpenetration or small deformations of
the particles, but the spontaneous and selective particle
deswelling above a critical concentration that we find to
control the phase behavior in polydisperse suspensions
is not taken into account. We expect that the osmotic
pressure due to counterions and the particle deswelling
presented here and in our previous work [15], will allow
for reliable modelling of the phase behavior of pNIPAM
particles and other microgels. Here, we study the behav-
ior of polydisperse suspensions, but the percolation of
counterion clouds and the particle deswelling mechanism
is also relevant in the monodisperse case.

Our results illustrate that the role of polydispersity
changes in microgels with respect to hard spheres and
other incompressible particles. The key to this is the in-
herent compressibility of the particles. Hence, size poly-
dispersity together with the possibility of deswelling the
softest particles in the system, which are also the largest,
enables crystallization in situations where it would oth-
erwise be hindered. We find that pNIPAM suspensions
with a polydispersity up to 18.5% can crystallize with-
out particle segregation. In contrast, hard spheres do not

crystallize at polydispersities above 12%, and monocrys-
tals have a polydispersity lower than 5.7% due to particle
segregation [1–3].

IV. CONCLUSIONS

Building on our previous study of particle deswelling in
concentrated pNIPAM suspensions [15], we find that par-
ticle deswelling has a strong effect on the phase behavior
of these microgels, in particular on the fluid-crystal tran-
sition. As the softness of pNIPAM microgels increases
with their size, if they are synthesized according to the
same protocol, the largest particles deswell first as the
concentration is increased. As a consequence, size poly-
dispersity is reduced as soon as particle deswelling occurs.
This spontaneous deswelling allows for crystallization in
suspensions with high polydispersity or bidisperse size
distributions that otherwise would not crystallize.

As we show in this work, selective deswelling of the
largest particles fundamentally changes the role of poly-
dispersity in pNIPAM suspensions compared to hard
spheres and other systems comprised of incompressible
particles. When the suspension concentration and os-
motic pressure are sufficient for particle deswelling, poly-
dispersity is reduced, and the suspension shows the phase
behavior of a relatively monodisperse suspension with
freezing and melting points shifted to higher concentra-
tions compared to monodisperse suspensions. In con-
trast, polydispersity always hinders crystallization in
hard spheres [2, 3, 51, 65, 66].

Further studies are needed to clarify how the deswelling
mechanism affects the kinetics of crystallization. It is to
be expected that the two-step process of crystallization
that was identified in monodisperse hard spheres [67, 68]
does not apply, as the formation of crystal precursors
and critical nuclei is expected to directly depend on the
deswelling of the largest particles.

As the deswelling mechanism presented in our earlier
work [15] is quite general for soft polymer particles and
polydispersity is an inherent property of colloidal suspen-
sions, we also expect the effect on the suspension phase
behavior presented in this work to apply to other concen-
trated microgel suspensions and possibly other polymer
particles, e.g. the soft, DNA-based particles presented
in Ref. [69]. The effect of particle deswelling and thus of
the compressibility of the particles must be taken into ac-
count when the interactions between microgels are mod-
elled. To the best of our knowledge, the inter-particle
interactions used up to date to model microgels do not
include particle deswelling above a critical concentration
and no selective deswelling of the largest particles is in-
cluded. Additional modelling work including this effect
is therefore desirable.
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