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Abstract 7 

Recently, infinite-dimensional delay coordinates (InDDeCs, pronounced as “index”) have been 8 

proposed for predicting high-dimensional dynamics instead of conventional delay coordinates. 9 

Although InDDeCs can realize faster computation and more accurate short-term prediction, it is 10 

still not well-known whether InDDeCs can be used in other applications of nonlinear time series 11 

analysis in which reconstruction is needed for the underlying dynamics from a scalar time series 12 

generated from a dynamical system. Here, we give theoretical support for justifying the use of 13 

InDDeCs, and provide numerical examples to show that InDDeCs can be used for various 14 

applications for obtaining the recurrence plots, correlation dimensions, and maximal Lyapunov 15 

exponents, as well as testing directional couplings and extracting slow-driving forces. We 16 

demonstrate performance of the InDDeCs using the weather data. Thus, InDDeCs can 17 

eventually realize “dimensionless embedding” while we enjoy faster and more reliable 18 
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computations. 19 

 20 

I. INTRODUCTION 21 

Reconstruction of the underlying dynamics is the first step to analyse its behaviour based on the 22 

limited observations, namely a time series. A very popular approach used over the last 35 years 23 

has been to reconstruct states for the underlying dynamics by using delay coordinates [1,2]. 24 

Delay coordinates collectively represent a vector constructed by arraying successive 25 

observations of a time series. Given a time series generated by a continuous-time dynamical 26 

system, we need to choose two parameters; namely, the time delay and the embedding 27 

dimension. The common rules of thumb for choosing the time delay and the embedding 28 

dimension for the last 25 years have been to apply, for example, the first minimum of mutual 29 

information [3] and the false nearest neighbour method [4], respectively. 30 

 31 

Two years ago, we proposed an alternative approach by using infinite-dimensional delay 32 

coordinates [5] (InDDeCs) for reconstructing the underlying dynamics by extending weighted 33 

delay coordinates [6-9]. In InDDeCs, we virtually consider an infinite-dimensional vector 34 

whose components decay exponentially when they become older. We can access these virtual 35 

coordinates by recycling the previous distances to calculate the current distances. In Ref. [5], we 36 



3 
 

demonstrated that InDDeCs have three advantages compared with the conventional delay 37 

coordinates: (i) the ability to take into account high-dimensional dynamics; (ii) faster 38 

computation; and (iii) more accurate short-term prediction. However, it is not currently 39 

well-known whether InDDeCs can be used for the other applications of nonlinear time series 40 

analysis. 41 

 42 

Therefore, we provide herein the theoretical justifications for why InDDeCs may be used to 43 

reconstruct the underlying dynamics instead of the conventional delay coordinates, as well as 44 

providing numerical examples for other applications. We demonstrate our method using the 45 

weather data at Akita, Japan. In other words, InDDeCs realize an “embedding” without 46 

considering the dimensions explicitly. Our assumption here is that we need to obtain a distance 47 

matrix for a given time series in applications; If we only need to obtain distances for 48 

neighbouring points, we may use another approach, such as the k-d tree [10]. 49 

 50 

II. RESULTS 51 

A. Theorems 52 

To state our theoretical results more rigorously, we formally introduce our current mathematical 53 

setup. We consider a dynamical system MMf →: of a diffeomorphism on an 54 
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m -dimensional manifold M  and its observation function RMg →: . Then, delay 55 

coordinates can be written as ( ) ( )( ) ( )( ) ( )( )( )xfgxfgxfgxgxG d
d

121 ,...,,,)( +−−−= . If 56 

12 +≥ md , it is a generic property [1] that x  and )(xGd  are one-to-one on M . This 57 

theorem by Takens [1] has been extended by using the box-counting dimension [2] and for a 58 

forced system [11]. On the other hand, InDDeCs can be written as 59 

( ) ( )( ) ( )( )( ),...,,)( 221 xfgxfgxgxH −−= λλλ  where we need to enforce )1,0(∈λ  so that the 60 

following 1L  metric between )(xH λ  and )(yH λ  converges: 61 

( ) ( )∑
∞

=

−− −=−
0

)()()()(
1

c

ccc
L

yfgxfgyHxH λλλ .           (1) 62 

It is easy to see that the 1L  metric ( )( ) ( )
1

)(
L

yfHxfH λλ −  for a step ahead can be 63 

calculated by using ( ) ( )
1L

yHxH λλ −  by 64 

( )( ) ( ) ( ) ( )∑
∞

=

+−+− −=−
0

11 )()()(
1

c

ccc
L

yfgxfgyfHxfH λλλ  65 

( ) ( )
1

)()()()(
L

yHxHyfgxfg λλλ −+−= .        (2) 66 

In reality, as shown below, we can speed up the calculations for a distance matrix and obtain a 67 

recurrence plot [12,13] by using Eq. (2). We may introduce a time delay for defining )(xH λ  68 

as the common practice, as Ref. [3] does for the conventional delay coordinates. 69 

 70 

Then, the following two theorems hold: 71 

 72 
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Theorem 1 (One-to-one). If x  and )(xGd  are one-to-one, then )(xGd  and )(xH λ  are 73 

one-to-one, and thus x  and )(xH λ  are one-to-one. 74 

 75 

Theorem 2 (equivalence of metrics). Let L  be the infimum for the local minimum Lyapunov 76 

exponent for the system. If Le<λ , then the 1L  metric for )(xH λ  is bounded from above 77 

and below by the 1L  metric for )(xGd . Namely, under the condition, the 1L  metric for 78 

)(xH λ  is equivalent to the 1L  metric for )(xGd . 79 

 80 

Refer to Appendix A for the proofs of these theorems. Due to Theorems 1 and 2, it is reasonable 81 

to assume theoretically that one can calculate the dynamical invariants for the system, such as 82 

the correlation dimension [14] and maximal Lyapunov exponent [15,16] by using InDDeCs. 83 

 84 

B. Obtaining a distance matrix 85 

To evaluate the correlation dimension and maximal Lyapunov exponent, as well as obtaining a 86 

recurrence plot, the calculation for a distance matrix is necessary, within which we can find a 87 

distance between two states corresponding to any pair of time points. Thus, we implemented the 88 

calculation as discussed in Appendix B.1, and in the following applications, we replace the 89 

calculation of a distance matrix using the conventional delay coordinates by using InDDeCs. 90 
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 91 

By using InDDeCs, we can obtain a recurrence plot [12,13], which represents a 92 

two-dimensional plot originally proposed for visualizing time series data. Both axes correspond 93 

to the same time axes of the time series. For every pair of time points, we evaluate whether the 94 

corresponding states are close to each other. If and only if they are sufficiently close, we plot a 95 

point at the corresponding place in the two-dimensional plot. 96 

 97 

C. Recurrence plots 98 

We compared recurrence plots obtained from a scalar time series generated from the Rössler 99 

model [17] using InDDeCs and the conventional three-dimensional delay coordinates (Compare 100 

Figs. 1a, 1d, and 1f with Figs. 1b, 1e, and 1h). We found that these recurrence plots look very 101 

similar to each other (Fig. 2): Namely, if λ  is small and close to 0, the recurrence plot 102 

obtained by the InDDeCs looks similar to that obtained by low-dimensional delay coordinates, 103 

while if λ  is large and close to 1, the recurrence plot obtained by the InDDeCs looks similar 104 

to that obtained by high-dimensional delay coordinates (Figs. 1 and 2). However, InDDeCs have 105 

some advantages in the computational times required (Fig. 3). For example, when 5.0=λ , 106 

InDDeCs needed 3.31 ± 0.16 seconds on average to calculate the distance matrix when a given 107 

time series is at the length 10000, while the conventional three-dimensional delay coordinates 108 
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using the L1 metric needed 3.62 ± 0.12 seconds on average even if we used the decomposition of 109 

Eq. (4) shown in Ref. [5]. When we did not use such decomposition and applied the 110 

conventional method for calculating the L2 metric, we required 248.66 ± 1.88 seconds on 111 

average. 112 

 113 

For a stricter comparison, we used the k-d tree [10] to obtain recurrence plots for the same data 114 

(see Figs. 1-3). When we used the k-d tree, we use the first 400 time points to estimate 1% point 115 

of distances. Then, we used the estimated 1% point of distances, to obtain pairs of times where 116 

the distance is less than the estimated 1% point. We found that the computational time for the 117 

k-d tree were slower for shorter time series, became comparable with the InDDeCs when the 118 

length was more than or equal to 5000 (Fig. 3). In addition, the accuracies evaluated were also 119 

similar. Taking into the fact that the InDDeCs obtain the whole distance matrix, while the k-d 120 

tree extracts only pairs of neighbours, the results of the InDDeCs are more informative and 121 

useful than those of the k-d tree if we use the similar computational resources. In addition, we 122 

note that if we also want to obtain the distances between neighbours so that we can plot 1% of 123 

places exactly, the method using the k-d tree needs more time. 124 

 125 

D. Correlation dimensions and maximal Lyapunov exponents 126 
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When we evaluated the correlation dimensions [14] (Appendix B.2) as well as the maximal 127 

Lyapunov exponents [15,16] (Appendix B.3), the values obtained seemed to depend on which 128 

λ  we used (Fig. 4). However, the means of the estimated values coincided well with the values 129 

provided in the literature [14,18,19] (see Fig. 4 and Tables I and II). To imply deterministic 130 

chaos or strangeness, we may combine the correlation dimension and the maximum Lyapunov 131 

exponent with surrogate data [20,21]. As demonstrated in Figs. 5 and 6, the correlation dimesion 132 

and the maximal Lyapunov exponent for the autoregressive linear model 133 

( )()(8.0)1( ttxtx ξ+−=+ , where )(tξ  follows the Gaussian distribution with mean 0 and 134 

standard deviation 1) were 95% confidence intervals of the iteratively adjusted Fourier 135 

transform surrogates [21], while those values for the Hénon map [22] were not. Thus, it may be 136 

worth expanding the use of InDDeCs for these applications. 137 

 138 

E. Applications to forced systems 139 

InDDeCs have their strongest potential when they are applied along with Stark’s embedding 140 

theorem [11] for forced systems. Stark’s embedding theorem can be used for detecting 141 

directional couplings [23,24] and extracting slow driving forces [25,26]. Although there are 142 

some rules of thumb for choosing the embedding parameters for Takens’ embedding theorem [1], 143 

such as the first minimum of mutual information [3] and the false nearest neighbour method [4], 144 
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there are no known practical rules of thumb for Stark’s theorem [11]. However, if we use 145 

InDDeCs, we do not have to worry much if the embedding dimension is higher than twice the 146 

sum of the dimensions for a driving force and its forced system. 147 

 148 

First, we show some examples for detecting directional couplings (see Fig. 7). We implemented 149 

the method using the joint distribution of distances [24] with InDDeCs (see Appendix B.4 for 150 

the detail). Namely, we leverage the characteristic whereby the distances for the reconstructed 151 

space for A become small when those for B are small, if A drives B [23,24]. When we try to 152 

identify directional couplings using toy models composed by coupled logistic maps (the first to 153 

the third examples of Ref. [24]), the method detected directional couplings appropriately, whose 154 

results did not depend much on the parameter λ . Namely, when two logistic maps were 155 

mutually coupled (Appendix B.5), directional couplings tended to be identified correctly (Figs. 156 

7a and 7b); when two logistic maps were driven by another logistic map (Appendix B.6), the 157 

directional couplings identified did not depend much on the coupling parameters that decided 158 

the driving strengths (Figs. 7c and 7d); and even when there was a driving force affecting two 159 

logistic maps which were mutually coupled (Appendix B.7), the directional couplings between 160 

the mutually coupled logistic maps were identified correctly (Figs. 7e and 7f). Thus, the method 161 

using the joint distribution of distances seems to work well with InDDeCs. 162 
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 163 

Second, we present some examples for extracting slow-driving forces using the methods of Refs. 164 

[25,26] (see Appendix B.8 for the detail). We used the Hénon map [22] driven by the Lorenz 165 

model [27] and the Rössler model [17] (see Appendix B.9). We found that the driving forces 166 

modelled by the Lorenz model and the Rössler model were identified correctly when the 167 

parameter λ  was in the appropriate range, i.e., between 0.17 and 0.88 (see Fig. 8). Therefore, 168 

by using InDDeCs, slow driving forces appear to have been identified correctly. 169 

 170 

An important problem we will encounter when we analyse a real dataset is how many driving 171 

forces we should choose. When we predicted 25 steps ahead by taking into account the 172 

reconstructed slow driving forces with the radial basis function model [28], we found that the 173 

prediction errors decreased up to the second driving force (Fig. 9). But when we included the 174 

third driving force, the prediction errors did not decrease to a great extent (Fig. 9). Thus, we can 175 

validate the reconstructed driving forces with time series prediction. 176 

 177 

Lastly, we show a real world example for detecting directional couplings and slow-driving 178 

forces in the weather at Akita, Japan (see Appendix B.10). The slow-driving forces 179 

reconstructed from the temperature, the solar irradiance, the precipitation, and the wind speed 180 
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and validated by 12 hours ahead time series prediction (Fig. 10) were shown in Figs. 11a-11d. 181 

Here, we used the method of Ref. [29] to ensure the continuity for the reconstructed driving 182 

forces. Thus, we saw abnormal behaviour, especially for the driving force reconstructed from 183 

the precipitation at the beginning of the time series. Thus, we compared the reconstructed 184 

driving forces between January 2011 and May 2015 and found that these reconstructed driving 185 

forces showed strong correlations between most pairs of possible combinations (Table III). Thus, 186 

their drivers seem to reflect similar behaviour. When we identified directional couplings by 187 

means of the original method using the joint distribution of distances with the conventional 188 

delay coordinates, directional couplings failed to be identified, especially if a pair of 189 

combinations contained the precipitation or solar irradiance (see Fig. 11e), both of which were 190 

intermittent and contained many continuous zeros (Fig. 12). For example, observe that the 191 

directional coupling from the wind speed to precipitation was not identified. But, if we applied 192 

the method using the joint distribution of distances with InDDeCs, we did not have many 193 

problems related to these intermittent non-zero observations and we succeeded in identifying 194 

directional couplings, even for the pairs related to the precipitation and solar irradiance (see Fig. 195 

11f, especially the coupling direction from the wind speed to precipitation), implying that each 196 

weather variable demonstrates aspects of the same underlying dynamics. This detectability 197 

could be the strongest point among the applications of InDDeCs. 198 
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 199 

We classified the topologies of temporal networks into two types using the k-mean algorithm 200 

[30] (Fig. 13). In the cluster 0, the solar irradiance drives the temperature, and the temperature 201 

and the wind speed drive the precipitation. In the cluster 1, the wind speed drives the 202 

precipitation. Note that the topology of the cluster 1 is a sub-network for the topology of the 203 

cluster 0. We also found that the cluster 0 is likely to appear in the summer while the cluster 1 is 204 

likely to appear in the winter (Fig. 14). To validate the inferred network topology, we attempted 205 

to predict the precipitation 1 hour ahead by taking into account the temperature and the wind 206 

speed. We found that by considering the temperature as well as the wind speed, we could 207 

improve the time series prediction for the precipitation (Fig. 15). This result is consistent with 208 

the found topology. 209 

 210 

There is another support for the network topology of cluster 0: The reconstructed and validated 211 

driving force for the precipitation has large correlation coefficients with those for the 212 

temperature and the wind speed (Table III). This finding also agrees with the network structure 213 

shown for the cluster 0 in Fig. 13. 214 

 215 

III. DISCUSSION 216 
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It is common to estimate the spectrum of the Lyapunov exponents [18] for characterizing the 217 

high-dimensional dynamics. However, because such a method produces the exponents whose 218 

number is equal to the dimension, one might encounter spurious exponents [31] if we do not 219 

know the exact number for the dimension of the underlying dynamics and use higher 220 

embedding dimension. That would be our reason to recommend the estimation of the maximal 221 

Lyapunov exponent based on a distance matrix if we are not sure how large the dimension for 222 

the underlying dynamics is. By using the maximal Lyapunov exponent, one can tell at least 223 

whether the underlying dynamics is chaotic or not. 224 

 225 

If a given time series has a high sampling rate, then we may use the time delay as Ref. [3] to 226 

control the sampling rate so that we use a fewer time points for the analysis. 227 

 228 

The decaying factor λ  works similarly to the embedding dimension. However, there is also a 229 

qualitative difference between them: when we use the conventional delay coordinates, we could 230 

not retain the information for the time before (the embedding dimension)× (the time delay), 231 

while with InDDeCs, we could retain such information, which is subject to the observational 232 

noise. This difference was the most prominent in the example on identifying directional 233 

couplings, especially the coupling direction from the wind speed to the precipitation, which is 234 
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naturally prominent around low atmospheric pressures. 235 

 236 

Theorem 2 means that achieving the one-to-one correspondence between the conventional delay 237 

coordinates and InDDeCs might be too demanding if the underlying dynamics is in a very 238 

high-dimensional space, wherein if the minimum for the local Lyapunov exponent would be 239 

negative and its absolute value is large, the appropriate decaying parameter could be very close 240 

to zero. In such a case, we might follow the approach of Berry et al. [9], reducing the dimension 241 

and giving up the estimation of the invariant measures because the invariant measures had been 242 

somehow optimized for characterizing low-dimensional dynamics historically. This approach in 243 

Berry et al. [9] sounds reasonable, judging from the fact that we could identify the directional 244 

couplings and the slow drivers correctly in the wide ranges of the decaying parameters (see Figs. 245 

7 and 8). However, to justify this approach using InDDeCs, another set of mathematical support 246 

must be prepared, which would be an open question. 247 

 248 

Here we assume that InDDeCs are used for some application of nonlinear time series analysis 249 

where we need a distance matrix, namely, each distance for every pair of time points. Thus, 250 

implicitly we assume that we already have the whole dataset. If we would like to apply 251 

InDDeCs to online streaming data, we need to use the different approach that had been 252 
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discussed in Ref. [5]. 253 

 254 

In this paper, we have shown theoretically that the infinite-dimensional delay coordinates 255 

(InDDeCs) have good one-to-one and metric equivalence characteristics when the parameter λ  256 

of the decaying factor is chosen appropriately. We have also demonstrated numerically that we 257 

can more quickly obtain a recurrence plot that looks similar to the one obtained from the 258 

conventional delay coordinates. InDDeCs can be also used for estimating the correlation 259 

dimensions and the maximal Lyapunov exponents, as well as identifying directional couplings 260 

and slow driving forces. Thus, in short, InDDeCs establish an “embedding” without explicitly 261 

considering the dimensions of target systems. We hope that this new tool helps elucidate the 262 

underlying mechanisms for many interesting dynamical systems.263 
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Appendix A Proofs 264 

A.1 Proof for one-to-one correspondence. 265 

Let MMf →:  represent a dynamical system defined as a diffeomorphism on an 266 

m-dimensional manifold M, and RMg →:  an observation function. Then, a set of 267 

delay coordinates can be described by 268 

( ) ( ) ( )( ))(,...,)(,)(),()( 121 xfgxfgxfgxgxG d
d

+−−−= , while a set of infinite-dimensional 269 

delay coordinates is described by ( ) ( )( ),...)(,)(),()( 221 xfgxfgxgxH −−= λλλ , where we 270 

set )1,0(∈λ . Suppose that the embedding theorem by Takens [1] is satisfied and there 271 

is one-to-one correspondence between x and )(xGd  on the manifold (similar proofs 272 

can be established for those theorems by Sauer et al. [2] and Stark [11]). To connect 273 

)(xGd  and )(xH λ , we consider some intermediate steps 274 

( ) ( ) ( )( ))(,...,)(,)(),()( 11221
, xfgxfgxfgxgxH cc
c

+−−−−= λλλλ , where dc ≥ . 275 

 276 

Let us start by establishing one-to-one correspondence between )(xGd  and )(, xH dλ . 277 

Suppose )()( yGxG dd = . Then, we have 278 

 
( ) ( ) ( )( )

( ) ( ) ( )( ).)(,...,)(,)(),(
)(,...,)(,)(),(

121

121

yfgyfgyfgyg
xfgxfgxfgxg

d

d

+−−−

+−−−

=
                  (A1) 279 

By multiplying the nth component by 1−nλ , we have 280 
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( ) ( ) ( )( )

( ) ( ) ( )( ),)(,...,)(,)(),(
)(,...,)(,)(),(

11221

11221

yfgyfgyfgyg
xfgxfgxfgxg

dd

dd

+−−−−

+−−−−

= λλλ
λλλ

           (A2) 281 

which can be rewritten by )()( ,, yHxH dd λλ = . 282 

 283 

We also prove the converse. Suppose that )()( ,, yHxH dd λλ = . Then, this equality 284 

means element-wise ( ) ( ))()( 1111 yfgxfg nnnn +−−+−− = λλ . Because )1,0(∈λ , especially 285 

0≠λ , we have ( ) ( ))()( 11 yfgxfg nn +−+− =  for each n between 1 and d. Thus, we have 286 

( ) ( ) ( )( )
( ) ( ) ( )( ) ).()(,...,)(,)(),(

)(,...,)(,)(),()(
121

121

yGyfgyfgyfgyg

xfgxfgxfgxgxG

d
d

d
d

==

=
+−−−

+−−−

            (A3) 287 

Thus, the converse is also true. Thus, )()( ,, yHxH dd λλ =  if and only if 288 

)()( yGxG dd = . 289 

 290 

Next, we prove that )()( 1,1, yHxH mm ++ = λλ  if and only if )()( ,, yHxH mm λλ =  for 291 

dm ≥ . First, we prove the case of dm = . Due to the above proof, )()( ,, yHxH dd λλ =  292 

if and only if )()( yGxG dd = . In addition, due to the initial assumption, we have 293 

)()( yGxG dd =  if and only if yx = . Because f  is a diffeomorphism, we have a 294 

unique value of ( ) ( ))()( xfgxfg dd −− = . By multiplying by dλ , we have 295 

( ) ( ))()( xfgxfg dddd −− = λλ . This equality means that we have )()( 1,1, yHxH dd ++ = λλ . 296 

The converse is almost trivial if we start with  297 
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( ) ( ) ( )( )
( ) ( ) ( )( ) )()(,...,)(,)(),(

)(,...,)(,)(),()(

1,
121

121
1,

yHyfgyfgyfgyg

xfgxfgxfgxgxH

d
dd

dd
d

+
−−−

−−−
+

==

=

λ

λ

λλλ

λλλ
     (A4) 298 

and drop the last element to have 299 

( ) ( ) ( )( )
( ) ( ) ( )( ) ).()(,...,)(,)(),(

)(,...,)(,)(),()(

,
11121

11121
,

yHyfgyfgyfgyg

xfgxfgxfgxgxH

d
dd

dd
d

λ

λ

λλλ

λλλ

==

=
+−−−−

+−−−−

    (A5) 300 

Therefore, we proved that )()( 1,1, yHxH dd ++ = λλ  if and only if )()( ,, yHxH dd λλ = . 301 

 302 

Similarly, we can prove )()( 1,1, yHxH mm ++ = λλ  if and only if )()( ,, yHxH mm λλ =  for 303 

dm ≥ . 304 

 305 

Using the first part of the proof once and the second part of proof inductively, we reach 306 

our proposition that )()( yHxH λλ =  if and only if )()( yGxG dd = , and thus if and 307 

only if yx = . Thus, we have proved the one-to-one property for the infinitely 308 

dimensional delay coordinates. 309 

 310 

A.2 Proof for equivalence between the conventional delay coordinates and the 311 

infinite-dimensional delay coordinates 312 

 313 

Let L  and L  be the supremum and the infimum, respectively, for the local maximum 314 
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and minimum Lyapunov exponents, which are independent of the positions on the 315 

attractor. In addition, we define 316 

,))(())((),(
1

2121 LDDD txGtxGtt −=δ                (A6) 317 

and 318 

.))(())((),(
1

2,1,21 LDDD txHtxHtt λλ −=Δ              (A7) 319 

Then, it is reasonable to assume that 320 

.),(),(),( 212121
nDL

DD
nDL

D enDtnDtttenDtnDt −−≤≤−− δδδ        (A8) 321 

In addition, we have 322 

),,(),(),( 212121 tttttt DDD
D δδλ ≤Δ≤                   (A9) 323 

and 324 

.),())(())((
0

2121
1
∑

∞

=

−−Δ=−
n

D
nD

L
nDtnDttxHtxH λλλ       (A10) 325 

Thus, 
1

))(())(( 21 L
txHtxH λλ −  can be upper-bounded as 326 

( ) ( ) ,
1

),(),(

),())(())((

21

0
21

0
2121

1

DL
D

n
D

nDL

n
D

nD
L

e

tttte

nDtnDttxHtxH

−

∞

=

−

∞

=

−
=≤

−−≤−

∑

∑

λ
δδλ

δλλλ

                   (A11) 327 

if 1<−Leλ . Moreover, 
1

))(())(( 21 L
txHtxH λλ −  can be lower-bounded as 328 

( ) ( ) ,
1

),(
),(

),())(())((

21

0
21

0
2121

1

DL

D
D

n
D

nDLD

n
D

nDD
L

e

tt
tte

nDtnDttxHtxH

−

∞

=

−

∞

=

−
=≥

−−≥−

∑

∑

λ

δλδλλ

δλλλλ

        (A12) 329 

if 1<−Leλ . 330 
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 331 

Therefore, when LLL eee =< },min{λ , we have 332 

( ) ( )DL
D

LDL

D
D

e

tt
txHtxH

e

tt
−− −

≤−≤
− λ

δ

λ

δλ
λλ

1

),(
))(())((

1

)( 21
21

21
1

               (A13) 333 

and the two metrics ),( 21 ttDδ  and 
1

))(())(( 21 L
txHtxH λλ −  are equivalent. 334 

 335 

When a metric is sandwiched with another metric in this manner, the correlation 336 

dimensions estimated for both metrics agree with each other [32]. That is one of the 337 

reasons why we call these two metrics equivalent. 338 

 339 

Note: The condition of Le<λ  is, intuitively, complementary for the condition 340 

described in Berry et al. [9] for dimension reduction. Thus, our condition is reasonable 341 

from this viewpoint as well. 342 

 343 

 344 

 345 

 346 

 347 

 348 
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Appendix B Details for Numerical Calculations 349 

B.1 Calculation for distance matrices using InDDeCs 350 

Suppose that we calculate the distance matrix IIRS ×∈  for a scalar time series 351 

{ }IiRsi ,...,2,1| =∈  with length I  using InDDeCs. In addition, let s  be the difference 352 

between the minimum and the maximum of { }is . Then, we apply the following algorithm to 353 

calculate S : 354 

For i from 1 to (n-1) 355 

    Calculate the (i,1) element as follows: 356 

11
:)1,( sssiS i −+

−
=

λ
λ

.                          (B1) 357 

Copy it to the (1,i) element: 358 

)1,(:),1( iSiS = .                           (B2) 359 

     360 

For j from 2 to (i-1) 361 

    Calculate the (i,j) element as follows: 362 

ji ssjiSjiS −+−−= )1,1(:),( λ .              (B3) 363 

    Copy it to the (j,i) element: 364 

    ),(:),( jiSijS = .                               (B4) 365 

end 366 
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end 367 

 368 

This algorithm means that if we go back to a time point before the beginning of the given time 369 

series, we insert the dummy value s  for the past distances. By this algorithm, we will 370 

overcome the differences of dimensions we can access. 371 

 372 

There is another remark here: This implementation for InDDeCs is much simpler than the 373 

implementation for the conventional delay coordinates using the decomposition of Eq. (4) of 374 

Ref. [5], where we must subtract the past pairs of distances appropriately to obtain the current 375 

distances. 376 

 377 

B.2 Estimation of correlation dimension 378 

The time series of length 10000 was used for the calculations. After obtaining the distance 379 

matrices using InDDeCs, we threw away the components corresponding to the first 1000 points 380 

and used the remaining parts for the estimation because we need to supply dummy distances for 381 

the times before the beginning of the time series and the distances for the first 1000 points may 382 

not be calculated precisely because 30100 10~5.0 −  will approach the margin of machine errors. 383 

We found the minimum non-zero distance m  and set the range of ]1000,10[ mm  as the 384 
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scaling region. The other parts were the same as Ref. [14]. 385 

 386 

B.3 Estimation of maximal Lyapunov exponents 387 

We used the time series containing 10000 time points for estimating the maximal Lyapunov 388 

exponents. After obtaining the distance matrices using InDDeCs, we threw away the 389 

components corresponding to the first 1000 points and used the remaining parts for the 390 

estimation. We chose the five nearest neighbours avoiding points in the same strands, i.e., 391 

neighbours within 200 time points, for estimating each of the maximal Lyapunov exponents. For 392 

the flows, we found the slope by fitting a line between 50 and 100 time points forward in time. 393 

For the maps, we found the slope between the first and the second steps. The rest of the 394 

calculation was similar to Ref. [15]. 395 

 396 

B.4 Identifying directional couplings 397 

We used the method of joint distribution for distances [24] here. After obtaining the distance 398 

matrix as described above, we subsampled the distance matrix every 10 points to reduce the 399 

temporal correlations as well as the calculation costs. Then, we applied the method of joint 400 

distribution of distances [24] directly. 401 

 402 
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B.5 Mutually coupled logistic maps 403 

Two logistic maps [33] were coupled in the following way mutually [24]: 404 

( ) ( )( ) ( )( ))(1)(81.3)(1)(8.31)1( tytytxtxtx yxyx −+−−=+ ηη ,           (B5) 405 

( ) ( )( ) ( )( ))(1)(8.3)(1)(81.31)1( txtxtytyty xyxy −+−−=+ ηη .       (B6) 406 

After we removed the initial transient, we generated time series of length 2000 for each set of 407 

parameters ( )xyyx ηη , . Parameters yxη  and xyη  were varied between 0 and 0.2. 408 

 409 

B.6 Two logistic maps driven by another logistic map 410 

We considered the following coupled logistic maps: 411 

( ) ( )( ) ( )( ))(1)(82.3)(1)(8.31)1( tztztxtxtx zxzx −+−−=+ ηη ,          (B7) 412 

( ) ( )( ) ( )( ))(1)(82.3)(1)(81.31)1( tztztytyty zyzy −+−−=+ ηη ,         (B8) 413 

( ))(1)(82.3)1( tztztz −=+ .                                          (B9) 414 

Namely, in this coupled system, z  drives x  and y , but x  and y  are not mutually 415 

connected. We varied zxη  and zyη  between 0 and 0.2. The rest is similar to the case of 416 

mutually coupled logistic maps. 417 

 418 

B.7 Mutually coupled logistic map driven by another 419 

Here we considered the following coupled systems: 420 
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( ) ( )( ) ( )( ) ( )( ))(1)(82.3)(1)(81.3)(1)(8.31)1( tztztytytxtxtx zxyxzxyx −+−+−−−=+ ηηηη ,          421 

(B10) 422 

( ) ( )( ) ( )( ) ( )( ))(1)(82.3)(1)(8.3)(1)(81.31)1( tztztxtxtytyty zyxyzyxy −+−+−−−=+ ηηηη ,         423 

(B11) 424 

( ))(1)(82.3)1( tztztz −=+ .                                           (B12) 425 

In this example, we set 05.0== zyzx ηη  and varied yxη  and xyη  between 0 and 0.2. The 426 

rest is similar to the case of the mutually coupled logistic maps. 427 

 428 

B.8 Extracting slow-driving forces 429 

First, we obtain a recurrence plot of observables using InDDeCs. Second, we make the 430 

granularity of the recurrence plot coarse by using box sizes of 50 and 24 respectively for the toy 431 

model and the weather example, to obtain the meta-recurrence plot [25]. This meta-recurrence 432 

plot corresponds to a recurrence plot of slow-driving forces. Third, we apply the method of Ref. 433 

[26] to reproduce the time series of driving forces. Note that the method of Ref. [26] for 434 

reconstructing an original time series from a recurrence plot has mathematical support [32,34]. 435 

 436 

B.9 The Hénon map driven by the Lorenz model and the Rössler model 437 

We fed the Lorenz model (Eqs. (B13)-(B16)) and the Rössler model (Eqs. (B17)-(B20)) to the 438 
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Hénon map (Eqs. (B21)-(B22)) in the following way: 439 

)(10 yxx −−=& ,                           (B13) 440 

yxxzy −+−= 28& ,                          (B14) 441 

zxyz
3
8−=& ,                                  (B15) 442 

x

xtxtx
σ

−= )()(~ ,                                     (B16) 443 

 )( wvu +−=& ,                                   (B17) 444 

vuv 36.0+=& ,                                     (B18) 445 

)5.4(4.0 −+= uww& ,                             (B19) 446 

u

ututu
σ

−= )()(~ ,                                     (B20) 447 

( ) ( ) )()002.0(~1.013.0)()0005.0(~05.012.11)1( 2 tqtutptxtp +++−=+ ,        (B21) 448 

)()1( tptq =+ .                                     (B22) 449 

After removing the initial transient, we generated a series of )(tp  with 20000 time points. 450 

 451 

B.10 Weather data at Akita and their analysis 452 

We used the temperature, the precipitation, the solar irradiance, and the wind speed measured at 453 

Akita, Japan. The measurements were given every 10 minutes between 1 January 2010 and 31 454 

May 2016. If a measurement was missing, we inserted its most recent valid value instead and 455 

preprocessed the dataset. For extracting slow-driving forces, we subsampled the measurements 456 
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every hour. For detecting directional couplings, we divided the dataset into 77 segments 457 

corresponding to each month and analysed the segments. 458 

 459 

B. 11 Validating reconstructed slow driving forces and network structure by time series 460 

prediction 461 

We used the radial basis function model in Ref. [28] to test whether additional time series 462 

improved time series prediction. When we used the reconstructed slow driving forces, we 463 

interpolate the time series so that the sampling intervals become the same as the original time 464 

series. Then we normalized the additional time series so that their standard deviations become 465 

10% of the time series we predicted. By increasing the number of additional time series taken 466 

into account, we validated whether or not the reconstructed slow driving forces and/or the found 467 

topologies are appropriate. For each case, we generated 10 time series predictions by choosing 468 

different centres for the radial basis functions. In Figs. 9 and 10, we used two-dimensional delay 469 

coordinates with additional dimensions for the additional time series. In Fig. 15, we used the 470 

usual delay coordinates spanning the time window of 2 hours for the precipitation as well as the 471 

temperature and wind speed when they were considered. 472 

473 
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Figure captions 527 

 528 

FIG. 1. Recurrence plots of the Rössler model obtained by the infinite-dimensional delay 529 

coordinates (InDDeCs) and the conventional three-dimensional delay coordinates. Panels a, d, 530 

and g show the recurrence plots obtained by InDDeCs with ,5.0,1.0=λ  and 0.9, respectively.  531 

Panels b, e, and h show the recurrence plots obtained by the conventional delay coordinates 532 

using all the distances with the embedding dimensions of 1, 3, and 10, respectively. Panels c, f, 533 

and i show the recurrence plots obtained by the k-d tree [10] with the embedding dimenisons of 534 

1, 3, 10, respectively. In panels a, b, d, e, g, and h, exactly 1% of places have the plotted points, 535 

while in panels c, f, and i, nearly 1% point of distances was used to plot the recurrence plots.  536 

 537 

FIG. 2. The average accuracy of the obtained recurrence plots among 10 trials against to those 538 

for the conventional delay coordinates with the time points between 1001 and 2000. In panel a, 539 

we compared recurrence plots (the red solid line) obtained by the InDDeCs using 1.0=λ  540 

with recurrence plots obtained by the decomposition of Eq. (4) of Ref. [5] using the L1 metric 541 

(the blue dashed line) and recurrence plots obtained by the k-d tree [10] (the green dash dotted 542 

line) using the embedding dimension of 1. In panels b and c, the similar figures are shown with 543 

5.0=λ  and 0.9 and the embedding dimensions of 3 and 10, respectively. 544 
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 545 

FIG. 3. The average times required among 10 trials for the InDDeCs (the red solid line) and the 546 

conventional delay coordinates with a normal implementation using the L2 metric (the black 547 

dotted line), as well as the decomposition of Eq. (4) of Ref. [5] using the L1 metric (the blue 548 

dashed line) to obtain the corresponding distance matrices given a length of time series. In 549 

addition, the calculation times required by the k-d tree were shown in the green dash-dotted line. 550 

In panel a, we used 1.0=λ  and the embedding dimension of 1. In panel b, we used 5.0=λ  551 

and the embedding dimension of 3. In panel c, we used 9.0=λ  and the embedding dimension 552 

of 10. For these calculations, we used a computer with 2.7 GHz 12-Core Intel Xeon E5 with 64 553 

GB memory. 554 

 555 

FIG. 4. Correlation dimensions and maximal Lyapunov exponents estimated using InDDeCs. 556 

Panels a and b are for correlation dimensions and Panels c-f are for maximal Lyapunov 557 

exponents. Panels a and c are for the Hénon map. Panels b and d are for the Lorenz model with 558 

sets of parameters ( 3/8,10,28 === bR σ ) and ( 4,16,40 === bR σ ), respectively. Panel 559 

e is for the Ikeda map and Panel f is for the Rössler model. For each panel, the estimation using 560 

InDDeCs is shown in the blue solid line and the estimation in the literature is shown in the red 561 

dashed line. 562 



34 
 

 563 

FIG. 5. Surrogate tests using correlation dimensions. We used the random shuffle surrogates [20] 564 

(the black dotted lines), phase randomized surrogates [20] (the blue dash-dotted lines), and 565 

iterative amplitude adjusted Fourier transform (IAAFT) surrogates [21] (the green dashed lines), 566 

respectively. Each of the two lines show 95% confidence intervals obtained by 40 surrogates 567 

each. The red solid thick line shows the lines obtained from the original data. In panel a, we 568 

show the results for the autoregressive linear model, and in panel b, we show the results for the 569 

Hénon map. The length of time series generated was 2000 each. We applied the end-to-end 570 

matching [35] as a preprocessing to avoid spurious high frequency components during the 571 

Fourier transforms. 572 

 573 

FIG. 6. Surrogate tests using the maximum Lyapunov exponents. See the caption of Fig. 5 to 574 

interpret the results. 575 

 576 

FIG. 7. Identifying directional couplings depending on parameter λ  of InDDeCs and coupling 577 

strengths yxη  and xyη  in the examples of coupled logistic maps. In the first and second rows, 578 

we used mutually coupled logistic maps x  and y . In the third and fourth rows, we used 579 

logistic maps x  and y  driven by another logistic map z . In the fifth and sixth rows, we 580 



35 
 

used mutually coupled logistic maps x  and y  driven by another logistic map z . In each 581 

row, the left, centre, and right columns correspond to the results of 5.0,1.0=λ  and 0.9, 582 

respectively. In each panel, the logarithms for the p-values were shown. In the white regions, the 583 

p-values were smaller than 0.01, representing significance. The darker regions show greater 584 

p-values, which are not significant. 585 

 586 

FIG. 8. Driving forces and their reconstructions. (a) Correlation coefficients between driving 587 

forces and their reconstructions using InDDeCs depending on the parameter λ .  The blue 588 

solid line corresponds to the driving force constructed by the Lorenz model, while the red 589 

dash-dotted line corresponds to the driving force constructed by the Rössler model. (b) The 590 

original driving force of the Lorenz model (the black solid line) and its reconstruction (the blue 591 

dashed line) when 62.0=λ . (c) The original driving force of the Rössler model (the black 592 

solid line) and its reconstruction (the red dashed line) when 62.0=λ . In Panels (b) and (c), 593 

we plotted the reconstructed driving forces so that the means, standard deviations, and direction 594 

are matched with the original driving forces. 595 

 596 

FIG. 9. The validation for the reconstructed driving forces using time series prediction in the 597 

example of Fig. 8. The prediction errors are shown by box plots. When we take into account the 598 
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reconstructed slow driving forces up to the second one, the prediction errors have improved 599 

significantly. We used 62.0=λ  as an example. 600 

 601 

FIG. 10. The validations for the reconstructed driving forces for the weather data at Akita, Japan. 602 

Panels a, b, c, and d correspond to the temperature, the solar irradiance, the precipitation, and 603 

the wind speed. For the temperature, the solar irradiance, and the precipitation, the first driving 604 

force significantly reduced the prediction errors. For the wind speed, we found the third driving 605 

force reduced the prediction errors. Thus, later we selected these driving forces to conduct the 606 

further analysis. 607 

 608 

FIG. 11. Reconstructed driving forces and directional couplings for the weather at Akita, Japan. 609 

Panels a, b, c, and d are the validated principal components for the driving forces reconstructed 610 

by using InDDeCs for the temperature, solar irradiance, precipitation, and wind speed. Panels e 611 

and f represent the directional couplings identified using the method of joint distribution for 612 

distances using (e) the conventional delay coordinates and (f) InDDeCs. The grey scales show 613 

the p-values in the logarithm using base 10. Namely, the white regions correspond to significant 614 

pairs of the time and coupling direction with the significance level of 0.01. The darker regions 615 

have higher p-values, which are not significant. 616 
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 617 

FIG. 12. Parts of time series for the weather at Akita, Japan. Panel a corresponds to the 618 

temperature, Panel b corresponds to the precipitation, Panel c corresponds to the solar irradiance, 619 

and Panel d corresponds to the wind speed. Because the time series data shown correspond to 620 

the beginning of January, which means the winter season, we could not see the clear daily cycle 621 

for the temperature in panel a for the first four days, possibly due to the accumulated snow. 622 

 623 

FIG. 13. Estimated network structures. By classifying the estimated network structures using the 624 

k-mean algorithm [30], we identified two typical structures, which are denoted by cluster 0 625 

(panel a) and cluster 1 (panel b). 626 

 627 

FIG. 14. The frequency of estimated network structures depending on the month within a year. 628 

 629 

FIG. 15. Validation for the estimated network structures. Based on the results for the cluster 0 of 630 

Fig. 13, the precipitation is driven by the temperature and/or the wind speed. Thus, we tested 631 

whether the measurements for the temperature and the wind speed help to improve the 632 

prediction for the precipitation. We found that by taking into account the temperature and the 633 

wind speed, the 1 hour ahead time series prediction for the precipitation has been improved 634 
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significantly. Thus, the finding in Fig. 13 seems appropriate. 635 

636 
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TABLE I. Estimated values using InDDeCs and values known in the literature for 637 

correlation dimensions. Each values shown with ±  represent the mean and standard 638 

deviation for the estimated values. 639 

 Estimated using InDDeCs Known in the literature 

Hénon map 

(mean over ]1.0,01.0[∈λ ) 

0135.02307.1 ±  01.021.1 ±  (Ref. [14]) 

Lorenz model 

( 3/8,10,28 === bR σ ) 

(mean over ]99.0,01.0[∈λ ) 

2967.08488.1 ±  01.005.2 ±  (Ref. [14]) 

640 
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TABLE II. Estimated values using InDDeCs and values known in the literature for 641 

maximal Lyapunov exponents. Each values shown with ±  represent the mean and 642 

standard deviation for the estimated values. 643 

 Estimated using InDDeCs Known in the literature 

Hénon map (bits/obs.) 

(mean over ]1.0,01.0[∈λ ) 

0075.06240.0 ±  0.6223 (Ref. [19],  

metric entropy) 

Ikeda map (bits/obs.) 

(mean over ]1.0,01.0[∈λ ) 

1024.06651.0 ±  0.7450 (Ref. [19], 

metric entropy) 

Lorenz model 

(nats/unit time) 

( 4,16,40 === bR σ ) 

(mean over ]99.0,01.0[∈λ ) 

4472.03846.1 ±  08.037.1 ± (Ref. [18]) 

Rossler model 

(nats/unit time) 

(mean over ]99.0,01.0[∈λ ) 

0116.00608.0 ±  004.0073.0 ±  (Ref. [18]) 

644 
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TABLE III. Correlation coefficients between the validated principal driving forces 645 

reconstructed from the temperature, the precipitation, the solar irradiance, and the 646 

wind speed at Akita, Japan. 647 

 Temperature Solar 

irradiance 

Precipitation Wind speed 

Temperature 1 0.4315 0.5095 -0.0370 

Solar 

irradiance 

0.4315 1 0.3221 -0.0316 

Precipitation 0.5095 0.3221 1 0.2774 

Wind speed -0.0370 -0.0316 0.2774 1 

 648 

 649 
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