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Cell migration in morphogenesis and cancer metastasis typically involves interplay between differ-
ent cell types. We construct and study a minimal, one-dimensional model comprised of two different
motile cells with each cell represented as an active elastic dimer. The interaction between the two
cells via cadherins is modeled as a spring that can rupture beyond a threshold force as it undergoes
dynamic loading via the attached motile cells. We obtain a phase diagram consisting of chase-and-
run dynamics and clumping dynamics as a function of the stiffness of the interaction spring and the
threshold force and, therefore, posit that active rupture, or rupture via active forces, is a mechano-
sensitive means to regulate dynamics between cells. Since the parameters in the model differentiate
between N- and E-cadherins, we make predictions for the interactions between a placode-like cell
and a neural crest-like cell in a microchannel as well as discuss how our results inform chase-and-
run dynamics found in a group of placode cells interacting with a group of neural crest cells. In
particular, an argument was made in the latter case that that feedback between cadherins and cell-
substrate interaction via integrins was necessary to obtain the chase-and-run behavior. Based on our
two-cell results, we argue that this feedback accentuates, but is not necessary for, the chase-and-run
behavior.

I. INTRODUCTION

During embryonic development as well as in cancer
metastasis, cells often undergo migration in groups [1].
These groups are typically composed of cells of different
types interacting with each other giving rise to nontrivial
migration dynamics critical for their collective migration.
For example, co-cultures of stromal fibroblasts and car-
cinoma cells on top of an extracellular matrix (ECM)
reveal that the carcinoma cells move within tracks in
the ECM made by the fibroblasts [2]. Another exam-
ple of a nontrivial migration mode occurs when embry-
onic cell populations of two different types, neural crest
(NC) cells and placodal (PL) cells, are cultured next to
each other on a polyacrylamide substrate [3]. NC cells
are highly multipotent cells that migrate extensively dur-
ing embryogenesis [4], while placodal cells (PL) remain
more localized [3, 5]. When cultured together, the NC
cells chase the PL cells due to chemotaxis, while the PL
cells run away from the NC cells. These examples sug-
gest the following questions: What biochemical and/or
biophysical mechanisms lead to different modes of mi-
gration resulting from the interplay of cells of different
types? And how can such modes be modulated by cell-
cell and cell-substrate interactions and possible feedback
between them?

To begin to answer such questions via quantitative
modeling with the NC-PL experiment in mind, we take a
bottom-up approach and first characterize how two indi-
vidual cells, each of a different type, move and interact in
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FIG. 1. (Color Online) Schematic representation of two cells
(blue and green) with the red interaction spring containing
N cadherin molecules in parallel, each with spring stiffness kc
and a filopod with spring stiffness kf . Each blue and green
spring represents the prominent stress fibers along the length
of the cell and, therefore, is active with both the extended
mode (top) and contracted mode (bottom). The blue fila-
ments represent actin filaments, red rectangles, α-actinin, and
the green shapes, myosin minifilaments.

one-dimension. And while there are a number of models
of single cell migration or even few cell migration of the
same cell type [6–15], we will implement the active dimer
model to describe each cell [16]. One of the strengths of
the active dimer model is its simplicity making it an ideal
candidate to generalize to two cells. Another strength of
the active dimer model is that it connects experimentally
known properties at molecular scales to mechanobiology
at cellular scales.

In a nutshell, the active dimer consists of an active
spring with focal adhesions acting as catch bonds at the
leading cell edge and slip bonds at its rear [16]. The cel-
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lular activity is mechanosensitive and is incorporated as
a changing equilibrium spring length depending on the
loading state of myosin. Cellular motion arises as a re-
sult of the combined effect of cellular activity and the
asymmetry in the mechanics of the focal adhesions at
the front and the rear of the crawling cell. Using inde-
pendently estimated parameters, individual cell speeds
are in reasonable agreement with experimental observa-
tions for cells moving along ECM fibers, i.e. migration in
one-dimension [18]. Higher-dimensional generalizations
of the active dimer model, while more complicated, are
also possible. And yet, the chase-and-run (CAR) dynam-
ics aforementioned could potentially be observed in one-
dimension, so one-dimension is the most natural place to
make initial predictions.

In order to characterize the biophysical interaction be-
tween two cells, we will invoke a minimal set of assump-
tion based, in part, on experimental observations of sin-
gle NC cells interacting with PL cells [3], and exam-
ine whether CAR dynamics emerge from the model or
not. If CAR dynamics do emerge, how do the dynam-
ics depend on parameter values and can these results be
used to make testable predictions for one-dimensional
motions? In addition to capturing the chase-and-run
(CAR) phenomenon, we will ultimately be able to distin-
guish between various mechanisms for contact-inhibition-
locomotion (CIL) in one-dimension— motion in which
two cells move towards each other, collide, and then move
away from each other [3, 19–22].

Along the way we will also quantitatively test some
of the qualitative ideas put forth in Ref. [3] to explain
the CAR dynamics. Specifically, the authors argue both
chemotaxis and CIL are necessary since if either the
chemotaxis is blocked by genetically knocking down the
cytokine implicated in NC chemoattraction in PL cells
or genetically knocking down N-cadherins or inhibiting
planar cell polarity (PCP) signaling, the CAR dynam-
ics is no longer observed. Both N-cadherins and PCP
signaling are thought to be responsible for CIL. This ex-
planation can be tested at the two cell level. The authors
argue that an important part of the CIL mechanism is
that focal adhesions between the NC and PL cells are
down-regulated. We can quantitatively test this idea by
incorporating feedback between cell-cell interactions and
cell-substrate interactions.

The paper is organized as follows. Section II contains
a complete description of the model, Section III presents
the analysis of the model, and Section IV summarizes the
results and addresses implications.

II. MODEL

A. Single active elastic dimer

Cells moving along ECM fibers extend themselves and
adhere to the fibers through focal adhesions which are
tractioned via contraction of longitudinal stress fibers;

this migration mode is known as mesenchymal migration
[17, 18, 23–25]. Pronounced stress fibers are a character-
istic feature of this migration mode. Stress fibers primar-
ily consist of actin filaments, myosin, and a passive cross-
linker α-actinin [26]. Structurally, they can be thought of
as made of parallel arrangements of acto-myosin units in
series, where each actomyosin unit may be considered as
two actin filaments connected by a myosin mini-filament,
and the crosslinker α-actinin at each end (Fig. 1), i.e.
each unit is a muscle-like element [23, 27].

These pronounced stress fibers in the mesenchymal
migration mode are modeled as an active spring, or a
spring with two different equilibrium lengths, xeq1 and
xeq1 − xeq2, corresponding to the unloaded and loaded
states of myosin. Myosin exhibit catch bond behavior
with an optimum load force of about 6 pN per motor. So
myosin may not always be under sufficient load (or too
much load) to walk efficiently along actin filaments [28].
Indeed, when new focal adhesions are just beginning to
form at the front of the crawling cell, myosin are not
pulling due to the small applied load. And when myosin
are not pulling, the actin filaments extend to relieve the
strain in the alpha-actinin and the mechanical stiffness
of the active spring, k1, is primarily due to the stiffness
of the α-actinin. As the focal adhesions at the front of
the cell mature over a time scale of seconds [29], the
myosin are under enough load such that they “catch”
and induce a contracted mode causing the alpha-actinin
to stretch and rotate in the opposite direction. In this
mode, myosin provide the mechanical stiffness of the
spring and there is a second equilibrium spring length
as indicated by the isolated stress fiber experiments [30].
As the myosin contract, strain builds in the alpha-actinin
such that the myosin no longer “catch” due to too much
load and a transition is then made to the extending mode.

Given these two modes of the stress fiber—passive ex-
tension and active contraction—the equilibrium spring
length, xeq, can be written as

xeq = xeq1 − xeq2Θ(x1 − x2 − l), (1)

where Θ(x1− x2− l) is the Heaviside step function. The
transition between the two modes is mechanosensitive.
More precisely, it is determined by the extension of the
spring: the larger the extension, the more the tensile load
on myosin thereby inducing contractility of myosin given
its catch bond nature [28].

To account for potential conformational changes in
the alpha-actinin, additional alpha-actinin binding in the
contracted state due to the increasing overlap between
actin filaments, as well as internal frictional losses, the
equilibrium spring length takes on two different values
depending on the history, i.e. l↑, as the active spring ex-
tends and l↓ as the active spring compresses with l↑ > l↓.
Therefore, the equilibrium active spring length takes on
the form,

xeq = xeq1 − xeq2Θ(x1 − x2 − l↑), (2)
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when the active spring is extending and

xeq = xeq1 − xeq2Θ(x1 − x2 − l↓), (3)

when the active spring is contracting. In other words,
the description for xeq contains hysteresis. See Fig. 2a.
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FIG. 2. (Color Online) (a) Plot of the equilibrium spring
length of the active spring and (b) of the friction coefficient
at the leading edge of the cell as a function of the active spring
extension. From Ref. [16].

While the spring models the stress fibers of the cell, the
beads denote the location of focal adhesions, which en-
able the stress fibers to connect to the ECM. Integrins are
one of the main proteins comprising focal adhesions [31].
It has been shown that integrins can act as catch bonds
under repeated loading [32]. We, therefore, conjecture
that in the front of the cell, integrins are more likely to
act as catch bonds due to the more dynamic environment
of the maturation of focal adhesions. In the back of the
cell, however, integrin act as typical slip bonds, where fo-
cal adhesions are merely being disassembled. Therefore,
in the front of the cell, the initiation of focal adhesions
call for a “small” friction coefficient, but once the focal
adhesion forms and develops, it has a large friction co-
efficient when compared to an integrin slip bond. This
“catching” mechanism of cell-track adhesion allows the

cell’s front to expand and explore new territory and after
having done that, then allows for the cell’s rear to retract
with the cell front not losing grip on the new territory it
just explored due to the catch bond mechanism.

Since the stress fibers and the focal adhesions are con-
nected (the stress fibers end at focal adhesions), we define

γ1 = γ11 + γ12Θ(x1 − x2 − l↑(↓)) (4)

with γ11, γ12 > 0 and γ11 < γ12. For small extensions of
the cell, the friction at the leading bead is smaller than
for large extensions. Larger friction implies a larger un-
binding rate for integrins and, therefore, the integrins can
more effectively grip the track. In addition, because the
integrins track the myosin activity, the hysteresis exhib-
ited by the myosin is also exhibited in the friction. See
Fig. 2b. Finally, γ2, the friction coefficient for the now
“rear” bead, is assumed to be constant with the integrins
acting as ordinary slip bonds.

For the single active dimer case, the combination of
activity that depends on the strain in the stress fiber and
the asymmetry of the focal adhesions at the leading and
rear edges leads to directed cell motion in the direction of
larger friction [33]. To see this quantitatively, the active
spring and focal adhesions are governed by the following
active elastic dimer equation in the overdamped limit for
the ith bead:

γi(x1, x2, l
↑, l↓)ẋi(t) =

±k1(x1 − x2 − xeq(x1, x2, l
↑, l↓)) +

√
Aiζi(t). (5)

We have included an “active noise” term, where Ai is the
variance of the active noise contribution due to stochas-
ticity in motor activity, and ζi(t) is a Gaussian random
variable with 〈ζi(t)〉 = 0 and 〈ζi(t)ζj(t′)〉 = δijδ(t − t′).
Here, Ai does not satisfy a fluctuation-dissipation rela-
tion and is not associated with any temperature.

One can transform to relative and center-of-mass co-
ordinates using xs = x1 − x2 and xs,cm = x1+x2

2 , where
the subscript s stands for single, to arrive at

ẋs = −
(

1

γ1(xs, l↑(↓))
+

1

γ2

)
k1(xs − xeq(x, l↑(↓))),

vs,cm(t) = ẋs,cm

= −
(

1

γ1(xs, l↑(↓))
− 1

γ2

)
k1(xs − xeq(x, l↑(↓)))

2

(6)

depending on whether the spring is extending or com-
pressing and in the limit of no active noise. A non-zero
center of mass velocity translates to motion of the cell.

B. Two active elastic dimers

Now we consider two motile cells in one-dimension with
each cell described by an active elastic dimer. To be con-
crete, the beads are described by their positions xi(t),
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with i ∈ [1, 4], where i = 1 denotes the rightmost bead
and i = 4 the leftmost. The focal adhesions associated
with the ith bead are denoted by γi. We set γ1 = γ2,
which means the right cell is stationary given the sym-
metry in the friction, provided no outside forces act on
it. This is our model PLL (placode-like) cell since PL
cells are less migratory than NC cells. More specifically,
individual PL cells move about a third of the speed of NC
cells on average [34]. By setting the velocity of the center
of mass of the PLL cell in the absence of the NCL cell
to zero, and then introducing the NCL cell– any nonzero
velocity of the PLL cell center of mass will be due to
the NCL cell. If the nonzero velocity averaged over a
cycle is directed away from the NCL cell, then we will
be observing the chase part of the dynamics. The model
is particularly applicable to experiments studying one-
dimensional cell migration in microchannels.

We now turn to the NC-PL cell population experi-
ments [3] for further hints as to how to build a model de-
termining the interaction between the two cells. The first
observation is that the NC cells chemotact towards the
PL cells excreting cytokine Sdf1, a known NC chemoat-
tractant. The second observation from looking at the in-
terface between NC and PL cells at the single cell scale is
that the two different cell types form transient, but func-
tional, cell-cell junctions. Data from the these transient,
but functional, junctions indicates that the timescale for
the collapse/destruction of the cell-cell junction is more
abrupt than the timescale for the formation of the cell-
cell junction. Both observations are just as relevant for
the two-cell case as for the groups of two cells case. How-
ever, the group of PL cells in the experiments presumably
generate enough chemoattractant to drive chemotaxis.
When examining collisions between individual NC-PL
cells on a surface, the authors did not observe chase-and-
run dynamics at the two-cell level [3]. The confinement
of the two cells to a microchannel will concentrate the
chemoattractant to enhance the possibility of chemotaxis
of the NC cell towards the PL cell.

We now include these two, rather unambiguous, obser-
vations into the model with the above caveat of confine-
ment triggering chemotaxis. As for our neural crest-like
(NCL) cell (cell on the left), the action of chemotaxis is
implicitly described by the breaking of the symmetry be-
tween the rear and front bead focal adhesion of the left
cell to generate directed motion. Thus, for the cell on
the left we have γ3 = γ33 +γ34Θ(x3−x4− l↑(↓)) and γ4 is
a constant. Both cells have changing equilibrium spring
lengths denoted by xeq = xeq1−xeq2Θ(x1−x2−l↑(↓)) (for
the PLL cell) to incorporate myosin driven contractility
and α−actinin driven extensibility as described in [16].

To account for the transient, but functional, junction
formation between the two cells, the cell-cell interaction,
mediated by N-cadherin molecules localized at the ends of
filopodia (actin-bundle-based protrusions) [35], is mod-
eled as an interaction spring which forms when two cells
come in close proximity (distance ∼ la). Because the
cells have their own inherent dynamics, they can pull

on the cadherin bonds and rupture them [36]. It is this
rupture phenomenon that may account for the difference
in timescale between the formation of the cell-cell inter-
face and the destruction of it [3]. The mechanical struc-
ture of the cell-cell junction will be assumed as follows:
each cadherin molecule and the filopod are both linear
springs of spring stiffness kc and kf respectively. The
cadherin springs are in parallel with each other followed
by the filopod spring in series (Fig.1). So the interaction
spring elasticity is dominated the weaker spring, which
is the filopodia spring since kf ≈ kc when comparing
numbers [37, 39] and N0 � 1. We will use kf = k for
notational ease. The interaction spring can rupture when
kf (x2−x3− leq) > N0fc, where N0 is the number of cad-
herin molecules and fc is the critical force threshold that
will rupture an individual cadherin bond. Rupture can
only occur when the two beads at either end of the inter-
action spring are moving away from each other. While
rupture due to an applied force (static or dynamic) has
been considered previously, we consider, for the first time
in a model, rupture due to the interplay between active
forces within each cell and intra- as well as inter-cellular
mechanics.

Incorporating the different components of the model,
the four coupled equations of motion of the beads are:

γ1(x1, x2, l
↑, l↓)ẋ1(t) = −k1

[
x1 − x2 − xeq(x1, x2, l

↑, l↓)
]

+
√
A1ζ1(t)

γ2(x1, x2, l
↑, l↓)ẋ2(t) = k1

[
x1 − x2 − xeq(x1, x2, l

↑, l↓)
]

− k[x2 − x3 − leq] +
√
A2ζ2(t)

γ3(x3, x4, l
↑, l↓)ẋ3(t) = −k2

[
x3 − x4 − xeq(x3, x4, l

↑, l↓)
]

+ k[x2 − x3 − leq] +
√
A3ζ3(t)

γ4(x3, x4, l
↑, l↓)ẋ4(t) = k2

[
x3 − x4 − xeq(x3, x4, l

↑, l↓)
]

+
√
A4ζ4(t).

For completeness, we have again included active fluctu-
ations denoted by

√
Aiζi(t), where ζi(t) is a Gaussian

random variable with 〈ζi(t)〉 = 0 and 〈ζi(t)ζj(t′)〉 =
δijδ(t − t′). We will ultimately study the limit A1 =
A2 = A3 = A4 = A. We have independent estimates for
all but three parameters based either on experiments or
prior modeling discussed in Ref. [16] or elsewhere. Please
see Table 1 for the values of the parameters used unless
otherwise specified.

For the interaction parameters, we know from single
molecule experiments that fc = 40 pN for N-cadherin
and fc = 70 pN for E-cadherin [38], k = kf is of order
1nN/µm [39], and N0 is of order 100 per pseudopod [40].
The only parameters we do not have independent esti-
mates for are leq, la, and A, though leq and la are deter-
mined by the appropriate lengthscales in the system. We
set la = 0.5 µm and vary both leq and A.

To study this model, we implement 4th order Runge-
Kutta integration scheme in the absence of noise. With
noise, we implement a Euler-Maruyama integration
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Parameters Values
k1 = k2 1 nN/µm
xeq1 50 µm
xeq2 5 µm
l↓ 46.5 µm
l↑ 48.5 µm
γ11 20 nN s/µm
γ12 0 nN s/µm
γ2 20 nN s/µm
γ33 10 nN s/µm
γ34 20 nN s/µm
γ4 20 nN s/µm
N0 100
la 0.5 µm
leq 2 µm
A 0

TABLE I. Table of parameters used unless otherwise specified.

scheme. Both implementations use a time step of 0.005
seconds. We have checked our simulations against the
analytical solution for some parameter values. For the
single active dimer, there were two analytical solutions
to be pieced together according to the cell’s history. For
the interacting active elastic dimer case there are eight
analytical solutions to be pieced together according to
each cell’s history–two for each cell and two more cases
for the interaction spring either on or off. Given the plu-
rality of solutions, the majority of our results are based
on simulations.

III. RESULTS

A. Single active dimer

Let us first briefly review the results for the dynamics
of a single active dimer. Starting with Eq. 6, the solution
for the relative coordinate as a function of time when the
equilibrium spring length is xeq1 is

xs,I(t) = xeq1 + (xs(0)− xeq1)e
− k1γ2

(γ11+γ2)

(γ11)
t
, (7)

and when the equilibrium spring length is xeq1 − xeq2,

xs,II(t) = xeq1−xeq2+(xs(0)−xeq1+xeq2)e
− k1γ2

(γ11+γ12+γ2)

(γ11+γ12)
t
.

(8)
Depending on the history of the active spring, the solu-
tions can be pieced together accordingly. For example,
assume xs(0) ≥ l↑, then xs decreases and obeys xs,II(t),
which decreases exponentially with time. This is because
the cell has “over-extended itself” in its search for new
territory and now the focal adhesions have matured so
both the equilibrium spring length is decreased, due to
myosin-induced contractility, and the front catch bonds
“catch” such that the back of the cell can catch up with
the front without losing new ground. After the initial
decrease in xs, as soon as xs decreases below l↓, then the

myosin effectively stop pulling, due to strain built up in
the stress fibers from the focal adhesions and α-actinin,
and the equilibrium spring length increases with new fo-
cal adhesions developing at the front. Once this happens,
the time clock is “re-zeroed” back to t = 0 and xs,I(t) is
invoked, an exponential expansion given the initial con-
dition, until xs becomes larger than l↑ such that xs,II(t)
solutions become valid once again and the process repeats
itself.
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FIG. 3. (Color Online) (a) Plot of cell length xs = x1 − x2
as a function of time for the parameters specified above for
k1 = 1 nN/µm, xeq1 = 50 µm, xeq2 = 5 µm, l↓ = 46.5 µm,
l↑ = 48.5 µm, γ11 = 10 nN s/µm, γ12 = 20 nN s/µm, and
γ2 = 20 nN s/µm. (b) Plot of position of the center of mass,
xs,cm, as a function of time for the same parameters. (c) Plot
of the velocity of the center of mass as a function of time for
the same parameters.

This cyclic process in an overdamped system leads to
net motion due to (1) the switching between the two equi-
librium spring constants, which drives the overdamped
system out-of-equilibrium, and (2) the asymmetry in the
friction coefficients. Both properties are needed for mo-
tion. See xs(t), xs,cm(t), and vs,cm(t) in Fig. 3 for the
parameters independently estimated in Ref [16]: k1 =
1 nN/µm, xeq1 = 50 µm, xeq2 = 5 µm, l↓ = 46.5 µm,
l↑ = 48.5 µm, γ11 = 10 nN s/µm, γ12 = 20 nN s/µm,
and γ2 = 20 nN s/µm. Using these independent es-
timates, one finds reasonable agreement with observed
speeds of elongated cells crawling along ECM fibers [18].
The average speed of NC cells is approximately 0.03
µm/sec [34], which average speeds in reasonable agree-
ment with 0.033µ/sec for the single active elastic dimer
using the above independent estimates.

As for the cyclic nature of the active dimer motil-
ity, the natural frequency of oscillation is given by ω =
2π/(tI + tII) where tI = β log h+w

h−w and tII = α log h+w
h−w

respectively, where α = γ2(γ11 + γ12)/k(γ11 + γ12 + γ2),
β = γ2γ11/k(γ11 + γ2), w = 1

2 (l↑ − l↓) and h = 1
2xeq2.

Note that w < h for motion to occur since the active
strain energy generated by the myosin must overcome
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the strain barrier by the α-actinin.

B. Two active dimers

To classify the types of interactions between the two
different cells, we study the cell dynamics as a func-
tion of the junction spring stiffness, k, and the rupture
force between cadherin molecules, fr. We first focus on
xrel = x2(t) − x3(t), xcm,pl(t) = 1

2 (x1(t) + x2(t)), and

xcm,nc(t) = 1
2 (x3(t) + x4(t)). We initialize the NCL cell

some distance away from the PLL cell and iterate until
they interact. As a result of the asymmetry in the fric-
tion coefficients of the NCL cell, it will migrate towards
the PLL cell, mimicking the movement of the NCL cell

toward the PLL cell due to chemotaxis. The PLL cell, on
the other hand, does not move (on its own) since there is
no asymmetry in its friction coefficients. Figure 4(a)-(c)
plots these quantities for fr = 0.01nN and k = 5nN/µm
as they interact. For these particular values, the cell
springs are able to rupture the interaction spring, i.e.
separate. While the two cells interact, their separation
first increases, then decreases, and immediately following
rupture, the distance between the two cells is maximum.
The rupture leads to a retraction of both cells away from
each. But as the NCL cell, again, moves toward the PLL
cell, the two cells interact again and the process repeats
ad infinitum. We classify this dynamic state as chase-
and-run (CAR) behavior since the interaction spring is
ruptured with the PLL cell pulling away from the NCL
cell. Note that the position center of mass of the PLL
cell only changes when in contact with the NCL cell.
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FIG. 4. (Color Online) (a)-(c) The relative distance between the two cells, the center of mass position of the neural crest, and
the center of mass position of the placode cell, all as a function of time. Here, fr = 0.01nN and k = 5nN/µm. The grey
region in the top figure indicates when the interaction is tuned on. (d)-(f) The same as (a)-(c) but with fr = 0.03nN and
k = 5nN/µm. (g)-(i) Here, fr = 0.03nN and k = 5nN/µm but with larger friction coefficients for the PLL cell. We have set
the active noise strength A = 0 in these simulations.

Now we increase the rupture force to fr to 0.03nN .
See Fig. 4(d)-(f). At this increased rupture force for the
cadherin molecules, the interaction spring remains on.
In other words, the two cells do not separate once they
interact, for the duration of the simulation for twenty
minutes. We dub this dynamic state as clumping. This
state is natural at higher rupture forces because there is
not enough dynamic load between the two cells to ac-
tively break the cadherin springs. This statement then
begs the question: is there a transition between CAR
and clumping when the PLL cell is purely passive, or no
activity? We find that there is no transition between the
two types of dynamics when PLL cell is not active—only
clumping occurs. So activity is necessary for the observ-
ing the CAR dynamics.

The clumping dynamics exhibits some interesting dy-
namics of its own. For example, if we increase the two
friction coefficients of the PLL cell such that the time
scales are different for each cell, for fr = 0.03nN and

k = 5nN/µm, we observe quasiperiodic behavior in
the relative distance between the cells. See Fig. 4(g)-
(i). More specifically, as γ11 and γ2 are varied between
35nN s/µm to 45nN s/µm, the solutions go from pe-
riodic to quasiperiodic back to periodic again. While
more study of this quasiperiodic regime is presumably
warranted from a mathematical standpoint, whether or
not such quasiperiodicity can be observed experimentally,
particularly in the presence of noise, is the more relevant
issue at hand. In the absence of noise, we speculate that
a ratio of incommensurateness emerges between the two
natural frequencies of each active spring as mediated by
the interaction spring for various regions of the clumped
dynamics phase space.

One may also inquire about the velocity of the cen-
ter of mass of the PLL cell as well as the velocity of the
center of mass of the NCL cell in both the CAR phase
and the clumping phase. The velocity of the center of
mass of the NCL cell averaged over one cycle, v̄nc,cm,
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is plotted in Fig. 5 for both phases. In steady state,
v̄nc,cm = v̄pl,cm. The greater than zero average center
of mass velocity (moving towards the right) for the PLL
cell verifies the chase part of the CAR dynamics since the
PLL cell would otherwise not move at all on its own by
construction. With v̄pl,cm > 0 in the clumping phase, the
NCL cell is driving the PLL cell by breaking the symme-
try between the two beads of the PLL cell and pushing it
in the direction of the NCL cell. The averaged center of
mass velocity is larger in the CAR phase in comparison
to the clumping phase with the upper bound on v̄nc,cm
being the single NCL cell value. A smaller rupture force
promotes more rupture and it is the retraction of the
PLL cell away from the NCL cell immediately following
the rupture event driving the net displacement of the
PLL cell. In the clumping phase, the average velocity
of the center of mass of the NCL cell or PLL cell does
not change with rupture force since the interaction spring
does not rupture. In the CAR phase, the two plateaus
in v̄nc,cm as a function of fr are due to the rectangular
shape of the hysteresis in the equilibrium spring length
of the two different active elastic dimers.

We also vary k, the spring constant of the interaction
spring and determine its effect on the transition between
CAR and clumping. For a small enough rupture force
such that the system in the CAR phase, one can in-
crease k to drive the system into the clumping phase.
This because greater load is required to achieve the same
strain making the system less likely to achieve the rup-
ture threshold and so the two cell types remain bound.
In addition, changing k does not affect much v̄cm,nc. For
instance, with fr = 0.02nN , v̄cm,nc = 0.015µm/s for
k = 1nN/µm; for k = 10nN/µm, v̄cm,nc = 0.013µm/s.

In Fig. 6 we summarize our findings in terms of search-
ing for CAR and clumping dynamics as a function of the
interaction spring stiffness k and the rupture force fr for
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FIG. 5. (Color Online) The velocity of the center of mass
for the NCL cell averaged over one cycle once the system
has reached steady state as a function of rupture force with
k = 5nN/µm. To the left of the vertical dashed line is CAR
dynamics; to the right, clumping dynamics.
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0.06
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FIG. 6. (Color Online) Chase-Run and Clumping states for
the two-cell model for the parameter values noted in the text.
The symbols, blue circles (Chase-Run) and green triangles
(Clumping) indicate simulation data, while the corresponding
blue and green shaded regions correspond to the analytical
result. The units of k are nN/µm and the units of fr are nN .

an individual cadherin bond. Recall that the interaction
spring connecting the two cells will rupture when the
separation between them x2 − x3 exceeds N0fr/k + leq,
where N0 is the number of cadherin molecules and leq is
the equilibrium length of a cadherin bond. This provides
an analytical estimate for the phase boundary between
the CAR and clumping dynamical states. For a fixed
spring stiffness k, larger forces are required to disrupt
clumped states than CAR states. Therefore, the system
transitions from CAR dynamics at smaller rupture forces
to clumping dynamics at larger rupture forces at fixed k.
As the interaction spring stiffness increases beyond the
cell spring stiffness, the energetics is dominated more by
the interaction spring than the active loading by the cell
springs and, hence, the dependence on the rupture force
on the transition decreases. We can estimate the transi-
tion line by looking at the case where each cell spring is in
its contracting phase (smaller equilibrium spring length)
so that each cell spring maximally pulls on the interac-
tion spring to potentially rupture it.

The deviation of the phase boundary obtained from
the simulations from the analytical prediction can be ex-
plained as follows. To obtain the time series of the co-
migration of the two cells observed in the simulations,
eight analytical solutions of coupled ODEs need to be
pieced together– the active spring in each cell can be in
a loaded or unloaded state, and the interaction spring
between the cells can be on or off. Of these eight solu-
tions, only one solution represents the co-migration two
interacting cells just preceding rupture. In obtaining the
analytical estimate for the phase boundary in figures 6,
7, and 8 we focus on this solution. However, the solution
will depend on the cells’ history, thus giving slightly dif-
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ferent values for the analytical prediction and the result
from the simulations in Fig. 6.
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FIG. 7. (Color Online) Phase diagrams for the two-cell model
as a function of h, with the chase-and-run state shown in
blue (dark gray in grayscale) and clumped state shown in
green (light gray in grayscale). Figures (a), (b), (c), and (d)
correspond to h = 7, h = 5, h = 4, and h = 3 respectively.
Parameter values used are the same as in the main manuscript
except for xeq2 which is changed to vary h. The units of k are
nN/µm and the units of fr are nN .
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FIG. 8. (Color Online) Phase diagrams for the two-cell model
as a function of w, with the chase-and run state shown in blue
(dark gray in grayscale) and clumped state shown in green
(light gray in grayscale). Figures (a), (b), and (c) correspond
to w = 2, w = 3, and w = 4 respectively. Parameter values
used are the same as in the main manuscript except for l↑

which is varied to vary w. Again, the units of k are nN/µm
and the units of fr are nN .

We further explore how the analytical estimates for the
phase diagram depend on single cell parameters in Figs. 7
and 8. In addition to the dynamical phase, clumped or
chase-and-run, depending on fr and k, we expect it to
also depend on how effectively the cells pull or contract
to potentially rupture the cadherin bonds. This effective-
ness is quantified by h, half the height of the hysteresis
loop in the equilibrium length of the active cell spring
shown the Fig. 2(a). The larger h is, the more the cell
can contract and the greater the activity. Therefore, we
expect the clumping region to shrink as h is increased.
We indeed observe this behavior as shown in Fig. 7. On
the other hand, varying w, half the width of the hystere-
sis loop in Fig. 2(a), does not alter the phase boundary;
while w contributes to determining when the system is
in the most contractile state, once there it doesn’t im-
pact whether the dynamics is CAR or Clumped (Fig. 8).
The dependence of the phase diagram on h signifies that
a theory of motility involving cell-cell interaction should
depend on the mechanical properties of the cytoskeletal

machinery in general, as expected, in addition to the rup-
ture force of the individual cadherin molecules, which has
not, to our knowledge, been explored before.

So far our results have been in the absence of noise
and yet in biological systems there is active noise due
to the presence of fluctuations in the myosin motors, for
example. If our model is to have any relevance for bi-
ological systems, then we must explore whether or not
the phase diagram we obtain is robust to active noise
with A > 0. We find that most of the phase-diagram in
Fig. 6 is robust to some range of the active fluctuation
strength (see Fig. 9). How do we determine whether or
not that range is physiologically relevant? For compari-
son, an estimate of variance of the thermal noise strength
for each bead is 2γkBT = 2(20nN s/µm)(4 pN nm) =
1.6×10−4 nN2 sec. Experiments on actomyosin networks
demonstrate that the noise strength of the activity can
be up to ∼ 10 times as strong as thermal noise [41], sug-
gesting that the variance of the active noise could be
as large as 10−3 nN2 sec. The values of A used in our
simulations are thus well within the physiological range,
with Figure 9 indicating that our deterministic results
are robust to active noise for k approximately greater
than 5nN/µm. However, for larger values of A, a sys-
tem undergoing CAR dynamics in the absence of noise
can be driven to clumping with large enough fluctuations
as indicated in Fig. 9(a). In summary, the CAR dynam-
ics is robust for some range of A and k. We have here
assumed uncorrelated, or Gaussian noise, for simplicity.
Should active noise be an important contribution, we an-
ticipate fluctuations that correlate with motor activity, so
that correlated noise may be a more accurate represen-
tation of the system. Therefore, we leave further study
of a more intricate form of noise, and how it affects the
phase diagram, for a later date.

IV. DISCUSSION

We have constructed and studied a one-dimensional
motility model of two different but interacting cells. The
construction of the model was based on three assump-
tions: (1) that motile cells in one-dimension can be de-
scribed as active elastic dimers one with a non-zero center
of mass velocity (NCL cell) and another with zero cen-
ter of mass velocity (PLL cell), (2) that the NCL cell
chemotacts to, or moves toward, the PLL cell, and (3)
the cadherins form functional junctions between the two
cells that can also rupture. The latter two assumptions
are based on experiments of two different cell populations
moving and interacting in two-dimensions. Both assump-
tions should hold at the one-dimensional, two-cell-type
level.

With the above minimal assumptions, we find both
CAR and clumping dynamics. In the CAR phase, the
NCL cell migrates toward the PLL cell, a functional cad-
herin junction between the two cells form. The junction
then ruptures due to the active loading of the two cells
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FIG. 9. (Color Online) (a) The relative distance between the cells with and without noise with variance A on each of the four
beads. The curves with noise are typical curves. (b) The CAR-clumping phase boundary in the presence of noise, computed
from the stochastic differential equation simulations.
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FIG. 10. (Color Online) (a) The relative distance between the two cells with and without feedback. The brown shading
represents the presence of the interaction spring in the chase-and-run case, the gray, the clumping case. (b) Two cells moving
apart from each other are not always able to rupture the interaction spring, i.e. escape. It depends on the rupture force. We
have set the active noise strength A = 0 in these simulations.

and the two cells retract from each other. The NCL starts
to, again, move towards the PLL cell. This transient
interaction induces net motion in the PLL cell, which
does not experience any net motion on its own. Both
cells need to be active in order to observe CAR. As the
rupture force threshold increases, we observe a clump-
ing phase in which functional cadherin junction does not
rupture and the two cells remain attached. There is net
motion of the two-cell system in this phase as well, only
the average speed is smaller than in the CAR phase. The
clumping phase may be a generalization of trains of a
single cell type observed in microchannels in which cells
move collectively in one direction. In our model, how-
ever, the motion is driven by the NCL cell—the caboose

of the two-cell train [19]. It is also reminiscent of chaining
found in models of cells moving in microchannels [12].

Most of the CAR-clumping phase diagram is robust to
physiologically relevant amounts of active noise so that
it may indeed be a useful predictor for experiments of a
NC cell and PL cell moving in a microchannel the size of
a cell. Assuming that the chemoattractant of one slower
PL cell is concentrated enough in the microchannel to
coerce the NC cell toward it, we expect to observe CAR
dynamics. If one could promote E-cadherin expression in
the NC cell once the junction has formed, then one may
observe clumping dynamics. Interestingly, as mentioned
earlier, the rupture force for N-cadherin is approximately
40 pN , while for E-cadherin, it is approximately 70 pN .
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We observe, for example for k = 2nN/µm, the doubling
of rupture from 10 pN to 20 pN drives the system from
CAR to clumping. The authors of Ref. [3] conjectured
that the switching of N - to E-cadherin binding drove the
NC cell and PL cell populations away from the CAR dy-
namics. We observe that in our two cell model as well
within the appropriate force scale. Their conjecture is
rooted in the observation that the switch from E- to N-
cadherin promotes contact inhibition locomotion [42] and
both chemotaxis and CIL is necessary for CAR. While
detailed understanding of CIL is still lacking, our analy-
sis brings to the table the potential importance of active
rupture and how it, along with chemotaxis, predicts CAR
in one-dimension from the biomechanics alone. Biochem-
istry can potentially either enhance or override the effect.

In the NC-PL cell population experiments, the exper-
imentalists also conjectured that feedback between the
cadherin and integrin is important for the CAR dynam-
ics – the more cadherin bind, the less integrin bind [3].
We, however, observe CAR behavior even without any
feedback between the two types of molecules at least
at the level of two-cells. We can, of course, incorpo-
rate this feedback into our model as follows. If the in-
teraction spring is on, the friction coefficients on both
sides of the spring are decreased, say, by half (in both
states for the NC cell). With this feedback, we observe
that the CAR state occupies a larger part of parameter
space. For instance, with no feedback, the transition for
k = 5nM/µm occurs at fr = 0.021nN but with the
feedback, the transition occurs at fr = 0.023nN . Al-
ternatively, a clumped system with no feedback can be
driven to the CAR state with feedback. See Fig. 10(a).
In any event, feedback between cadherins and integrins
may be crucial for CAR in the experiments with popula-
tions of two cell types, but it is not at the two-cell level
as in the model.

Furthermore, we conjecture that feedback between the
cadherin and integrin binding could drive the cell to
change its polarity and, therefore, potentially reverse di-
rection. If the integrin binding becomes weaker one side
of the cell due to molecules participating more in the
cadherin junctions than in the focal adhesions, then inte-
grin binding on the other side of the cell may increase to
compensate. This increase in ultimately friction on the
other side of the cell may be enough to begin to generate
motion away from the “other” cell. If the two cells rup-
ture the interaction spring between them, which is not

always the case in the modeling here, the two cells each
go “their merry way”. Rupture, therefore, may be an
important part of the process. In Fig. 10(b), we show
the relative separation between two cells moving away
from each other for the cell-cell adhesion spring constant
k = 5nM/µm and other parameters as specified in Ta-
ble 1. We find that whether the connection between cells
can be ruptured or not depends on the interplay between
the intercellular interaction spring and the intracellular
active cell springs. When the interaction spring does not
allow the active cell springs to transition readily between
the contracting and extending states, the cells cannot es-
cape the other, resulting in clumped dynamics.

In addition to making predictions for one-dimensional
observation of CAR dynamics in a two-cell-type mi-
crochannel experiment, our model can be adapted to
small groups of NCL and PLL cells with each cell de-
scribed as a group of active springs and there being in-
teraction springs between each cell with the interaction
springs between the NCL and PLL cells having a lower
rupture threshold than the interaction springs between
two PLL cells. One expects multiple junctions between
the cells of two different types forming such that the rup-
ture of multiple junctions becomes itself an interesting
problem. Can the rupture of one junction trigger the
rupture of nearby junctions, etc.?

Finally, our model connects molecular and cellular
scales to provide a mechanistic understanding of col-
lective migration of heterogeneous cells that combine
mesenchymal migratory properties and cadherin based
cell-cell junctions. It may, therefore, not only apply
to the enhanced migration of placode cells during mor-
phogenesis, but also provide insights into micromechan-
ical interactions between co-migrating cancer cells and
non-tumorigenic cells, which are known to have signifi-
cantly different mechanical and adhesion properties [43].
Our results suggest that a quantitative framework of
coordinated cell migration and cell-cell interactions of
more than two cells with varying degrees of motility
should include molecular rupture forces [36] as well as
the mechanosensitive activity of the cytoskeletal machin-
ery.
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