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Abstract

Ecosystems are commonly conceptualized as networks of interacting species. However, parti-
tioning natural diversity of organisms into discrete units is notoriously problematic, and mounting
experimental evidence raises the intriguing question whether this perspective is appropriate for the
microbial world. Here, an alternative formalism is proposed that does not require postulating the
existence of species as fundamental ecological variables, and provides a naturally hierarchical de-
scription of community dynamics. This formalism allows approaching the “species problem” from
the opposite direction. While the classical models treat a world of imperfectly clustered organism
types as a perturbation around well-clustered “species”, the presented approach allows gradually
adding structure to a fully disordered background. The relevance of this theoretical construct for

describing highly diverse natural ecosystems is discussed.
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Although the basic unit participating in ecological interactions is an individual organism,
constructing tractable theoretical models usually requires clustering individuals into discrete
groups within which organisms are treated as identical; such classification can be based, for
example, on taxonomy, development stage, or phenotype [1]. The resulting tension is a
long-standing issue in community ecology: ever since Darwin [2], the difficulty of drawing
sharp boundaries partitioning natural diversity into discrete categories [3] and the realization
that the individual-level variation can be an important actor in ecological phenomena [4, 5]
made the “partitioned community” assumption of well-delimited, uniform groups highly
problematic [6-11].

The urgency of this issue has been highlighted over the last decade by the studies of
microbial diversity in natural environments [12-17]. For microbes, the partitioning problem
is intensified by the prevalence of asexual reproduction and horizontal gene transfer [18-20],
and the fact that even genetically identical cells can assume different ecological roles, e.g. in a
biofilm [21]. To cope with these issues, considerable attention has been devoted to identifying
questions that can be asked and answered without explicitly specifying a partitioning [11],
e.g. solely in terms of community metagenome [11, 22, 23]. These approaches adopt a
convenient coarse-grained viewpoint that is appropriate for certain functional questions, e.g.
comparing communities [22]. However, their ability to describe community dynamics is
necessarily limited. For that purpose, the partitioned community assumption currently has
no alternatives: although conceptually problematic, it is seen as an operational necessity [6,
24-26]. Short of resorting to individual-based modelling [4], it remains unclear how the
dynamics of ecological communities could be described in a naturally hierarchical way [6, 9,
11, 29, 30]).

The hot debate surrounding the definition of the “unit” of ecological diversity prompts
an intriguing question: is the partitioned community assumption an adequate description
of the microbial world? The species-based intuition is incontestably useful, but might it
be forcing onto our data a structure that it does not possess [20, 31, 32]? Ultimately, of
course, this question should be settled by experiments, and reports are conflicting [33-37].
However, ideally we should be asking not whether a species-based picture is “adequate”,
but whether it is superior to alternatives. Can we imagine an ecology where no grouping
of individuals is privileged, and how would we describe it? Regardless of our stance on the

“species problem”, we must recognize this question as an essential theoretical exercise [38]:
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it is impossible to test a hypothesis unless we can imagine it to be false. Without an
alternative, the partitioning assumption will continue to shape our questions, our models
and even our data analysis in the form of “operational taxonomic units”, an ill-defined proxy

for a “bacterial species” extensively critiqued elsewhere [39].

Borrowing an idea from condensed matter physics, this work proposes a new way to
tackle the species problem, approaching it “from the other side”, as illustrated in Fig. 1.
Consider a heterogeneous community where some individuals are more alike than others, but
the clustering is imperfect, as is arguably the case in most natural situations [3, 19, 31, 39].
Currently, the only existing approach treats this scenario as a small deviation from the
classic picture of well-clustered species. In physical terms, this is a perturbative expansion,
where we start from a perfectly partitioned world (Fig. 1A) and attempt to recognize that
species boundaries are “fuzzy” (Fig. 1B). This work proposes an explicit construct where
the perturbative expansion can be performed around a different origin, starting from an

unstructured phenotype background (Fig. 1C), and adding some structure.

Similar ideas have a long history and have been enormously productive in many areas of
physics (cf. the classic theory of metals that treats electrons as a free gas). The contribution
of this work is to port this idea into an eco-evolutionary context. In order to achieve this, it
is necessary to first develop a formalism that avoids postulating a community partitioning.
This work extends the notion of an “ecomode” [40, 41] to construct a naturally hierarchical,

rank-free description of community dynamics in terms of population fluctuation eigenmodes.

A B

FIG. 1. Clustering organisms into discrete species is often problematic (B). Rather than describing
the natural world as a deviation from a perfectly clustered case (A), this work proposes a theoretical

construct where structure can be gradually added to a fully disordered “ecology without species”

(C).
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FIG. 2. Coarse-graining degrees of freedom through clustering. A. The most common
approach to coarse-graining the description of an ecosystem is by merging branches of a phyloge-
netic tree. B. An elementary clustering operation where the abundances of two rabbit varieties

are combined into a single degree of freedom.

This approach reduces to the familiar species-based perspective when it applies, but remains
well-defined even when the species description breaks down. The basic idea behind this
formalism is that species clustering can be reinterpreted as a special form of a more general

operation, namely a change of basis in the compositional space.

I. REINTERPRETING SPECIES CLUSTERING AS A CHANGE OF BASIS

Describing an ecosystem is a problem of dimensionality reduction. Given a community of
billions of individuals, or millions of strains, the challenge is to find a reduced set of degrees
of freedom that could allow characterizing its properties or dynamics with an acceptable
degree of accuracy.

The standard approach to this problem is through clustering. Most commonly, the mi-
croscopic degrees of freedom, such as abundance of individual strains, are assumed to be
located at the leaves of a tree (based on phenotypic similarity, phylogenetics, etc.). A
coarse-grained description is then constructed by choosing a transect cutting across this

tree, and combining branches lying downstream of the transect (Fig. 2A). For concreteness,
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consider an example of combining just two leaves. Imagine a community where a species
75 of rabbits comes in two varieties that differ only slightly: say, a “white” rabbit W and a
“brown” rabbit B (Fig. 2B). When describing their predator-prey dynamics with foxes, a
two- or three-variable description could be used, depending on the desired level of detail.
The comprehensive three-variable description might capture come subtle features, but for
many questions, the classic Lotka-Volterra model, whereby the two varieties are clustered

so together into a single variable “rabbits” R, would provide a sensible approximation:
{W, B}~ R (1)

This work proposes a different perspective on the clustering operation (1). To a first
approximation, most environmental perturbations will affect the population of rabbits as a
whole; e.g. an increase in predator efficiency, or habitat deterioration will depress the pop-
ulation of both varieties together. Upon careful examination, however, the small functional

g5 differences will manifest themselves on a slow timescale: for example, if the predator is
better attuned to spotting a particular coat colour, one variety may eventually outcompete
the other. In this way, compositional changes naturally align not with the Lotka-Volterra
axes W and B, but with the rotated axes that provide an hierarchically-informed descrip-
tion: one variable R = W + B (“rabbits”) that changes on a fast timescale, and another
o C'=W — B (“coat color”) that changes on a slow timescale. This work proposes to reinter-
pret Fig. 2B not as clustering, but as a change of basis, followed by the decision to ignore a
slow-timescale variable. As we will see, an appropriately rotated basis can be constructed for
an arbitrary population of interacting individuals, and can serve as a naturally hierarchical
characterization of a community. Borrowing the term introduced in [40], one could call this

s the “ecomode description”.

II. THE EIGENMODE DESCRIPTION:
THE GENERAL DEFINITION

Let C denote a full individual-based description of a community: a list of all present
organisms (labelled by indices p, v...) and their functional characteristics. A general
10 model for ecological dynamics can be written as a rule that associates to each individual

1 a “rate of abundance change” r,: the probability per unit time with which it will either
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generate another individual (r, > 0) or die (r, < 0). In a most general model, this rate
can depend on any detail of the community state, as well as on external environmental

parameters denoted by &:

ry,=1,(E,C)

Within any such model, we can define a matrix M of interactions between individuals: M,,
is the effect that a hypothetical duplication of individual ¢ would have on the instantaneous

division/death rate of v.

M, =r,(€,{C with p duplicated}) — r,(€,C) (2)

Importantly, here p and v are individuals, not species, and so the definition of M does not
require the partitioned community assumption. For the classic Lotka-Volterra scenario, the
“functional characteristics” of an individual need only specify whether it is a fox or a rabbit,
but we can allow this microscopic description to be arbitrarily detailed, down to the point of
all individuals being unique. Note that the interaction matrix M is defined instantaneously;

the number of individuals and thus the size of M can change in time.

The primary focus of this work is the eigensystem of the interaction matrix M. For a
population of N individuals, this N' x A matrix will always have N eigenvalues. Note,
however, that if individuals ;2 and g/ happen to be functionally identical, then M, = M,,,
for all v, and M has a zero eigenvalue. For a coarse model ascribing all individuals to
only K < N distinct phenotypes, the matrix M will be highly degenerate with only K
non-trivial eigenvalues; the remaining N' — K will be strictly zero. A detailed functional
description recognizing all individuals as unique will remove the degeneracy; however, if
the partitioning into K categories were indeed a good approximation, N' — K eigenvalues
will remain small (here and everywhere, characterizing an eigenvalue as “small” refers to its
absolute value). We are led to hypothesize that the spectrum of M may provide a naturally
hierarchical description of ecological relationships in a community, with progressively smaller
eigenvalues resolving finer and finer details. The grouping of individuals into discrete types,
when it exists, is established as a result of this analysis; in this framework, it no longer

constitutes a fundamental assumption.
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FIG. 3. For a well-clustered set of phenotypes, the eigenmode representation captures the hierarchy
of phenotype similarity. A: Pathway presence matrix for 12 phenotypes, generated as variations
on 3 “core phenotypes” (colored lines); phenotypes carrying a given pathway (shown in yellow)
are able to metabolize the respective resource. The tree represents hierarchical clustering based
on Hamming distance. Dotted transect corresponds to the clear grouping into 3 clusters. Under
MacArthur’s model, resource competition in this ecosystem leads to a unique stable equilibrium.
B: The spectral structure of the ecosystem shown in A, in the vicinity of its equilibrium point. Left:
the eigenvalues of the Jacobian. All eigenvalues are negative, corresponding to a stable equilibrium;
shown is the absolute value. Right: the eigenvectors, ordered by decreasing |A|; each is a linear
combination of 12 phenotypes and is difficult to interpret directly. C: The same eigenvectors,
projected into pathway expression space. It is now clear that the three dominant modes span the
three “core phenotypes” (colored lines as in panel A). The fourth mode (arrowhead) corresponds

to a subdivision of the first cluster (compare with panel A).

III. RESTRICTING GENERALITY: EIGENMODES IN LOTKA-VOLTERRA
MODELS

In the interest of full generality, the definition of the previous section was explicitly
individual-based. The existence of such a definition is a very important feature of the
eigenmode framework; however, the inconvenience of dealing with discrete individuals is a
technical nuisance that could obscure the larger points in the subsequent discussion. To
build intuition about the eigenmode perspective, the best approach is to illustrate it on

simple examples.

The most familiar setting is that of a generalized Lotka-Volterra model, with K continuous

degrees of freedom. Its linearized dynamics in the vicinity of an equilibrium point take the
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form:

don, K
di = Z Mab 5774,. (3)
b=1

Here dn denotes the deviation from equilibrium abundance, and the index a runs from 1 to
K. For simplicity, this is the context that will be used for most of the discussion. Positing a
finite number of K interacting phenotypes may seem to contradict the stated goal of avoiding
the “species” partitioning. However, the reader is invited to think of these phenotypes not
as a “species” label, but as a microscopic, sub-species description; e.g. interacting bacterial
strains that may or may not group into species. In this context, the variable-size individual
interaction matrix M has only K non-trivial eigenvalues and eigenvectors, which correspond
to the eigensystem of the Lotka-Volterra interaction matrix M (see the Supplementary
Material; SM). The eigenvalues have units of inverse time and correspond to the relaxation
time scales of perturbations applied along each eigenmode.

In order to make the eigenmodes interpretable, rather than positing the interaction ma-
trix M in some arbitrary manner, it is extremely helpful to construct it from a functional
description of what these phenotypes do (recall the example above, where the W + B axis
could be conveniently interpreted as “rabbits” and W — B as “coat color”). One simple
way to do this is provided by the MacArthur model of resource competition [42-44], where
phenotypes are characterized by the resources they are able to consume. This defines a
particular instance of a competitive Lotka-Volterra model, while also giving us an intuition
for phenotypic similarity, and a functional interpretation for the eigenmodes we will observe.

Specifically, following ref. [45], consider a well-mixed microbial community in a medium
where a single limiting element (e.g. carbon) exists in N forms (“resources” i € {1...N};
in what follows N = 20). Each resource can be metabolized with a dedicated “pathway”.
The phenotypes are defined by two pieces of information: first, their requirement for the
limiting element, and second, the pathways they carry. The former will be randomly drawn
for simplicity, but the latter will be chosen strategically, by hand, in order to construct the
most instructive examples. The set of K phenotypes defines a K-by-N binary matrix o
of pathway presence/absence (o, = 1 if phenotype a carries the pathway enabling it to
consume resource ¢), and this matrix o determines the phenotype-phenotype interactions.
Specifically, the competition between a pair of phenotypes (a, b) is the stronger, the larger the

overlap in their resource preference ) . 0,405, Under MacArthur’s model, such competition
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always results in a unique and stable equilibirum [43, 45]. The mathematical details are
provided in the SM, but for the discussion that follows, this description should already be

sufficient.

IV. THE EFFECTIVE NUMBER OF SPECIES IS DEFINED BY A SPECTRAL
GAP

For the first example, consider a community composed of phenotypes depicted in Fig. 3A,
competing for 20 resources supplied in equal abundance. These 12 phenotypes were pur-
posefully generated to form three clear clusters (see SM for the exact procedure; MATLAB
scripts (Mathworks, Inc.) reproducing all examples and figures are available as Supplemen-
tary file 1). This community can be interpreted as harbouring three species; within each
species, phenotypes share a core set of pathways (indicated) and differ only in a small subset,
similar to the “core” and “accessory genome” of a species [46]. How is this scenario seen
from the eigenmode perspective?

Resource competition between these phenotypes defines a 12-by-12 interaction matrix.
Its eigenmode spectrum is presented in Fig. 3B. Each eigenvector is a linear combination
of phenotypes, and is difficult to interpret. However, since each phenotype is defined by
its resource consumption, their linear combination can be conveniently characterized in the
same way: the pathway presence/absence matrix o can be used to project each eigenvector
into the pathway expression space (Fig. 3C). This provides a functional interpretation for
the eigenmodes: each row in the matrix shown in Fig. 3C indicates how the community-
level pathway expression changes if its composition is perturbed in the direction of a given
eigenmode.

We observe that the spectrum is dominated by 3 modes, whose projections in the pathway
expression space are linear combinations of the “core genomes” of the three phenotype
clusters (Fig. 3C, top 3 rows). This indicates that at the short timescale, the response of the
system to a perturbation can be well approximated using only 3 degrees of freedom. Above,
characterizing this habitat as “harbouring 3 species” was an interpretation that relied on a
subjective judgement of Fig. 3A by a human observer. The eigenmode spectrum contains
this information, and more, in an objective format, decomposing community dynamics over

a range of time scales.
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FIG. 4. A smooth interpolation between two unrelated clustering patterns into, respectively, two
and three effective species. A: Pathway presence matrix (same format as in Fig. 3A) for 11
phenotypes. Their preference for resources 1-3 induces a grouping into three clusters, but the
remaining pathways induce a conflicting clustering pattern (with only two groups). B: If the
supply of resource 1-3 is low, community dynamics exhibits two dominant modes, reflecting the
2-cluster structure. As the supply of these resources is increased (panel C), the preference for
resources 1-3 becomes the more relevant clustering criterion for describing the dynamics. D: The
same 11 phenotypes now behave as a community of 3 effective species. Unlike a speciation event,
where the uncertainty in defining the number of species is merely a matter of the desired level of
detail (¢f. Fig. 3), the intermediate regime of panel C interpolates between unrelated clustering

patterns (not nested).

The first eigenvector is a collective mode, with each entry close to 1. This corresponds to
the statement that, if we insisted on reducing the community to a single degree of freedom,
our best choice would be to say that all resources are being consumed at a certain overall
rate. However, this is a poor approximation; capturing the dominant fast dynamics requires
3 degrees of freedom. Far below the dominating eigenvalues, a fourth one becomes apparent
(arrowhead). Examining the fourth row in Fig. 3C and comparing it to panel A reveals that
this mode corresponds to a finer structure within the first cluster, where coexisting variants
differ in their ability to consume resources 1 and 2. The eigenmode decomposition provides
a way to describe dynamics with increasing level of detail; smaller differences manifest
themselves as smaller eigenvalues. Thus, the eigenmode description of community structure

is naturally hierarchical.

The key property of the eigenmode spectrum of Fig. 3B is the existence of a noticeable
gap in its spectrum, which provides a justifiable cutoff point for the number of degrees of

freedom to include into a low-dimensional description (note that in some contexts, the term
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“spectral gap” is used in a narrower sense to describe the difference between specifically the
first and second eigenvalues; this is not the meaning adopted here). Whenever an ecosystem
exhibits a spectral gap, one could define the effective number of species as the number of
dominant eigenvalues. Importantly, however, the spectral gap need not be unique, and is
a fluid property: under a continuous change of parameters, gaps can move, appear and

disappear. The next example explores the implications of this fact.

V. MOVING THE SPECTRAL GAP:
“TWO AND A HALF SPECIES”?

Consider now a community of 11 phenotypes of Fig. 4A. For equiabundant resources, we
observe the expected “2-species” spectrum (Fig. 4B), the dominant eigenmodes reflecting
the two “core genomes” that correspond to the dominating binary clustering pattern.

However, by construction (see SM for details), each of these phenotypes specializes in
only one of the first three resources. If the supply of these resources is strongly increased,
this preference will become the more relevant clustering criterion; the same 11 phenotypes
now behave as a community of 3 effective species (Fig. 4D). Note that in this regime, the
eigenmode corresponding to the binary clustering (which used to be mode #2) is again
part of the spectrum (now as mode #4), but is characterized by a much smaller eigenvalue,
signaling much slower dynamics than those governed by the dominant three resources.

Both these extremes were easy to interpret, but how should we think of the regime lying
in between (Fig. 4C)7 A smooth process leading to a change in the number of species may
seem familiar from the study of speciation. One cluster of phenotypes can be smoothly
separated into two, and if we insisted on counting species, then somewhere in between there
must be a gray area of “more than one, but less than two”. This inability to draw a hard
threshold of exactly when two close varieties should be considered distinct species is not,
however, a significant challenge to the species paradigm. Whether a finer subdivision is
warranted is merely a question of the desired level of detail. This was already illustrated
in the previous example: the spectrum of Fig. 3B exhibits two significant gaps, leaving us
the choice of characterizing it with either three or four degrees of freedom. And just as in
Fig. 4, subjecting the community of Fig. 3A to an increased abundance of resources 1 and

2 would reduce the first spectral gap, making the finer (4-species) description increasingly
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more justifiable. In this scenario, the origin of our inability to define an exact number of
species is well understood.

However, Fig. 4 shows that the problem is more general. The somewhat artificial example
of Fig. 4A was purposefully constructed to show that a smooth change of parameters can
interpolate between two clustering patterns even when they are entirely unrelated (not
nested): the same 11 phenotypes are grouped as {1-5}, {6-11} in one case (panel B),
and {1, 6}, {2, 7-10}, {3-5, 11} in the other (panel D). The “gray area” in between is
of a different nature than the uncertainty about whether to further subdivide a particular
cluster. This suggests that the intermediate regime of Fig. 4C should be interpreted not as
“two and a half species”, but rather as a situation where a gap-less spectrum means that
the effective number of species cannot be defined at all.

Characterizing such a “regime without species” is indeed our ultimate destination. Un-
fortunately, this particular example suffers from an obvious problem: it was constructed
within a Lotka-Volterra framework with 11 degrees of freedom. Whether or not they can be
grouped into clusters, such a model can always be seen as describing an interacting system
of 11 species.

This issue is a consequence of the decision, made early on, to work within the familiar
Lotka-Volterra context. No simple Lotka-Volterra model can generate a truly gap-less spec-
trum: as discussed above, a model grouping individuals into K discrete categories always
has a gap separating the K non-trivial eigenvalues from the vast number of those that are
strictly zero, as a consequence of the partitioning assumption. As a direct consequence of the
partitioned community assumption, virtually all classical ecological models describe systems
whose eigenvalue spectrum exhibits a prominent gap. What reasons do we have to believe
that natural ecosystems, e.g. the microbial communities inhabiting our intestines, possess
this property? Absent such evidence, we must acknowledge that spectral gaps, whose ex-
istence is a prerequisite for a low-dimensional “species-based” description to be adequate,
could be an artifact of familiar theoretical models, and not necessarily the best approxima-
tion of ecological reality. If one could build an ecosystem model whose spectrum really did
exhibit no gaps, such a scenario fundamentally could not be conceptualized as a system of
interacting species. One signature of this regime is that any attempt to approximate it with
a K-dimensional Lotka-Volterra model will appear to contain exactly K species, for any K.

The next section will construct one concrete example exhibiting this behavior.

12
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FIG. 5. Constructing a model case of an ecology without species. A: A multi-patch extension
of MacArthur’s resource competition model. Externally supplied resources are split between P
patches harboring separate communities (here, P = 3). Patch boundaries are assumed to be
(weakly) permeable to resources, but not organisms (see SM for details). In this cartoon, phe-
notypes are represented by circles; size signifies abundance, while colors correspond to resources
consumed. B: The phenotype-phenotype interaction matrix for a particular realization of the
model with N = 20 resources and P = 15 patches; the 298 coexisting phenotypes are ordered
by patch. Organisms in the same patch interact more strongly than across patches, leading to a
block-diagonal structure. C: The top P eigenmodes reflect the P-patch structure of the habitat.
Modes 2 through P have vanishingly small projection into the pathway expression space: they
represent inter-patch dynamics and are hidden from an external observer who cannot resolve in-
dividual patches. D: The shape of the eigenvalue distribution is independent of P (left); modes
“hidden” from external observer (2 through P) are omitted. The unique dominant mode is the
collective mode (arrowhead). The remainder of the spectrum follows a dense distribution with no

gap, reflecting the unstructured background of interacting phenotypes.
VI. AN ECOLOGY WITHOUT SPECIES

Constructing an ecosystem with a dense spectrum requires a model where the number
of distinct phenotypes can be arbitrarily large. It would be convenient to also maintain
two useful features of the previous examples: a functional characterization of phenotypes,
and the existence of a stable equilibrium. Finally, to underscore the interpretation of this
scenario as a regime “without species”, we will set an additional objective, requiring the set
of coexisting phenotypes to be unstructured, so that no grouping is privileged. Ideally, then,
we would like to have a model where an arbitrarily large, unstructured set of functionally
defined phenotypes can co-exist at a stable equilibrium.

In the classic (well-mixed) framework of MacArthur, N resources can stably sustain at
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most N phenotypes [44]. However, imagine a spatially structured habitat with P patches,
whose boundaries are permeable to resources, but not to organisms (Fig. 5A). The math-
ematical details of this model are provided in the supplement; however, qualitatively, the
behavior is intuitive. At infinite permeability (resources are exchanged freely), the P patches
are effectively a single patch, and we are back to the classic MacArthur model. If perme-
ability is zero, the P isolated patches can sustain up to PN phenotypes, but these have
no interactions across patch boundaries. At intermediate permeability, we find the desired
situation where the interactions are nontrivial, and yet the total number of coexisting phe-
notypes can be arbitrarily large. Although the number of distinct binary vectors is bounded
by 2V, two phenotypes located in different patches count as distinct even if their pathway
content is identical, because they interact differently with other phenotypes (for example,
of the two “red-blue” phenotypes in the cartoon in Fig. 5A, one has a strong competitor in
the same patch, but the other does not).

For each patch, define an independent pool of local phenotypes that is fully random
(each phenotype carries or not a given pathway with probability 1/2). After the system
equilibrates, the total number of coexisting phenotypes is of order PN. Fig. 5B shows the
complete interaction matrix for 298 phenotypes in P = 15 patches (see SM for details).
Predictably, phenotypes group by patch: at weak resource permeability, organisms interact
more strongly within a patch than they do across patches. However, the pathway content
of these phenotypes is, by construction, completely unstructured.

These observations are reflected in the eigenmode structure. P eigenvalues clearly stand
out in the spectrum (Fig. 5C), reflecting the patch structure: at the very top, we recognize
the collective mode; the remaining P—1 modes are pairwise differences between the collective
modes of the individual patches. These dominant modes are followed by a dense spectrum of
eigenvalues, whose distribution exhibits no gap (Fig. 5D): aside from the patch structure, no
grouping of phenotypes is in any way privileged, offering no possibility for a coarse-grained
description.

In order to take the limit P — 0o, consider now the projection of the eigenvectors into the
N-dimensional expression space. This corresponds to adopting the perspective of an observer
who can measure the community-wide expression of metabolic pathways, but cannot resolve
individual patches. Such an observer can see the dominant collective mode, but modes 2

through P are effectively hidden: their projection into the pathway expression space has
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vanishingly small components (panel C). To understand this, consider a perturbation where
all phenotypes in patch 1 experience an increase in abundance, and all phenotypes in patch
2, a decrease. Such a perturbation will relax quickly, corresponding to one of the dominant
(strongly negative) eigenvalues. However, the internal dynamics represented by this mode
is effectively hidden from an outside observer whose measurements do not resolve individual
patches. Such an observer can only see a unique collective mode over a fully unstructured
background (modes from P + 1 onwards): a dense spectrum, whose shape is independent of
P.

This characterization allows sending P to infinity. This limit is proposed as a tractable
model case of an “ecology without species”. In this regime, the number of interacting
phenotypes becomes infinite, their pathway content is unstructured, and the spectrum is
dense; yet this construct continues to describe a valid ecology at equilibrium whose properties
could be investigated. For instance, if the supply of some resource is increased, this system
will have some well-defined response, which our hypothetical observer could measure and
could attempt to predict.

What is the utility of this regime? The extreme, fully unstructured case is certainly a
poor approximation of any natural setting. However, it provides a baseline that can be
perturbed to describe novel scenarios of “weakly structured” ecologies, as illustrated in the

next and final example.

VII. DESCRIBING WEAKLY STRUCTURED ECOLOGIES

Fig. 6 repeats the analysis of Fig. 5, with one exception: the first and last pathway are
forbidden from ever appearing within the same organism. Specifically, for each patch, the
procedure generating the local phenotype pool was modified as follows: each entry in the
pathway presence matrix ¢ was independently set to 1 with probability 1/2 as before, but
whenever this resulted in a phenotype carrying the forbidden pathway pair, this phenotype
was removed from the pool. This kind of structure is not implausible: a detrimental cross-
talk between certain pathways can make their simultaneous activity in the same organism
difficult; for example, the enzyme nitrogenase is inactivated by oxygen and thus must be
kept separate from oxygen-utilizing pathways.

The spectrum of this ecosystem, projected into the pathway expression space, is shown
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FIG. 6. A weakly structured ecology as a perturbation of the no-species regime. A: When the
phenotype pool is modified to introduce an anticorrelation between first and last pathway, the
spectrum acquires a mode reflecting this structure (highlighted). This new mode is the dominant
observable mode (after the collective mode). C: The leading observable eigenmodes remain at
the same position in the spectrum (arrrowheads) and retain their structure (right). The rest of
the spectrum follows the same distribution as in the unstructured regime (shaded; compare with

Fig. 5D).

in Fig. 6A. Comparing to Fig. 5C, we see that there are now two modes that stand out from
the gap-less background. In addition to mode #1 (the collective mode), there is now also
mode #(P +1) that represents the only perturbation imposed on an otherwise unstructured
phenotype background. The spectrum in Fig. 6A was computed for one particular random
realization of a system with P = 15 patches; however, as P is increased, the projection of this
mode into pathway space and its position in the spectrum both remain invariant (Fig. 6B).
This example demonstrates that the fully unstructured regime constructed here can indeed
be meaningfully perturbed to describe the dynamics of “weakly structured” ecologies, an

interesting theoretical scenario that was previously out of reach.

To maintain consistency with the previous examples, the approach taken here focused
exclusively on resource competition. The “hidden” modes corresponding to unobservable
inter-patch dynamics is the price to pay for this simplicity. Other approaches are possible;
one might, for instance, imagine constructing a dense-spectrum model by means of a fully

individual-based description, or through a sequence of iterative subdivisions of a Lotka-
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Volterra model (similar to the approach taken in Ref. [48], but repeated an infinite number
of times). One of these methods might yield a more elegant construction; however, the
multi-patch example constructed here has the advantage of being easily interpretable, and

potentially even analytically tractable with methods developed in Ref. [49].

VIII. DISCUSSION

The mathematics of the “eigenmode approach” described here is very simple. Anyone
familiar with the Principle Component Analysis (PCA) has encountered the problem of
choosing the number of components on which to focus. In rare circumstances, a few com-
ponents are sufficient to capture most of the variance; the generic situation, however, is
that the spectrum shows no obvious gap, offering no natural truncation point [50]. Nor-
mally (e.g., when investigating stability [1, 51]), one thinks of the PCA modes as linear
combinations of the fundamental degrees of freedom, namely the species abundances. Here,
the novelty is to ask whether the eigenmodes could be used as the fundamental degrees of
freedom themselves.

One advantage of this approach is that degrees of freedom are inferred, rather than postu-
lated. The eigenmode formalism admits the possibility that the most relevant variables may
take a different form than simply the combined abundance of some taxa. As a simplest ex-
ample, imagine a two-species consortium S7, Sy that runs the same metabolic reaction that
species S3 performs alone. In this scenario, the combination S; + Sy — S5 might be a func-
tionally “negligible” (slow) eigenmode, but the reduction of dimensionality this observation
affords does note reduce to simple branch-merging on a phylogenetic tree. Situations when
one diverse set of species is essentially interchangeable with another diverse set are likely
the rule, rather than an exception, as evidenced by the dramatic compositional variations of
human-associated microbiota across healthy individuals, at all taxonomic levels [16]. This
suggests that the number of negligible eigenmodes may indeed be large, and recognizing
them could simplify the task of modelling these communities.

Whether the eigenmode idea could indeed provide a practical recipe for constructing
low-dimensional descriptions of real ecosystems is a question that can only be settled by an
empirical study. Measuring the species-species interaction matrix is difficult, but has been

attempted [51-53], and the empirically determined ecomodes were previously shown to be
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interpretable for low-diversity communities [40]. An alternative definition of an ecomode,
easier to access experimentally, might rely on the spectral decomposition not of the interac-
tion matrix, but of the correlation matrix, computed across an ensemble of communities [41].
The two definitions are not equivalent [41], and further work is required to investigate which
approach would be more successful in practice.

Perhaps more profoundly, however, the framework developed here motivates new ques-
tions that could be asked about ecosystems. Are there general laws governing the structure
and evolution of community spectra? What ecological mechanisms might cause a given
eigenvector to change in a predictable way, or a cause a given eigenvalue to become more
prominent? How is the spectrum affected by evolutionary mechanisms? One may, for ex-
ample, expect that purifying selection encourages the development of spectral gaps, while
diversity-creating mutations have the opposite effect. A major advance in classical physics
came with the development of the renormalization group, a framework explaining why many
physical systems, as they become large, do in fact develop a gap in the spectrum, enabling
some low-dimensional “effective theory” to become an excellent description [54]. Ecology and
evolution provide a new context for asking similar questions, which are particularly relevant
today with the study of highly diverse microbial ecosystems of medical and environmental
interest [16, 17].

In contrast to questions like “how many species are present?”, or “what happens if species
X is introduced?”; those formulated above do not require postulating the existence of species
as fundamental ecological variables. To emphasize this, here it was shown that even an
extreme scenario of an “ecology without species” can now be conceptualized. The classic
Lotka-Volterra model investigates an ecology of perfectly defined species, a regime that has
been studied extensively (Fig. 1a). This work presented a theoretical construct that can be
seen as the polar opposite, one where the phenotypes are completely unstructured, and yet
form a valid ecology (Fig. 1c).

In any real setting, organisms sharing a recent common ancestor are functionally similar,
and the approximation “every single organism is unlike any other” (Fig. 1c) is even more
extreme than the converse assumption of perfect clustering into a small number of species
(Fig. 1a). Nevertheless, a theoretical investigation of this unstructured regime will likely be
a valuable step towards understanding the middle ground occupied by the real-life commu-

nities; in physical terms, its role would be to provide a different origin for a perturbative
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expansion (Fig. 1). For example, in condensed matter physics it was recently proposed that
a granular medium at the brink of a jamming transition can be thought of as a “maximally
disordered” solid, the opposite extreme of a perfectly ordered crystal [55]. Importantly, it
was shown that certain properties of real-life solids, even at relatively low disorder, can be
more adequately described as a perturbation of this “maximally disordered” regime, rather
than as a perturbation of a perfect crystal [55]. Similarly, it is intriguing to hypothesize
that some behaviors of highly diverse natural ecosystems may be better described as a per-
turbation of a fully unstructured no-species regime (adding some tendency of phenotypes to
cluster), rather than as a small deviation from the classic picture of well-clustered species
(where we attempt to recognize that species boundaries are “fuzzy”). This approach would
provide a systematic framework to investigate the implications of “structured” and “unstruc-
tured” variation imposed at a range of scales, effects whose importance at the intraspecific
level was recently highlighted [56].

The eigenmode formalism is by no means limited to resource competition models;
MacArthur’s model merely provided a convenient setting for constructing easily inter-
pretable examples. The framework described here does, however, suffer from a number
of other limitations: for example, only deterministic dynamics were considered, and the
discussion was restricted to small fluctuations around some ecological state. Nevertheless,
the question raised here was whether our description of ecosystems could move beyond the
inherently discrete concept of a “species”. In light of this challenge, the simplifications

above provide a reasonable starting point.
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