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Cascading failures in complex systems have been studied extensively using two different models:
k-core percolation and interdependent networks. We combine the two models into a general model,
solve it analytically and validate our theoretical results through extensive simulations. We also
study the complete phase diagram of the percolation transition as we tune the average local k-core
threshold and the coupling between networks. We find that the phase diagram of the combined
processes is very rich and includes novel features that do not appear in the models studying each
of the processes separately. For example, the phase diagram consists of first and second-order
transition regions separated by two tricritical lines that merge together and enclose a two-stage
transition region. In the two-stage transition, the size of the giant component undergoes a first-
order jump at a certain occupation probability followed by a continuous second-order transition
at a lower occupation probability. Furthermore, at certain fixed interdependencies, the percolation
transition changes from first-order → second-order → two-stage → first-order as the k-core threshold
is increased. The analytic equations describing the phase boundaries of the two-stage transition
region are set up and the critical exponents for each type of transition are derived analytically.

Understanding cascading failures is one of the cen-
tral questions in the study of complex systems [1].
In complex systems, such as power grids [2, 3], fi-
nancial networks [4], and social systems [5], even a
small perturbation can cause sudden cascading fail-
ures. In particular, two models for cascading failures
with two different mechanisms were studied exten-
sively and separately, k-core percolation [6, 7] and
interdependency between networks [8–11].

In single networks, k-core is defined as a maximal
set of nodes that have at least k neighbors within
the set. The algorithm to find k-cores is a local
process consisting of repeated removal of nodes hav-
ing fewer than k neighbors until every node meets
this criterion. k-core decomposition of networks has
been extensively used in studying the organization
of large networks [12], and relating this organiza-
tion to the functionality in diverse systems such as
Internet [13], protein interaction networks [14, 15],
neuronal networks [16] and cortical organization of
the human brain [17]. The greater importance of
nodes present in the higher k-cores is demonstrated
also in epidemiology [18], community detection [19],
and neuronal networks [17, 20]. Furthermore, k-core
percolation has been used in explaining cascading
failures [6, 7], evolutionary biology [21] and robust-
ness studies of airport networks [22]. Additionally,
The threshold k can be node-dependent, which is
often referred to as heterogeneous k-core percola-
tion. Both homogeneous and heterogeneous cases
have been extensively studied in single networks [23–
27].

Another salient feature of real-world systems that

causes cascading failures is interdependency. For ex-
ample, power network and communication network
depend on each other to function and regulate, so
failure in one network or both networks leads to cas-
cading failures in one or both systems. Cascading
failures have been studied extensively as percolation
in interdependent networks [8, 9, 28–31]. Increase in
either interdependency or k-core threshold increases
the instability in networks. The models, studying
these processes separately, demonstrate this with
percolation transition changing from second-order
→ first-order as the parameters are increased [9, 26].

As motivated above, k-core percolation provides a
model to understand the robustness of diverse sys-
tems and more specifically robustness of important
nodes in the system. Recent studies have shown that
these systems are often interdependent on other sys-
tems and interdependency makes the systems more
vulnerable [8, 32]. Therefore, k-core percolation has
to be studied in the presence of interdependency, as
we do here, for better understanding of the robust-
ness of the the systems. In this paper, we study a
general model that combines both processes (k-core
percolation and interdependency), and demonstrate
that the results of the combination are very rich
and include novel features that do not appear in the
models that study each process separately. In many
aspects, results are counterintuitive. For example,
at certain fixed interdependencies, the percolation
transition changes from first-order → second-order
→ two-stage → first-order as the k-core threshold is
increased.

Consider a system composed of two interdepen-
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dent uncorrelated random networks A and B with
both having the same arbitrary degree distribution
P (i). The coupling q between networks is defined
as the fraction of nodes in network A depending on
nodes in network B and vice versa (Fig. 1). The k-
core percolation process is initiated by removing a
fraction 1−p0 of randomly chosen nodes, along with
all their edges, from both networks. In k-core per-
colation, nodes in the first network with fewer than
ka neighbors are pruned (the local threshold of each
node may differ), along with all the nodes in the
second network that are dependent on them. The
k-core percolation process is repeated in the second
network, and this reduces the number of neighbors
of nodes in the first network to fewer than ka. This
cascade process is continued in both networks un-
til a steady state is reached. The cascades in both
networks are bigger during k-core percolation than
during regular percolation due to pruning process.
Here we consider the case of heterogeneous k-core
percolation in which a fraction r of randomly chosen
nodes in each network is assigned a local threshold
ka + 1 and the remaining fraction 1 − r nodes are
assigned a threshold ka. This makes the average lo-
cal threshold per site, identical for both networks,
to be k = (1 − r)ka + r(ka + 1), which allows us
to study the k-core percolation continuously from
ka-core to (ka + 1)-core by changing the fraction r.
Note that the k-core percolation properties depend
on the distribution of local thresholds ka, and not
on the average threshold per site as found in single
networks [27, 33]. In this paper, for notational sim-
plicity, k is used for indexing various functions. The
functions truly depend on the parameters ka and r,
which can be calculated from k using

ka = ⌊k⌋ (1)

r = k − ka

where ⌊k⌋ denotes the floor function of k.
At the steady state of the cascade process, the

network becomes fragmented into clusters of various
sizes. Only the largest cluster (the “giant compo-
nent”) is considered functional in this study and is
the quantity of interest. The fraction of nodes φ′

∞

remaining in the steady state is identical in both net-
works as the entire process is symmetrical for both
networks and can be calculated using the formalism
developed by Parshani et al [9],

φ′

∞
≡ p0[1− q(1− p0Mk(φ

′

∞
))], (2)

where Mk(φ
′

∞
) is the probability of a node to belong

to the giant component in a single network with an
occupation probability of φ′

∞
. Due to coupling be-

tween the networks, the fraction φ′

∞
remaining in

FIG. 1. Demonstration of an interdependent network
with coupling q = 0.75 with dependency links shown
as dashed lines. The 2-core and 3-core are the highest
possible k-core in the top and bottom layers respectively,
while still preserving all the dependency links.

each network at the steady state of the cascade pro-
cess is less than the fraction p0 of nodes remaining
in each network after the initial damage. The size of
the giant component in the coupled networks at the
steady state φ∞ is

φ∞ = φ′

∞
Mk(φ

′

∞
). (3)

The k-core formalism for single networks [25],
based on local tree-like structure, can be used to
calculate Mk(φ

′

∞
). In this formalism, any node be-

longing to the giant component is required to be the
root node for (ka − 1)-ary tree to satisfy the condi-
tion of the root node having at least ka neighbors
within the giant component. Therefore, the func-
tion Mk(φ

′

∞
) depends on the probability of reaching

a node in the giant component starting from any ran-
domly chosen link Z, and a randomly chosen node
X . The function is given by

Mk(φ
′

∞
) = Mk(Z(φ′

∞
), X(φ′

∞
))

= (1− r)

∞
∑

j=ka

P (j)Φka

j (Z(φ′

∞
), X(φ′

∞
))+

r

∞
∑

j=ka+1

P (j)Φka+1
j (Z(φ′

∞
), X(φ′

∞
)),(4)

where

Φka

j (Z,X) =

j
∑

l=ka

(

j

l

)

(1−X)j−l

l
∑

m=1

(

l

m

)

Zm(X−Z)l−m,

which depends only on the value of ka.
These are calculated using the self-consistent

equations
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X

fk(X,X)
=

Z

fk(Z,X)
= φ′

∞
, (5)

where

fk(Z,X) = (1 − r)

∞
∑

j=ka

jP (j)

〈j〉 Φka−1
j−1 (Z,X)+

r

∞
∑

j=ka+1

jP (j)

〈j〉 Φka

j−1(Z,X). (6)

The probabilities Z and X are equal when the
local thresholds of k-core percolation are ka ≥ 2 [26].
Since there are many intermediate variables and

are coupled through multiple equations, we will
sketch a way of solving them. Eq. (2) can be simpli-
fied into a quadratic equation in p0 as

qMk(φ
′

∞
)p20 + (1− q)p0 − φ′

∞
= 0,

which has a positive root given by

p0 =
q − 1 +

√

(q − 1)2 + 4qφ′

∞
Mk(φ′

∞
)

2qMk(φ′

∞
)

. (7)

Equation (6) can be used to express φ′

∞
, and X

as a function of Z. The simplified form is given by

p0 =
q − 1 +

√

(q − 1)2 + 4qZMk(Z,X(Z))
fk(Z,X(Z))

2qMk(Z,X(Z))
≡ hk,q(Z),

(8)
which can be (numerically) solved for Z at any

initial percolation probability p0. This value of Z is
used to calculate X , φ′

∞
, Mk(φ

′

∞
), and ultimately

the giant component φ∞.
The size of the giant component as a function of

p0, found through the above discussed method, is in
excellent agreement with simulation results for both
Erdős-Rényi (see Figs. 2, 3) and scale-free networks
(see Fig. 4).
The function hk,q(Z) in Eq. (8) determines the na-

ture of the phase transition and the critical percola-
tion thresholds pc, illustrated below in the example
of two Erdős-Rényi networks.

I. TWO COUPLED ERDŐS-RÉNYI

NETWORKS

A. Complete Phase diagram

To demonstrate the richness of the model that
combines k-core and interdependency, we focus on
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FIG. 2. Comparison of theory (lines) and simulation
(symbols) for two coupled Erdős-Rényi networks at fixed
average local threshold a) k = 1.5 b) k = 2.0 and c) k =
2.5. As the coupling q is increased, k-core percolation
transition changes from second-order to first-order. For
k = 2.0, a two-stage transition is seen at intermediate
couplings. Simulation results agree well with the theory.
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two interdependent Erdős-Rényi networks. Both
networks have identical degree distributions given by
P (i) = zi1 exp(−z1)/i! with the same average degree
z1. The function fk is given by fk(Z,X) = 1−e−z1Z ,
fk(X,X) = 1 − re−z1X for 1 ≤ k < 2. Since
X = Z for k ≥ 2, fk(Z,Z) = 1 − e−z1Z(1 + rz1Z).
The functions Mk are given by Mk(Z,X) = 1 −
e−z1Z − rz1Ze−z1X for 1 ≤ k < 2, and Mk(Z,Z) =

1−(1−r)Γ(2,z1Z)
Γ(2) −rΓ(3,z1Z)

Γ(3) for k ≥ 2, where Γ(m,x)

and Γ(m) are incomplete and complete gamma func-
tions, respectively, of order m. The parameter r ap-
pearing in the functions is calculated using Eq. (1).
The behavior of the function hk,q(Z) (Eq. (8)) for

fixed values of parameters, as a function of Z de-
termines the nature of the k-core percolation tran-

sition. In general, the function hk,q(Z) has either
(i) a monotonically increasing behavior, (ii) a local
minimum, or (iii) a global minimum (see Fig. 5).
Monotonically increasing behavior corresponds to a
second-order percolation transition. When hk,q(Z)
has a global minima, percolation transition is an
abrupt (first-order) transition. The presence of lo-
cal minima indicates that the percolation transition
is a two-stage transition in which the giant compo-
nent undergoes an abrupt (first-order) jump followed
by a continuous transition as the occupation prob-
ability p0 is decreased [see the case of q = 0.765 in
Fig. 2(b)]. Using this analysis, we plot the complete
phase diagram of k-core percolation transition for
Erdős-Rényi networks in Fig. 6.

The boundaries of the phase diagram (Fig. 6),
q = 0 and k = 1 lines correspond to the cases of k-
core percolation in single network and regular perco-
lation in interdependent networks, respectively. We
describe the complex nature of the combined k-core
percolation and interdependent network model at in-
termediate couplings 0 < q < 1, and contrast it with
the known results at the boundaries. Parshani et
al. [9] demonstrated that regular percolation in cou-
pled networks changes from a second-order to first-
order when it passes through a tricritical point at
the critical coupling qtri,1. The tricritical nature is
preserved in k-core percolation as the average local
threshold k is increased, but the tricritical coupling
qtri,k increases with k, as can be seen in Fig. 6. The
dependence of qtri,k on the average degree z1 is

qtri,k = 1+Xk−1,0 −
√

(1 +Xk−1,0)2 − 1, (9)

where Xk−1,0 is the numerical solution for X in self-
consistent Eq. (5) when Z = 0.

A first-order transition indicates network instabil-
ity. Because instability increases with an increase in
both the coupling q and the average local threshold
k—more nodes are removed during k-core percola-
tion at higher local thresholds—we expect the k-core
percolation transition to become first-order at lower
couplings when the average local threshold is higher.
Counter-intuitively, Figure 6 shows that the tricrit-
ical coupling qtri,k increases with k. To test this
further, we analyze Eq. (9). A perturbative expan-
sion shows that qtri,k indeed increases with k, around
k = 1, as

qtri,k = qtri,1 +
δke−1(1 + δke−1)

z1

(

z1 + 1√
2z1 + 1

− 1

)

,

(10)
where δk = k − 1 and the tricritical coupling qtri,1
(consistent with results found in Ref. [34]) is given

by

qtri,1 = 1 +
1

z1
−
√

(1 +
1

z1
)2 − 1. (11)

We compare the perturbative solution of Eq. (10)
with the numerical solution of Eq. (9) and the sim-
ulation results in Fig. 7.
Above an average local threshold k . 2, the tri-

critical nature ceases to exist. Instead, as the cou-
pling q is increased, the k-core percolation transition
goes through a two-stage transition as it changes
from second-order to first-order. Figure 2(b) shows
that this two-stage transition has characteristics of
both first- and second-order transitions. The critical
couplings qc,1 and qc,2 separate the two-stage tran-
sition from the first-order and second-order transi-
tion regions respectively. At the critical line qc,2(k),
the function hk,q(Z) develops an inflection point at
Z > 0 that signals the development of a local mini-
mum for q > qc,2 (see Fig. 5(b)). The condition for
qc,2 at a fixed k is

h′

k,qc,2
(Z0) = 0 & h′′

k,qc,2
(Z0) = 0, (12)

where the derivatives are taken with respect to Z
and the inflection point Z0 must be determined using
the relationship in Eq. (12). For couplings q ≤ qc,1,
the global minimum of hk,q(Z) occurs at Z = 0.
For q > qc,1, the global minimum shifts to Z0 > 0.
At the critical line qc,1(k), the function has global
minima at both Z = 0 and Z0 > 0 (see Fig. 5(b))
and this yields the conditions for the critical coupling
qc,1,

h′

k,qc,1
(Z0) = 0 & hk,qc,1(Z0) = hk,qc,1(Z = 0),

(13)
where the derivatives are taken with respect to Z.
In single networks, the k-core percolation transi-

tion reaches a tricritical point when the average lo-
cal threshold is increased from 2 to 3 at kc = 2.5
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FIG. 3. The giant component for two coupled Erdős-Rényi networks (z1 = 10), computed numerically and through
simulations, as a function of fraction of initially removed nodes p0 at different average local threshold k for couplings
a) q = 0.3 b) q = 0.7 c) q = 0.8 and d) q = 0.9. For low coupling q = 0.3, nature of k-core percolation is similar to that
of single networks. For high couplings q = 0.8 and q = 0.9, k-core percolation is first-order indicating the increased
instability of the system compared to single networks. For the intermediate coupling q = 0.7, k-core percolation is
initially first-order for k = 1.5, which then becomes a two-stage transition as the average local threshold is increased
to k = 2.0. The cascades during k-core percolation are expected to increase as the local threshold of nodes are
increased, and therefore, k-core percolation would be (intuitively) expected to remain as first-order. Surprisingly,
k-core percolation changes to second-order for k = 2.3. Finally, the increased instability in the system is manifested
into k-core percolation becoming a first-order transition for k = 2.7. Simulation results (shown as symbols) are
obtained for a system with 106 nodes in each network.

[26]. Figure 6 shows that this tricritical point is pre-
served when the coupling between the networks is
increased up to a critical coupling qc,2.5 and forms a
second tricritical line. The point qc,2.5 (point “X”)
is a triple point surrounded by three regimes. This
critical coupling depends on the average degree z1,

qc,2.5 = 1 +
3

2z1
−
√

(1 +
3

2z1
)2 − 1. (14)

The critical lines qc,1(k) and qc,2(k) can be calcu-
lated perturbatively around the point qc,2.5. Using
the expansion of hk,q(Z) around Z = 0 with the
conditions in Eq.(12) and Eq.(13), we get a general

equation

am(1− q)4 + bmq(1− q)2 + cmq2 = 0, (15)

where am =
z2

1

36 (12(3− 2m)δ2+6(m− 2)δ+1), bm =
z1
6 (12(1−m)δ2+(4−2m)δ−1), cm = δ2+δ+1/4 with
δ = 2.5 − k. Solving Eq.(15) with m = 3 and m =
4 gives qc,2 and qc,1, respectively. The numerical
solution of Eq. (15) are plotted in the Fig. 8.
Finally, for the average local threshold 2.5 < k ≤

3, k-core percolation transition remains first-order
even when the coupling between the networks is in-
creased.
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FIG. 4. Comparison between theory and simulation of
k-core percolation in two interdependent scale-free net-
works with exponent γ = 2.5, with both layers having
identical local thresholds k = 1, 2, 3. Simulation results
were obtained for a system with N = 106 nodes in each
network. The minimum and maximum degree for nodes
in each network were set to be imin = 2 and imax = 1000,
respectively.

B. Critical exponents and critical percolation

thresholds

The critical percolation thresholds and critical ex-
ponents for all three transitions discussed above can
be calculated from the function hk,q(Z). At the
second-order transition and the continuous part of
the two-stage transition (q < qc,1, the gray regions
in Fig. 6), the critical behavior of the giant com-
ponent takes the form φ∞ ∼ (p0 − pc,2)

β2 , where
pc,2 = hk,q(Z = 0). The analytical expressions for
pc,2 are

pc,2 =

{

1
z1(1−q) , 1 ≤ k ≤ 2

1
z1(1−(k−2))(1−q) , 2 ≤ k ≤ 2.5

(16)

We find the exponent β2 by using the Taylor series
expansion of the function hk,q(Z) around Z = 0.
The exponent depends on coupling, indicating that
coupling changes the universality classes of these k-
core percolation transitions. The exponents found
at different points of the phase diagram (see Fig. 9)
are

β2 =



















1, 1 ≤ k < 2, q < qtri,k
1/2, 1 ≤ k < 2, q = qtri,k
2, 2 ≤ k < 2.5, q ≤ qc,1
1, k = 2.5, q < qc,2.5
2/3, k = 2.5, q = qc,2.5.

(17)

At the first-order transition and the abrupt jump
of the two-stage transition, the critical behavior of
the giant component takes the form φ∞ − φ∞,0 ∼
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FIG. 5. Comparison of behavior of the function hk,q(Z)
for two coupled Erdős-Rényi networks at fixed average
local threshold a) k = 1.5 and b) k = 2.0 at different cou-
plings. As seen in the phase diagram (see Fig.6), k-core
percolation changes from a second-order at low couplings
to a first-order at high couplings passing through a tri-
critical point for k = 1.5, and through a two-stage tran-
sition for k = 2.0. In both cases, hk,q(Z) is character-
ized by monotonically increasing behaviour correspond-
ing to second-order transition and, by the presence of
a global minima corresponding to first-order transition.
For k = 1.5, the inflection point occurs at Z = 0, which
immediately turns into a global minima as the coupling
is increased, leading to a tricritical point. For k = 2.0,
the inflection point occurs at Z > 0, which turns into a
local minima - leading to a two-stage transition- followed
by being a global minima as the coupling is increased.

(p0 − pc,1)
β1 , where pc,1 = hk,q(Z0). Z0 is the mini-

mum of the function hk,q(Z) found using the condi-
tion h′

k,q(Z0) = 0. Both pc,1 and pc,2 are calculated
numerically and are in good agreement with the sim-
ulations shown in Fig. 10. We calculate the critical
exponent β1 using a Taylor series expansion of the
function hk,q(Z) around the minimum Z0 and find
that it is dependent only on coupling q (see Fig. 9)
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as given by

β1 =

{

1/3, q = qc,2
1/2, q > qc,2 .

(18)

The exponents β1 and β2 are shown on the phase
diagram for all regimes in Fig. 9.
The richness of the phase diagram is striking when

the change in k-core percolation transition is consid-
ered as threshold k is increased at fixed q. At certain
fixed intermediate couplings, the k-core percolation
transition changes from first-order → second-order
→ two-stage → first-order as the k-core threshold
is increased (See vertical arrow in Fig. 6). Addi-
tionally, note that the result for fully interdependent
networks q = 1 is consistent with the result for the k-
core percolation transition in multiplex networks in
that they are both first-order for any average thresh-
old k [35].
In conclusion, we have demonstrated the rich-

ness of the combination (k-core percolation and in-
terdependency) by analyzing our generalized model
for two interdependent Erdős-Rényi networks. The
coupling between networks changes the universal-
ity classes of k-core percolation found in single net-
works, and the new critical exponents are calcu-
lated analytically. At fixed k-core threshold, the
k-core percolation transition changes from second-
order to first-order as the coupling is increased, pass-
ing through either a tricritical point or two-stage
transition depending on the average local threshold.
Counter-intuitively, we find the tricritical coupling
to increase with the k-core threshold. The richness
of this generalized model is further emphasized with
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FIG. 7. Plot of tricritical coupling qtri,k as a function
average threshold k obtained from the numerical solution
of perturbative expansion to first order, second order and
exact equation given in the Eqs. (9, 10). The numerical
results are in excellent agreement with the simulation
results (shown as symbols) for a network with 105 nodes.

Critical couplings
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FIG. 8. Numerical solution of the perturbative expan-
sion of qc,1(k) and qc,2(k) around the triple point qc2,.5
given in Eq. (15).

the k-core percolation transition, for certain fixed
couplings, changing from first-order → second-order
→ two-stage → first-order as the k-core threshold is
increased, in contrast to second-order → first-order
for k-core percolation in single networks. To test the
universality of our results, we also analyzed, both
analytically and numerically, the phase diagram for
k-core percolation in interdependent Random Regu-
lar networks and found this system to be very sim-
ilar to that of Erdős-Rényi networks (see Sec. II).
Studying these new percolation transitions found in
this generalized model will enable us to understand
the importance and the rich effects of coupling be-
tween different resources in cascading failures that
occur in real-world systems, which will enable us to
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FIG. 9. The critical exponents for the k-core percola-
tion of coupled networks are given at different regions of
the phase diagram for two interdependent Erdős-Rényi
networks with average degree z1 = 10. β1 denotes the
critical exponent for the first-order transition and near
the abrupt jump of the two-stage transition. β2 denotes
the critical exponent for the second-order transition and
at the continuous part of the two-stage transition. Re-
gions labeled with both β1 and β2 represent the two-
stage transition regime. The exponents are summarized
in Eqs. (17) and (18). Symbol ’X’ in the phase diagram
indicates the coupling qc,2.5. The critical exponents of
k-core percolation transitions for low couplings are iden-
tical to those found in single networks [26].

design more resilient systems.
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II. APPENDIX: Random Regular network-

Complete phase diagram

We consider two coupled Random Regular net-
works with identical degrees z1. The function fk is
given by fk(Z,X) = 1 − (1 − Z)z1−1, fk(X,X) =
1 − r(1 − X)z1−1 for 1 ≤ k < 2. Since X = Z
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0.1

0.3

0.5

0.7

0.8

coupling (q)

p
c

(a)
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1 1.5 2 2.5 3
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0.8

1

Average Local Threshold (k)

p
c

(b)

 

 

q = 0.3

q = 0.7

q = 0.8

q = 0.9

FIG. 10. Percolation threshold pc as a function of (a)
the coupling q for fixed average local threshold k =
1.0, 1.5, 2.0, 2.5 representing horizontal lines in Fig. 6 (b)
the average local threshold k for several fixed coupling
q = 0.3, 0.7, 0.8, 0.9 representing vertical lines in Fig. 6.
Dashed and continuous lines indicate that the percola-
tion threshold is at abrupt (first-order) jump and contin-
uous transition respectively. Simulation results (shown
as symbols) are obtained for a system with 106 nodes in
each network.

for ka ≥ 2, fk(Z,Z) = 1 − (1 − Z)z1−1 − rZ(z1 −
1)(1 − Z)z1−2. The functions Mk are given by
Mk(Z,X) = 1 − (1 − Z)z1 − rz1Z(1 − X)z1−1 for
1 ≤ k < 2 and Mk(Z,Z) = 1− (1− Z)z1 − z1Z(1−
Z)z1−1 − r z1(z1−1)

2 Z2(1 − Z)z1−2 for k ≥ 2. Based
on the behavior of hk,q(Z), the complete phase dia-
gram for the percolation transition is plotted in Fig.
11. The features of the phase diagram are the same
as those of coupled Erdős-Rényi networks, includ-
ing identical critical exponents. The critical perco-
lation thresholds are different and, for second-order
and continuous part of the two-stage transitions for
Random Regular networks is given by,

pc,2 =

{

1
(z1−1)(1−q) , 1 ≤ k ≤ 2

1
(z1−1)(1−(k−2))(1−q) , 2 ≤ k ≤ 2.5

(19)
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FIG. 11. Complete phase diagram for k-core percolation
transition for two coupled Random Regular networks
with coupling q. Both the networks have the same local
k-core threshold distribution. A fraction r of randomly
chosen nodes have local threshold ka + 1 and remain-
ing nodes have ka, resulting in average local threshold
k = (1−r)ka+r(ka+1). The phase diagram has similar
features that were seen in two coupled Erdős-Rényi net-
works (Fig. 6). The critical exponents for all the regions
in the phase diagram are identical to that of Erdős-Rényi
networks as reported in the Sec. I B. The expressions for
critical percolation thresholds for continuous transition
part of both second-order and two-stage transitions are
given in Eq. (19).

The tricritical coupling for regular percolation in
interdependent Random Regular networks depends
on its degree z1 as given in Eq. (20).

qc,1 = 1 + α−
√

(1 + α)2 − 1, (20)

where α = z1
(z1−1)(z1−2) .

The tricritical point found for average local
threshold k = 2.5 in single Random Regular net-
work is preserved in coupled networks as well. The
tricritical nature persists only up to a critical cou-
pling qc,2.5 and its dependence on the degree z1 is
given by Eq. (21).

qc,2.5 = 1 + α′ −
√

(1 + α′)2 − 1, (21)

where α′ = 3z1
2(z1−2)(z1−3) .
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