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Concentration gradients play a critical role in embryogenesis, bacterial locomotion, as well as the
motility of active particles. Particles develop concentration profiles around them by dissolution,
adsorption, or the reactivity of surface species. These gradients change the surface energy of the
particles, driving both their self-propulsion and governing their interactions. Here, we uncover
a regime in which solute-gradients mediate interactions between slowly dissolving droplets without
causing autophoresis. This decoupling allows us to directly measure the steady-state, repulsive force,
which scales with interparticle distance as F ∼ 1/r2. Our results show that the dissolution process
is diffusion rather than reaction rate limited, and the theoretical model captures the dependence of
the interactions on droplet size and solute concentration, using a single fit parameter, l = 16±3 nm,
which corresponds to the lengthscale of a swollen micelle. Our results shed light on the out-of-
equilibrium behavior of particles with surface reactivity.

Active particles build up concentration gradients in
their surroundings and locally alter the composition of
their solvent. This process can occur if the particles dis-
solve, or if they adsorb other species from the solution,
or if their surfaces catalyze chemical reactions. Exam-
ples include heterogeneous catalysts [1, 2], droplets un-
dergoing Ostwald ripening, silica particles dissolving in a
strong base, ion-exchange resin particles [3] and microbes
that are consuming nutrients or excreting signaling pro-
teins [4, 5]. These concentration profiles can affect the
behavior of the dispersed particles if their surface ten-
sion couples to the solute concentration [2, 6–9]. The
most studied example is given by autophoretic swimmers,
whose asymmetric concentration profiles cause the par-
ticles to swim [10–13]. As a result, they move in a di-
rectional manner, giving rise to dynamic patterns [1, 14–
16]. These particles constitute a model system for study-
ing out-of-equilibrium pattern formation [17] and dy-
namic clustering [14, 16, 18]. Nevertheless, the propul-
sion mechanism of many of these model systems is not
well understood [19], and their mutual interactions even
less so.

In the case of particles that are self-propelled by
chemical gradients, the overlap of concentration profiles
around two or more particles results in mutual interac-
tions [2, 7, 20, 21]. These interactions are coupled to the
self-propulsion mechanism and have therefore not been
measured independently. Here, we uncover a regime in
which active droplets do not swim, but do exude concen-
tration profiles. This system allows us to measure the
gradient-mediated interactions between pairs of droplets
in the absence of autophoresis. We then develop a theo-
retical model based on steady-state diffusion profiles for
the functional form of the droplet-droplet interaction.
This model allows us to fit the data as a function of
droplet size and solute concentration to elucidate the un-
derlying microscopic process. This ‘static’ case improves
our understanding of the threshold concentration above

which the droplets begin to swim.
We employ a simple model system of droplets of di-

ethyl phthalate (DEP) oil dispersed in an aqueous solu-
tion of the surfactant sodium dodecyl sulphate (SDS).
The DEP droplets slowly dissolve in the medium, giv-
ing rise to local concentration gradients. DEP is only
marginally soluble in water (0.2 mg/ml). Above a thresh-
old SDS concentration of 4 mM, surfactant molecules
and DEP molecules from the droplet co-assemble to form
oily micelles, causing the droplets to shrink at a rate
that depends on the SDS concentration. This process,
schematically depicted in Fig. 1(a), depletes the surfac-
tant molecules near the surface and results in a radi-
ally symmetric concentration profile of SDS. Figure 1(b)
shows that the surface tension between water and DEP
decreases with SDS monomer concentration, measured
using the pendant drop method [22]. This coupling
between the surface free energy of the particle and the
surfactant monomer content causes droplets to move to-
wards higher SDS concentrations in the bulk, due to the
Marangoni effect [23, 24].

Initially, the dissolution leads to an isotropic concen-
tration profile and no net force acts on the particle.
Above a given dissolution rate, however, the isotropic
state becomes unstable and any fluctuation (mechanical
or thermal) gives rise to self-sustained motion in a ran-
dom direction [25–27]. The self-propelled droplets repel
one another, as shown in the examples shown in Fig. 1(c)
and in Ref. [34]. To measure the effective interparticle
repulsion due to the overlap of their solute profiles, here
we focus on the regime of SDS concentrations in which
the droplets are surrounded by a symmetric concentra-
tion profile and do not swim. Experimentally, this regime
exists between 4 mM SDS, below which the droplets are
insoluble, and 8 mM SDS, above which the droplets swim.

In this regime, we measured the interaction strength
between dissolving droplets using optical tweezers [28, 32]
(see Appendix A). Two holographically projected optical
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traps were used to bring two droplets close together and
then released to allow the particles to move under the in-
fluence of the interaction force. Figure 2(a) and Ref. [34]
show a typical time sequence as the particles move apart
during one such cycle. In Fig. 2(b), we give a schematic
overview of the overlapping concentration profiles that
induce an effective interaction. We obtain an estimate
for the interaction force by analyzing images of the par-
ticle motion. The time trace of the center-to-center sepa-
ration, r(t), is plotted in Fig. 2(c). The derivative of this
trajectory yields the relative separation speed, U(r), ex-
amples of which are plotted in Fig. 2(d) as a function of
droplet size. The droplets range in diameter from 15 to
45µm, and therefore exhibit no Brownian motion. They
move with maximum speeds below 40 µm/s, and thus
still have a low Reynolds number. Their relative speed
is therefore directly proportional to their effective inter-
action force.

The larger the droplets, the stronger the repulsive in-
teraction, as shown by the data in Fig. 2(d). In all cases,
the range of the interaction exceeds 50 µm, which is much
longer than that expected for electrostatic interactions.
The Debye-Huckel screening length is less than 10 nm at
the ionic strengths of our experiments. The fact that ex-
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FIG. 1. Droplet interactions due to surfactant gradients. (a)
Schematic overview of DEP droplet dissolution into swollen
SDS micelles, giving rise to radial concentration gradients of
SDS monomer (blue line) and micelles (green line) surround-
ing the droplet surface, compared to the bulk concentration
(dashed line). (b) Surface tension of DEP droplets in water
decreases as a function of the SDS concentration. (c) Two
oil droplets swimming in given initial directions repel one an-
other as a result of their concentration gradients. Circles map
their trajectories over time.
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FIG. 2. Solvent-induced droplet interactions. (a) Frames of a
movie showing two oil droplets moving away from each other
due to the solute-mediated repulsion after they have been
brought into contact using optical tweezers. (b) Schematic
drawing shows how overlapping SDS concentration profiles
lead to droplet interactions. The red triangle represents the
gradient causing the motion. (c) Measurements of inter-
droplet separation as a function of time allow us to determine
their size-dependent velocity U as a function of separation in
(d).

periments performed at SDS concentrations below 5 mM
show no repulsion confirms that the repulsion is concomi-
tant with the formation of DEP-swollen micelles of SDS.
As the SDS concentration is increased, the DEP dissolves
faster into the micelles, creating a steeper gradient, which
results in an increased interaction strength.

The velocity caused by solute gradients is of the same
order of magnitude as the sedimentation velocity under
gravity. This allows for an alternative measurement of
the strength of a solute-mediated interaction by balanc-
ing it with gravity (see Appendix A). The top panel of
Fig. 3(a) shows images of dissolving droplets through a
tilted microscope. The top feature is an image of the
actual droplet and the bottom feature is an optical re-
flection in the glass slide. The droplet height is then
half the distance between the droplet and its mirror im-
age. Fig. 3(a) shows that particles with a diameter over
30 µm make contact with the glass slide because their
sedimentation velocity is larger than the solute-mediated
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interaction velocity. For smaller particles, however, the
two speeds are comparable, resulting in an equilibrium
hovering height above the glass cover slide at which the
two oppositely directed velocities cancel out.

The lower panel in Fig. 3(a) shows the same set of ex-
periments performed using confocal microscopy in reflec-
tion mode. The elongated shape of the image is caused
by internal reflection inside the droplet and the correct
measure of the droplet size is the width of the bottom
half-sphere. The schematic drawing in Fig. 3(b) explains
how the solute-mediated interaction that causes repulsion
between two droplets is also responsible for the hovering
of a single droplet above a glass surface. The SDS con-
centration around the droplet is lower near the glass slide,
because no influx of SDS molecules is possible through
the glass. This exclusion of SDS monomers also occurs
between two dissolving droplets, as shown in Fig. 2(b),
resulting in similar solute-mediated interaction speeds.
Figure 3(c) shows the equilibrium height of droplets of
various SDS concentrations and sizes, highlighting the
trend that smaller droplets at higher SDS concentrations
hover at higher altitude.

Next, we present a theoretical model for the functional
form of the interaction strength between two droplets.
The speed of a droplet in the concentration profile of its
neighbor

U = M∇cs, (1)

where ∇cs is the concentration gradient along the sur-
face and M is the particle mobility. For a droplet, the
mobility is given by [9, 23–25]

M =
2aK

3(2ηo + 3ηi)
, (2)

where a is the droplet radius, K is the slope of the surface
tension versus the SDS concentration graph in Fig. 1(b),
and ηo and ηi are the viscosities of the continuous and
dispersed phases, respectively. The gradient in which the
droplet moves depends on the SDS concentration profile
ce generated by its neighbor.

To find ∇ce, we consider the dissolution process of
a single DEP droplet in an aqueous SDS solution. We
assume that all oil transport from the droplet into the
aqueous phase is mediated by SDS and that a steady-
state diffusion profile develops after an initial transient
state. This steady-state approximation is valid when par-
ticle motion is much slower than solute motion. The
shape of the spherically symmetric concentration pro-
file ce = C1 + C2/r then follows directly from Fick’s
law. Here, C1 and C2 are integration constants and r is
the distance to the droplet center. Imposing the general
boundary condition that the diffusive SDS flux to the sur-
face jdiff = −D dc

dr |r=a must equal the rate at which SDS
is consumed to form swollen micelles jreact = k(c(a)−c∗)
(see Appendix B), we obtain expressions for the inte-
gration constants and find that the slope of the profile
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FIG. 3. Hovering due to solute-mediated interactions. (a)
Top panel shows a dissolving DEP droplet through a tilted
bright-field microscope. The top feature is the real droplet
and the lower feature the optical image on the glass slide. Bot-
tom panel shows xz projections of the same droplets imaged
in reflection mode on a confocal microscope. (b) Schematic
drawing shows how a solute cloud around a particle can lift it
from the glass surface against gravity. (c) Measured droplet
hovering heights are plotted as a function of their size. Error
bars come from repeated measurements.

generated by the neighboring droplet is given by

∇ce =
(c∞ − c∗)
1 + l/a

a

r2
, (3)

where c∞ is the bulk SDS concentration, c∗ is a threshold
concentration, which is similar to the critical micelle con-
centration, but applies to DEP-swollen micelles of SDS.
For these micelles, we measured that c∗ = 4 mM. The
quantity l = D/k is a length obtained by dividing the
diffusion coefficient D by the dissolution speed k, i.e.,
the speed at which oil moves across the droplet surface.
This length scale l is indicative of whether the dissolution
rate of DEP is diffusion or reaction-limited. The theoret-
ical limit l/a� 1 corresponds to a constant surface SDS
concentration, consistent with a diffusion-limited assem-
bly of DEP swollen micelles. The opposite limit, l/a� 1,
indicates a constant dissolution rate, which is indicative
of a reaction-limited assembly process. Plotting the rate
of the dissolution rate A = da/dt as a function of par-
ticle size a, as shown in Fig. 4, reveals a scaling with
the droplet curvature 1/a. This result lends support to
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FIG. 4. Dissolution rate of a DEP droplet in a bath of 5mM
SDS as a function of particle size. Inset shows the log-log
representation and reveals a slope of −1, consistent with a
diffusion-limited dissolution.

a diffusion-limited mechanism for the dissolution of DEP
into swollen micelles of SDS.

To first order, the speed U of the interacting droplets
in Fig. 2 follows the 1/r2 scaling in Eq. (3). In addi-
tion, the external gradient ∇ce imposed by the neighbor-
ing droplet is modified by two effects. First, the moving
droplet is also dissolving, locally removing SDS from the
external profile, as shown in Fig. 5(a). Second, advec-
tion around the moving droplet transports solute from
the front to the back of the particle. These effects need
to be quantified to capture the dependence of the inter-
action strength on droplet size and SDS concentration.

To obtain the modification of ∇cs due to the dissolu-
tion of the moving droplet, we consider a particle dis-
solving in the presence of a linear external gradient Gext.
Solving the diffusion equation then gives the steady-state
concentration profile (see Appendix C)

s

c(r, θ) = c∞ −
(c∞ − c∗)
1 + l/a

1

r

+Gext cos(θ)

(
r − a3 1− l/a

1 + 2l/a

1

r2

) (4)

Taking the derivative of Eq. (4) with respect to the
radial distance r gives the relation between the gradient
along the surface ∇cs and the external gradient Gext:

∇cs =
3l/a

1 + 2l/a
Gext =≈ 3l

a
∇ce. (5)

In the second step of Eq. (5), we assume that the ex-
ternal gradient due to the dissolution of a neighboring
droplet∇ce is approximately linear along the droplet sur-
face since the process is diffusion-limited (l/a � 1). In

0-1-2-3 1 2 3
x/a

y/
a

-3

-2

-1

0

1

2

3

0-1-2-3 1 2 3
x/a

y/
a

-3

-2

-1

0

1

2

3

b

c

l/a<<1

l/a>>1

[S
DS

]

x

Active
particle

cs

Δ

ce

Δ

a

FIG. 5. (a) Schematic drawing of the effect of surface activ-
ity on an external gradient. The solid black line represents
an unperturbed external gradient in which the active particle
is positioned. Due to the activity of the particle the concen-
tration profile is modified as shown by the solid red line. The
difference in concentration between the back and the front
of the droplet, indicated by the dashed black and red lines,
is modified due to the dissolution of the active particle. (b)
and (c) show the solute concentration profiles for a diffusion-
limited and a reaction-limited dissolution, respectively, in an
external gradient. These profiles are calculated with Eq. (4)
with Gext = 1, c∗ = 1, a = 1, c∞ = 0, l/a = 10−3 in (b) and
l/a = 103 in (c). Color map indicates increasing SDS concen-
tration from blue to red. The black lines are isoconcentration
lines.
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our case, the surface gradient is diminished, as shown
in Fig. 5(b). On the other hand, in the reaction-limited
case (l/a � 1) the surface gradient is enhanced com-
pared to the external gradient, as shown in Fig. 5(c).
It is therefore important to distinguish between the two
microscopic mechanisms.

The other modification to the external gradient arises
due to the same effect that drives self-propulsion of a
single particle. As an active particle moves, advection
causes accumulation of the solute at the back of the par-
ticle, resulting in a self-induced concentration difference
between the front and the back of the droplet ∆ce. This
concentration difference over the particle diameter can
be seen as an average gradient ∇ce,auto that drives the
particle motion. This process is schematically depicted
in Fig. 6. In the limit of low particle speed U , the ad-
vective flux jadv is linear with the flow velocity so that
jadv = CpU(cs − c∞), where Cp is a dimensionless pro-
portionality constant. The buildup of an external gradi-
ent due to advection is counteracted by a diffusive flux
jdiff = D∇ce. In steady state, these fluxes balance to give
a motion-induced gradient ∇ce,auto for a given droplet
speed U :

∇ce,auto = Cp
U(cs − c∞)

D
. (6)

Next, we deduce the criterion for self-propulsion in
the absence of an external gradient where the gradient
driving the motion is only the self-induced gradient, i.e.
∇ce = ∇ce,auto. The gradient along the droplet surface
∇cs depends on ∇ce, as shown in (5). Therefore, from
(1) we find the requirement for self-sustained droplet mo-
tion with speed U∗ as

U∗ = M
∇cs
∇ce

Cp
U∗(cs − c∞)

D
. (7)

We find that either U∗ = 0 in the static case or at
M ∇cs
∇ceCp

(cs−c∞)
D = 1, U∗ is a constant that corresponds

to self-propulsion. We can write this requirement for self-
propulsion in terms of the Peclet number, as defined by
Michelin et al.[26]. Using the definition of the SDS disso-
lution rate A = −D dc

dr |r=a, we obtain M ∇cs
∇ce

Aa
D2 = 1/Cp.

The left hand side of this equation is similar to the
Peclet number, such that the critical Peclet number for
autophoresis in the absence of an external gradient is
Pecr = 1/Cp.

Even below this self-propulsion threshold, the speed
at which two particles move away from each other is en-
hanced by the coupling between the advective flow and
the solute gradient. The total gradient around a particle
is then the sum of the externally imposed gradient ∇ce
and the self-induced gradient ∇ce,auto(U), such that the
droplet speed is given by

U = M
∇cs
∇ce

(∇ce +∇ce,auto(U)) (8)
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FIG. 6. Coupling between the advective flow and the solute
gradient leads to self-propulsion. (a) Schematic drawing of
the flow around a moving particle, which transports solute
from the front to the back, resulting in an external gradient.
(b) The autophoresis loop depicts the coupling between the
solute profile and the flow from panel (a), which can lead to
self-sustained motion.

Solving for U gives the self-sustained swimming speed
of a droplet in the gradient of its neighbor in terms of
the above-described Peclet number

U(r) = M
∇cs
∇ce

1

1− Pe
Pecr

∇ce. (9)

Here, the term 1
1− Pe

Pecr

is the autophoretic enhancement

correction. In the limit of l/a � 1 and given that the
Peclet number Pe ∝ c∞ − c∗ and that Pecr ∝ ccr − c∗,
we can rewrite Eq. (9) in terms of experimentally acces-
sible parameters so that we can compare with the data
presented in Figs. 2 and 3:

U(r) =
2aK

(2ηo + 3ηi)

(c∞ − c∗)
(ccr − c∞)

l(ccr − c∗)
r2

(10)

Here, ccr = 9mM is the threshold SDS concentra-
tion where self-propulsion is observed to occur. Using
Eq. (10), we rescale all the data shown in Fig. 7(a) onto
the mastercurve in Fig. 7(b). The log-log plot reveals
a consistency with the predicted power law scaling with
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tation of the speed with which droplets move away from each
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tion. The data from the hovering experiment are indicated in
black. (b) Data shown in (a), normalized using Eq. (10). The
black line is a fit with a fixed slope of −2.

distance as ∝ 1/r2 (black line) and the collapse of the
data indicates that the scaling of droplet speed with size a
and SDS concentration c∞ are well captured by Eq. (10).

Using the fact that K = 0.11 mNm−1mM−1 from the
fit to the high SDS concentration regime of Fig. 1(b), we
find that l = 16 ± 3 nm, in agreement with the earlier
observation that l/a � 1 and that the dissolution pro-
cess is diffusion-limited. This length scale coincides with
the size of an oily micelle, to within an order of magni-
tude. The obtained value for the fit parameter can be
related to the critical Peclet number Pecr at which self-
propulsion occurs. When l/a� 1, Pecr is found by eval-
uating equation (10) at the SDS concentration at which
self-propulsion begins to occur

Pe ≈ 2K(ccr − c∗)l
(2ηo + 3ηi)D

. (11)

Using the diffusion coefficient of oily micelles D = 10−10

m2 s−1 [30], we find Pecr = 5, which is in good agree-

ment with the theoretically predicted value of Pecr = 4
in Ref. [26]. This connection between the onset of au-
tophoretic motion and solute-mediated interactions high-
lights that both are due to the same effect. It is therefore
not expected that autophoretic swimmers without solute-
mediated interactions exist, which has ramifications for
the interpretation of activity induced clustering and pat-
tern formation.

In conclusion, we developed an experimental model
system of dissolving droplets to directly measure solute
mediated interactions. From a combination of tweezer
experiments and balancing solute mediated interactions
with sedimentation, we measured the range of the inter-
action as well as the scaling with SDS concentration and
droplet size. A simple theoretical model predicts these
dependencies and connects the interaction strength with
the self-propulsion threshold. This connection suggests
that all reactive and dissolving particles, and in particu-
lar autophoretic swimmers, are subject to the same type
of solute-mediated interactions. The interaction strength
depends on the rate at which the reaction or dissolu-
tion process occurs and the sensitivity of the particles to
the surrounding gradient. The functional form, given by
Eq. (9) is general for isotropic particles in a steady state
and is expected to be universally applicable.
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Appendix A: Materials and Methods

1. Microfluidics

Droplets for optical tweezer experiments were prepared
using a glass microfluidic device [31] with a round tapered
inner capillary with inner diameter 30 µm in a square
outer capillary with inner edge length 50 µm. Capillaries
were supplied by VitroCom. The inner capillary has a tip
with a diameter of approximately 5 µm. A 10 mM SDS
(Supplier: Sigma Aldrich) solution saturated with DEP
(Supplier: Sigma Aldrich) was flowed through a Merck
Millipore hydrophilic PTFE membrane filter with pore
size 0.45 µm and consecutively through the outer capil-
lary. Pure DEP was pushed through a Merck Millipore
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hydrophobic PVDF membrane filter with pore size 0.45
µm and consecutively through the inner capillary using
a pressure of 10 psi, using a pressure gauge. Nitrogen
was used as the pressurizing gas. Droplet size was ad-
justed by varying pressure of the external flow: approx-
imately 20 psi for 30 µm droplets. Size was determined
by imaging the droplets using an Olympus microscope
equipped with a Thorlabs camera. Droplets were col-
lected in a glass container and stored no more than one
week. Droplets for height measurements were prepared
by shaking a mixture of 50 µL DEP and 1 ml of a DEP
saturated 10 mM SDS solution.

2. Dynamic measurements with optical tweezers

Two microliters of emulsion obtained from the mi-
crofluidic device was dispersed in a 500 µL bath of SDS
solution of various SDS concentrations. Using a home-
built optical tweezer setup [32], containing an IPG pho-
tonics YLR-10 laser emitting at 1064 nm and a Holo-
Eye PLUTO special light modulator, two droplets were
collected from the cluster in the center of the sample,
pushed next to each other and dragged to an environ-
ment with no droplets in an area with a diameter of at
least 10 droplet diameters. There the droplets were re-
leased and the motion was recorded using a homebuilt
brightfield microscopy setup, containing a NECTI 324AII
Camera and a Nikon 100x oil immersion objective (NA
= 1.45). After a time interval of approximately 30 sec-
onds, the droplets were pushed together and moved to
a new clean environment and released again. Since the
droplets shrink over time, this yielded data for various
droplet sizes.

3. Solute force measurements under gravity

Two microliters of emulsion obtained from mechanical
agitation was dispersed in a 1ml bath of SDS solution of
various SDS concentrations. For the tilted bright field
microscopy images, the sample container was a home
built container from Menzel Glazer no. 1 glass slides
with a small piece of mirror on the bottom. Droplets
of various sizes were imaged in the vicinity of no other
droplets. A similar sample was put on an inverted Leica
SP8 confocal microscope equipped with a 40x/1.25 Le-
ica confocal oil immersion objective, where the z stacks
were recorded in reflection mode (wavelength λ = 488
nm). To correct for elongation in the z dimension due to
the refractive index mismatch between glass and water
the method by Besseling et al. [33] was used. Using a
Menzel Glazer no. 1.5 coverslip for imaging an aqueous
sample with n25

D = 1.33 while using a 40× /1.25 immer-
sion oil objective with n25

D = 1.52, we found and used a
correction factor for the zscaling of 0.846.

4. Surface tension measurements

The densities of pure DEP and DEP saturated SDS so-
lutions of various concentrations were determined using
a DMA 4500M Anton Paar density meter. The shape of
DEP droplets in solutions with various SDS concentra-
tions was measured using an Attension pendant drop ten-
siometer equipped with a DMK 21AU04 Imaging Source
camera. From this the surface tension between DEP and
water with various SDS concentrations was calculated.

5. Solubility measurements

DEP saturated SDS solution of various SDS concentra-
tions were prepared by adding 2ml of DEP to 10ml aque-
ous SDS solutions and shaking vigorously. An emulsion
formed. The solutions were equilibrated for 2h. Then
5ml of transparent supernatant was transferred to a dif-
ferent container, dried under a heat lamp for 4h and
weighed. The calculated mass of SDS, present in the so-
lutions, was subtracted from the observed mass to obtain
the mass of DEP in the SDS solution.

Appendix B: Boundary condition on the surface

To determine the SDS concentration profile around a
single DEP droplet dissolving in an aqueous SDS solu-
tion where the SDS concentration is below the critical
micelle concentration is given by the general solution to
the diffusion equation for a spherically symmetric profile

c(r) = C1 −
C2

r
, (B1)

where C1 and C2 are integration constants. It follows
from the limit r → ∞ that C1 = c∞ is the bulk SDS
concentration and C2 is that at the droplet surface. To
find this boundary condition, we use that the oil flux over
the droplet surface jreact (in units of molecules m−2s−1)
equals the diffusive flux of oil jdiff in the form of swollen
micelles away from the surface. So for the oil transport:

jreact = k(c(a)− c∗)No
Ns

, (B2)

jdiff = −NoDm
∂cm
∂r

∣∣∣
r=a

. (B3)

The value k is a velocity at which oil molecules move
through the oil water interface and sets the rate of swollen
micelle assembly, No is the number of oil molecules and
Ns the number of surfactant molecules in a swollen mi-
celle, Dm is the diffusion constant of swollen micelles, cm
is the swollen micelle concentration, and a is the droplet
radius. For steady-state surfactant transport, the diffu-
sive transport of surfactant monomers toward the droplet
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jdiff,in equals the outward surfactant flux in the form of
oily micelles jdiff,out:

jdiff,out = −NsDm
∂cm
∂r

∣∣∣
r=a

, (B4)

jdiff,in = −D∂c

∂r

∣∣∣
r=a

. (B5)

Here D is the diffusion coefficient of SDS monomers.
Combining these equations we find the following bound-
ary condition for SDS at the droplet surface:

k(c(a)− c∗) = −D∂c

∂r

∣∣∣
r=a

. (B6)

This equation corresponds to the general boundary con-
dition c(a) + l ∂c∂r |r=a = const.. Here l ≡ D/k. We com-
pare Eq. (B1) with Eq. (B6) to find the value for the

integration constant C2 = −a(c∞−c∗)
1+ l

a

, so that the con-

centration profile of SDS around a single diffusion drop
is given by

c(r) = c∞ −
(c∞ − c∗)

1 + l
a

a

r
, (B7)

We now consider the two limiting cases: a constant sur-
face concentration ( la � 1), equivalent to a constant sur-
face charge in electrostatics, and a constant surface ex-
pulsion ( la � 1), equivalent to a constant potential in
electrostatics. The regime of constant surface concentra-
tion corresponds to a diffusion limited surface process. In
this case the formation rate of oily micelles is much faster
than the diffusion of SDS monomers to the surface and
the concentration at the surface will equal the critical
SDS concentration below which no assembly occurs. All
SDS monomers beyond that concentration are instantly
absorbed into swollen micelles. The concentration profile
in this regime simplifies to

c(r) = c∞ − (c∞ − c∗)
a

r
. (B8)

In that regime, the surface concentration c(a) = c∗ and

the dissolution rate A = −D (c∞−c∗)
a . Note that if the

surface concentration is truly constant, no self-propulsion
can occur, as there can be no variation in the surface
concentration, so no surface gradient to induce motion.
However, there will always be small variations in sur-
face concentration to allow for swimming, albeit more
slowly than one would expect in the regime of constant
surface dissolution. Note that in the case of dissolving
DEP droplets, the surface dissolution is negative because
surfactant molecules are absorbed at the surface rather
than expelled. Alternatively, the surface process can be
reaction-limited, so the assembly of swollen micelles at
the surface is slower than the diffusive flux of monomers.
Here the concentration profile is given by

c(r) = c∞ −
(c∞ − c∗)

l

a2

r
. (B9)

Then surface concentration simplifies to c(a) = c∞ −
a
l (c∞ − c∗) and dissolution rate simplifies to A ≡
−D ∂c

∂r |r=a = −k(c∞− c∗). In an exclusively rate-limited
regime, no self-propulsion can occur either, as the re-
action is very slow and surface concentration becomes
equal to the bulk SDS concentration. For a solute gradi-
ent along the particle surface to occur, the process should
be predominantly one or the other.

Appendix C: Active particle in an external gradient

The SDS consumption of one droplet modifies the ex-
ternal SDS gradient of a neighboring droplet ∇ce to yield
a gradient along the surface of that particle∇cs. We con-
sider a single dissolving DEP droplet in a linear external
SDS gradient Gext with an angle dependent SDS concen-
tration c(r, θ). The steady-state diffusion profile is such
that

1

r2

∂c

∂r

(
r2 ∂

∂r

)
+

1

r2 sin(θ)

∂

∂r

(
sin(θ)

∂c(r, θ)

∂θ

)
= 0. (C1)

We next expand c(r, θ) in Legendre polynomials Pn(θ)
to decouple the angular and radial components of the
concentration gradient,

c(r, θ) =

∞∑
n=0

cn(r)Pn(θ) = c0(r) + cos(θ)c1(r) + ... (C2)

We neglect all higher-order terms and use Eq. (C2) in

the diffusion Eq. (C1). Because ∂c(r,θ)
∂t = 0, we find

c(r, θ) = C1 −
C2

r
+ cos(θ)

(
C3r +

C4

r2

)
, (C3)

where C1, C2, C3, and C4 are all representing integration
constants. To find C1 and C3 we consider the limit of r →
∞. We applied a linear gradient with shape Gextx on top
of a background concentration c∞ so that the external
concentration profile in polar coordinates is clin(r, θ) =
Gextr cos(θ) + c∞ and we find C1 = c∞ and C3 = Gext.
Near the droplet, the flux over the droplet surface and
the diffusive flux away from the droplet have to be equal,
leading to a similar boundary condition as in the previous
section:

k(c(a, θ)− c∗) = D
∂c(r, θ)

∂r

∣∣∣
r=a

. (C4)

Combining Eqs. (C3) with (C4) gives

c∞ − c∗ +
C2

a
+ cos(θ)

(
Gexta+

C4

a2

)
= l
(
− C2

a2
+ cos(θ)

(
Gext −

2C4

a3

))
.

(C5)

This has to be true for all values of θ so we find C2 =

−a(c∞−c∗)
1+l/a and C4 = −a3Gext

1−l/a
1+2l/a . The concentration
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profile c(r, θ) of a dissolving droplet in an external gradi-
ent of SDS is then Eq. (4) and the solute gradient along

the particle surface ∇cs is given by

∇cs =
c1(a)

a
=

3l
a

1 + 2l
a

Gext. (C6)

[1] W. Wang, W. Duan, A. Sen, and T. E. Mallouk, Proc.
Natl. Acad. Sci. U. S. A. 110, 17744 (2013).

[2] R. Soto and R. Golestanian, Phys. Rev. Lett. 112,
068301 (2014).

[3] A. Reinmüller, H.J. Schöpe and T. Palberg, Langmuir
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