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Abstract
In this work, we numerically study the dynamics of (i) a Newtonian liquid-filled capsule in a

viscoelastic matrix and that of (ii) a viscoelastic capsule in a Newtonian matrix in a linear shear

flow using a front-tracking method. The numerical results for case (i) indicate that the polymeric

fluid reduces the capsule deformation and aligns the deformed capsule with the flow direction. It

also narrows the range of tension experienced by the deformed capsule for case (i), while the tank-

treading period significantly increases. Interestingly, the polymeric fluid has an opposite effect on

the tank-treading period and the orientation angle of case (ii), but its effect on the deformation is

similar to case (i).
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I. INTRODUCTION

Extensive research on microcapsules has been documented in recent years, due to their

rising applications in consumable, pharmaceutical, and medical industries. Capsules are

liquid-filled droplets surrounded by an elastic membrane that are often used in targeted

drug and cell delivery[1] applications and encapsulation of volatile substances in lab-on-a-

chip devices [2, 3]. In many of these applications, either the background fluid or encapsulated

fluid are non-Newtonian due to presence of DNA, proteins, or polymers [4, 5].

A large number of numerical, experimental and theoretical studies have been conducted

on the capsule behavior under various flow fields in a Newtonian fluid [6–10]. These models

suggest that the motion of capsule depends on the imposed flow field, membrane stiffness,

shear rate, initial shape and viscosity ratio (the ratio of inner fluid viscosity to the outer

fluid viscosity) [6, 7, 11]. The capsule deforms to a steady shape in a shear flow and the

membrane rotates around it, which is referred to as the Tank-Treading (TT) motion [12].

Theoretical analysis based on the perturbation method [13, 14] predicts the deformation of

initially spherical capsule in a simple shear flow of a Newtonian fluid as well as the Tank-

Treading motion of the membrane. The perturbation method is, however, only valid for

small deformations. Therefore, numerical solutions are required to address large capsule

deformations. The boundary integral, front-tracking [7, 8] and immersed boundary method

[9] are among the numerical techniques widely utilized for simulating the capsule dynamics

in a shear flow of a Newtonian fluid. In these methods the membrane is discretized using

Lagrangian grids which enables us to accurately capture the membrane deformation and to

calculate the elastic force acting on the capsule. These numerical methods have been used to

investigate the role of the membrane constitutive laws, area incompressibility and bending

resistance [8, 10, 15]. The experimental study on synthetic capsules suspended in a confined

shear flow suggests that the membrane starts thinning along the principal strain axes of the

shear flow when the shear rate is sufficiently large [16]. The capsule break-up occurs in these

areas [11, 16]. Despite numerous studies on the deformation and tank treating motion of

capsules in Newtonian fluids, their motion in a viscoelastic fluid is poorly studied. To the

best of our knowledge, this work is the first study on the capsule dynamics in a polymeric

solution.

In this work, we present three dimensional numerical simulations of the dynamics of a
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Newtonian capsule in a polymeric matrix following an Oldroyd-B fluid constitutive equation

as well as dynamics of a polymeric capsule in a Newtonian fluid. A front-tracking method

is employed to accurately capture the underlying physics of a deforming capsule in a shear

flow for a wide range of Ca and Wi.

II. GOVERNING EQUATIONS AND NUMERICAL METHODS

A. Newtonian fluid

In this section, we first present the system of equations governing the motion of a de-

formable Newtonian capsule in a Newtonian fluid and the mathematical method used for

coupling the interfacial interaction between the elastic membrane and the surrounding fluid.

We will then discuss the constitutive equation and the numerical implementation for a vis-

coelastic fluid. The inner and outer fluids are assumed to be incompressible. Hence, the

flow field is governed by the Navier-stokes equations:

∇.u = 0, (1)

∂(ρu)

∂t
+∇.(ρuu) = −∇p+∇.τ + F, (2)

where ρ is equal to the density of inner (outer) fluid inside (outside) the capsule, p represents

the pressure, u is the velocity vector, t is the time and τ denotes the total stress tensor.

The total stress tensor for a Newtonian fluid is τ = µD, where D = (∇u) + (∇u)T is

the strain rate tensor. In this equation, F (x, t) =
∫
∂B
f(xi, t)δ(x-xi)dV is the smoothed

representation of the membrane force which is zero everywhere except at the interface loca-

tion. In this formulation, x and xi denote arbitrary points on the Eulerian and Lagrangian

grids, respectively, and δ and V represent the Dirac delta function and the volume. Fur-

thermore, f(xi, t) is the elastic force of the membrane. The capsule membrane is modeled

as an infinitely thin sheet of elastic material following a neo-Hookean constitutive equation.

Therefore, the corresponding strain energy function W is expressed as:

W =
Es
6

(ε21 + ε22 + ε−2
1 ε−2

2 − 3), (3)

where ε1 and ε2 are the principal strains and Es is the two dimensional elastic shear modu-

lus. The elastic force on the capsule membrane is obtained using the finite element model
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developed by [17, 18]. In this model, the membrane surface is discretized with triangular

elements. The number of surface elements is large enough so that these elements remain

approximately flat even after large deformations. The Lagrangian grid is deformed due to

the hydrodynamic interaction with the surrounding fluid and consequently a resistive elas-

tic force develops. The deformed and initially undeformed elements are transformed to a

common two dimensional plane to evaluate the displacement of vertices and the correspond-

ing elastic force (f(xi, t)) exerted on the membrane using the principle of virtual work,

f = −dW
dv

, where v denotes the displacement of vertices between deformed and undeformed

states.

In this work, a finite volume method is used to discretize the equations. The computa-

tional domain is discretized using a uniform, Cartesian and staggered grid. The governing

equations are solved in the entire domain using an explicit Euler method for time discretiza-

tion, a third order QUICK (Quadratic Upstream Interpolation for Convective Kinematics)

scheme [19] for the convective term and a central difference scheme for the diffusive term.

Furthermore, the pressure-velocity coupling is conducted using a projection method [20]. A

front-tracking method [21] is used to model the capsule. The computational cost is reduced

by solving the Navier-Stokes equations on the entire computational domain rather than solv-

ing them separately for each phase and matching the boundary conditions at the interface.

Fluid properties (i.e., density and viscosity) are uniform in the interior and exterior fluids

but sharply vary in a small region across the interface. To provide a smooth representation

of material properties, we solve the Poisson’s equation for an indicator function which is

used to evaluate fluid properties everywhere in the computational domain. The elastic force

is evaluated on the Lagrangian marker points on the interface and are added as a singu-

lar body force in the momentum equation to account for the presence of membrane. The

velocity field on Lagrangian points are calculated as:

u(xi) =

∫
u(x)δ(x− xi)dV. (4)

This method requires an interpolation for treating the singular body force in (2) and tracking

the membrane temporal evolution. Therefore, a smoothed representation of the delta func-

tion is employed to distribute the desired variables with sharp variation across the interface

over few grid points surrounding the interface:

δ(x) = D(x)D(y)D(z), (5)
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D(x) =
1

4∆
(1 + cos(

π

2∆
(x))), |x| ≤ 2∆, (6)

where ∆ is the grid size. In summary, a single set of equations is solved in the entire

computational domain, taking into account the presence of the membrane and changes in

the fluid properties across the interface.

B. Non-Newtonian fluid

The Oldroyd-B constitutive equation is used to describe the polymeric stress in the in-

ner/outer fluid. The total stress tensor τ is decomposed into solvent τs and viscoelastic τp

stress tensors as follow:

τ = τp + τs, (7)

where

τs = µsD, (8)

λ
5
τp + τp = µpD, (9)

In this formulation, µs and µp are the solvent and polymeric viscosity, respectively. The

polymer relaxation time, represented by λ, is zero when the fluid is Newtonian and has a

nonzero value when the fluid is viscoelastic.
5
τp denotes the upper convected time derivative

defined as:
5
τp =

∂τP
∂t

+ u.∇τp −∇uτp − τp∇uT . (10)

We follow the implementation of Aggarwal et al. [22] for the polymeric stress to implement

a single constitutive equation in the entire computation domain.

λ
∂τp
∂t

+ τp = K(t), (11)

where

K(t) = µpD − λ(u.∇τp −∇uτp − τp∇uT ), (12)

This equation is discretized using an explicit Euler scheme for time:

τp(t+∆t) = τp(t) exp

(
−∆t

λ

)
+K(t+∆t)−K(t) exp

(
−∆t

λ

)
+

∫ t+∆t

t

exp

(
t

λ

)
∂K

∂t
dt (13)

We can neglect the integral in (13) assuming ∂K
∂t

= 0. In this case, the polymeric stress

tensor can be written as:

τp
n+1 = τp

n exp

(
−∆t

λ

)
+Kn

(
1− exp

(
−∆t

λ

))
(14)
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III. PROBLEM SETUP

In this study, we simulate the deformation of an initially spherical, unstressed capsule

which is introduced to the flow at time t=0. The capsule is deformed under a linear shear flow

bounded by two infinitely long flat plates as shown in Fig.1. Accordingly, the undisturbed

velocity field in the absence of the capsule is described as:

U = γ̇(Z − H

2
), V = W = 0, (15)

where U, V and W denote the velocity of the fluid in the streamwise direction (X), wall

normal direction (Z) and vorticity direction (Y), respectively. In this formulation γ and H

represent the imposed shear rate and the distance between the parallel walls. The computa-

tional domain is a rectangular box with the size of 10R× 5R× 10R (R is the initial capsule

radius) in the streamwise, wall normal and vorticity directions, respectively. The compu-

tational domain is discretized using a uniformly distributed 128 × 64 × 128 Eulerian grid

points. The capsule membrane is also discretized with 8120 triangular elements. A periodic

boundary condition is imposed in X and Y directions and a no-slip boundary condition is

considered on the upper and lower walls. The interior fluid of the capsule is incompressible

and Newtonian while the exterior fluid is viscoelastic, following an Oldroyd-B constitutive

equation. The characteristic length and time scales are R and γ̇−1 , respectively, leading to

the following dimensionless parameters: (i) Reynolds number Re = ργR2

µ
, which represents

the ratio of the inertial force to the viscous force (ii) Capillary number Ca = µγR
Es

, denoting

the ratio of the viscous force to the elastic force on the capsule membrane (iii) Weissenberg

number Wi = λγ̇, and (iv) β = µp
µ
, indicating the ratio of the polymeric viscosity to the

total viscosity. The total viscosity is defined as the sum of polymeric viscosity and solvent

viscosity of the fluid (µ = µp +µs). The interior and exterior fluids are assumed to have the

same density and total viscosity. The values of β and Re are set to β =0.5 and Re =0.1,

unless otherwise stated.

IV. NUMERICAL VERIFICATION

In this section, we compare our numerical results against previously published numerical

results of [23] and [24], where front-tracking and boundary element methods were used,

respectively. For this purpose, we simulate the deformation of a Neo-Hookean membrane
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(a) (b)

FIG. 1: Schematic of the problem and coordinate system

in a linear shear flow, where the interior and exterior fluids are Newtonian. In order to

conduct a quantitative comparison, the Taylor deformation parameter D = (L−B)/(L+B)

and orientation angle θ are evaluated, where L and B are the major and minor axes of the

deformed capsule in the shear plane and θ represents the angle between the major axis of

ellipsoid and the X-axis. Fig.2 shows steady-state values of deformation parameter D and

orientation angle θ for various Ca. The results agree well with the published results in the

literature.

(a) (b)

FIG. 2: A comparison of (a) the capsule deformation parameter and (b) orientation angle

with the results of Doddi et al. [24] and Lac et al. [23].

The numerical convergence of the solution is investigated by increasing the grid resolution

from 64× 32× 64 to 160× 80× 160. The temporal evolution of the deformation parameter
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and orientation angle for Ca =0.2 andWi =2 are shown in Fig.3. This figure shows that the

(a) (b)

FIG. 3: Temporal evolution of (a) the capsule deformation and (b) transient orientation

angle at Ca =0.2 and Wi =2

capsule deformation does not depend on the grid resolutions used here, while the orientation

angle converges by increasing the grid resolution. Henceforth, we choose 128× 64× 128 grid

points.

V. TRANSIENT DYNAMICS OF A VISCOELASTIC CAPSULE IN A NEWTO-

NIAN FLUID

When the capsule is released at the center of a linear shear flow, the membrane deforms

and elongates due to the hydrodynamic interaction with the surrounding fluid. The defor-

mation grows until it reaches a steady state, when no further change is observed in the final

deformed shape and inclination angle. The Lagrangian nodes on the capsule continuously

rotate on the deformed capsule which is called tank-treading mode (referred to as TT). The

temporal evolution of three main axes of the deformed membrane (L∗ = L
R
, B∗ = B

R
and

W ∗ = W
R
) are plotted in Fig.4.c for Ca =0.1 and various values of Wi. In this plot, L∗ is

the dimensionless semi-major axis and B∗ is the dimensionless semi-minor axis in the shear

plane and W ∗ denotes the dimensionless semi-axis of the capsule in the vorticity direction.

The capsule elongates in two directions and compresses in the wall normal direction for both
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(a) (b)

(c)

FIG. 4: Temporal evolution of (a) the capsule deformation, (b) orientation angle and (c)

length of main axes at Ca =0.1

Newtonian and viscoelastic fluids. It should be noted that increase in Wi hinders stretching

of L∗ andW ∗ as well as the compression of B∗. This means that the surrounding viscoelastic

fluid reduces the capsule deformation and orientation angle due to large polymeric stresses

developed in the outer fluid (Fig.4.a-b). As illustrated in Fig.4.a, an overshoot is observed

in the deformation of the membrane when the outer fluid is viscoelastic at Wi =0.5 and 1.

This phenomenon is attributed to the relaxation time of the outer viscoelastic fluid leading

to a delay in the development of the polymeric stress. Consequently, the membrane defor-

mation is larger than its steady values. Additionally, as the Weissenburg number increases
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the orientation angle of the capsule in a shear flow decreases and it reaches the equilibrium

state at a longer time.

A. Capsule deformation in a low capillary number regime

In this section, we investigate the dynamics of a sheared capsule in a low capillary number

regime. The temporal evolution of the capsule deformation parameter for different Weis-

senburg numbers at Ca=0.025 is shown in Fig. 5.a. The deformation increases and reaches

an equilibrium value, following by small amplitude oscillations. These oscillations are caused

by the formation of folds on the membrane surface which is discussed later in this section.

The membrane deformation in this low capillary number regime decreases with Weissenburg

number similar to the observation in the previous section. However, the fluid elasticity does

not have the same effect for the entire range of Wi considered here. The reduction in the

steady deformation is observed for Wi ∈ [0, 2] . On the other hand, the capsule deformation

monotonically increases for larger Wi numbers (e.g., Wi =5). This behavior was also ob-

served for droplets suspended in a shear flow. The reason for this unexpected behaviour can

be attributed to the memory and nonlinearity of the Oldroyd-B fluid as a similar trend exists

for the variation of the drag coefficient of a cylinder with increasing Wi [22]. In order to

explore the deformation of capsule in more detail, the transient lengths of major and minor

axes are plotted in Fig.5.c. The elongation of L∗ and compression of B∗ reduces for cases

with steady-state deformations. However, at Wi =5, L∗ and B∗ monotonically increase in

time, while the vorticity-directed axis (W ∗) has an infinitesimal change in this case. Increase

in the fluid elasticity causes the capsule to get more aligned with the flow direction. The

orientation angle monotonically decreases with the Weissenberg number for the entire range

of Wi investigated in this work. This is in contrast to the elasticity effects on the deforma-

tion where it decreases for low weissenberg numbers, but is unstable for Wi above a certain

threshold. The folds on the capsule surface are illustrated in Fig.6 for various Wi.

One of the important parameters in cell biology is the maximum tension experienced

by the cell membrane. If maximum tension exceeds a threshold the cell membrane bursts

and releases its content which has harmful effects on the function of biological systems.

The effects of principal tension on mechanotransduction of biological cells have become

the subject of recent studies [25] . Therefore, it is important to study the evolution of
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(a) (b)

(c)

FIG. 5: The temporal evolution of (a) the capsule deformation, (b) orientation angle and

(c) axes length for Ca =0.025

maximum and minimum tension on the membrane. To do so, the principal elastic tensions

are computed on each triangular element on the membrane which is used to evaluate the

range of experienced tension at each time step. According to Li et. al [7] the principal

tension on each element, represented by T1 and T2, are explicitly written as:

T1 =
1

ε2

dW

dε1
=

Es
3ε1ε2

(ε21 − ε−2
1 ε−2

2 ) (16)

T2 =
1

ε1

dW

dε2
=

Es
3ε1ε2

(ε22 − ε−2
1 ε−2

2 ) (17)

By finding the values of T1 and T2 on each element the maximum and minimum principal
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(a) (b) (c)

(d)

FIG. 6: The deformation of capsule membrane at Ca =0.025 and (a) Wi=0 (b) Wi=5 (c)

Wi=10 and (d) The cross section of the capsule membrane for different Weissenberg

numbers

tension on the membrane can be computed. The temporal evolution of maximum and

minimum tensions for different Wi at Ca=0.025 is illustrated in Fig. 7. The increase in Wi

decreases the maximum and increases the minimum tensions, indicating that the range of

the tension experienced by the capsule decreases with Wi.

B. Capsule deformation in a moderate capillary number regime

The deformation of a capsule is plotted in Fig. 8.a for Ca =0.2 and variousWi. Numerical

simulations predict that the steady-state deformation decreases with increasingWi number.
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FIG. 7: The temporal evolution of maximum and minimum principal tensions at

Ca =0.025

This behavior changes for larger Wi number such that the deformation starts increasing

with increasing fluid elasticity. The reason for this complex phenomenon is the nonlinearity

of the fluid as discussed in the previous section. The temporal evolution of orientation

angle, plotted in Fig. 8.b, shows the effect of fluid elasticity on the membrane inclination

angle. The deformed shaped of the capsule in Newtonian and viscoelastic surrounding fluids

is represented in Fig.9. The resulting membrane develops high-curvature tips due to the

large viscous stretching exerted by the flow field on the membrane in a Newtonian fluid,

while these tips are less sharp as Wi increases. This phenomenon is more prominent for

larger Wi. The effect of fluid elasticity on the deformation and orientation angle are shown

in Fig.10. The deformation increases with Ca as expected and fluid elasticity reduces the

capsule deformation particularly for large Wi. The effect of the fluid elasticity on the

deformation is negligible at small Ca but it has a significant effect on the orientation angle.

The capsule aligns more with the flow direction as fluid elasticity increases. In order to

study TT behavior of a deformed capsule the tank-treading period (TTP) is defined as the

time required by the material points on the membrane to complete a circulation. Therefore,

we choose an arbitrary material point located on the shear plane and track its position and

angle with the X-direction to quantify the time period. Fig.11 shows the effect of Wi on

the TTP compared to the one in a Newtonian fluid. This ratio is always larger than unity,

which implies that the fluid elasticity of the outer fluid slows down the rotational velocity

of the deformed membrane leading to a larger TTP. As we know the TTP is prolonged
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(a) (b)

(c)

FIG. 8: The temporal evolution of the (a) capsule deformation, (b) orientation angle, and

(c) axes length for Ca =0.2

at higher Ca because the membrane is highly deformed and the material points circulate

a larger distance to complete an orbit. According to Fig.11, the relative change in TTP

caused by fluid elasticity reduces as Ca increases.

VI. VISCOELASTIC CAPSULE IN A NEWTONIAN MATRIX

In this section, we investigate the dynamics of a viscoelastic liquid-filled capsule suspended

in a Newtonian fluid. The effect of inner polymeric fluid on the deformation is shown in Fig.
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(a) (b)

FIG. 9: Deformed capsule at Ca =0.2 and (a) Wi =0 (b) Wi=5

(a) (b)

FIG. 10: (a) The capsule deformation and (b) inclination angle versus capillary number

12 for a range ofWi. The steady value of deformation decreases forWi ∈ [0, 2] and increases

for any value outside of this range (Fig. 12.a and b). Furthermore, the overshoot observed

in the deformation parameter can be attributed to the polymer relaxation time as explained

in the previous section. The effect of the inner viscoelastic fluid is of the order of 3-4% on

the deformation parameter which proves negligible effects of fluid elasticity compared to the

case where the outer fluid is viscoelastic (Fig. 12.b). The viscoelastic fluid is bounded in a

finite volume of capsule and can not have a significant effect on the deformation parameter

as that of the previous cases. On the other hand, the fluid elasticity has a more appreciable

effect on the angle as shown in Fig.13. Contrary to the deformation, polymer increases the

orientation angle for Wi <= 6 for Ca = 0.2 (Fig.13.a and b). The effect of fluid elasticity

on the dynamics of the deforming capsule is enhanced for larger Ca (Fig.13.b). The tank-
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FIG. 11: The normalized value of the tank treading period versus Wi

(a) (b)

FIG. 12: Temporal evolution of (a) deformation for Ca =0.2 and (b) normalized

deformation as a function of Wi

treading period of the viscoelastic capsule is shown in Fig.14. Interestingly, this parameter

decreases in the presence of inner fluid elasticity which indicates faster rotational velocity

of the capsule membrane. This behaviour is opposite to the effect of fluid elasticity on the

TTP when the outer fluid is viscoelastic. As the Ca increases, the TTP decreases more

significantly compared to that of a Newtonian fluid.
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(a) (b)

FIG. 13: Temporal evolution of (a) orientation angle for Ca =0.2 and (b) normalized

orientation angle as a function of Wi

FIG. 14: The normalized value of tank treading period versus Wi

VII. CONCLUSION

We have simulated a Newtonian capsule in a viscoelastic matrix as well as a viscoelastic

capsule in a Newtonian matrix to investigate the dynamics of a deformed capsule suspended

in a shear flow using a front-tracking method. The deformation of the sheared capsule

is such that the major axis in the shear plane and the axis in the vorticity direction are

elongated, while the minor axis in the shear plane is compressed. The numerical results show

that the outer fluid elasticity reduces the capsule deformation and orientation angle of the
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capsule with the streamwise direction. The capsule has a steady-state deformation for low

Weissenberg numbers and when Wi exceeds a threshold, the capsule deformation increases

with time. Furthermore, the deformation curves display small amplitude oscillations in the

low capillary regime which is due to the folds developed on the capsule membrane. Other

important parameters investigated in this work are the maximum and the minimum tensions

experienced by the capsule. According to the results, the range of the tension generated on

the membrane decreases with Wi. The TTP calculated for the deforming capsule increases

with Wi. This means that the fluid elasticity slows down the rotational velocity of the

membrane and this effect is more prominent for smaller Ca. The numerical results for a

viscoelastic liquid-filled capsule in a Newtonian matrix also indicate the decrease in the

deformation with Wi, but interestingly the TTP and orientation angle increase, which is

opposite to the capsule dynamics observed in a viscoelastic matrix.
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