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In this work, we provide two complementary perspectives for the (spectral) stability of solitary traveling

waves in Hamiltonian nonlinear dynamical lattices, of which the Fermi-Pasta-Ulam and the Toda lattice are

prototypical examples. One is as an eigenvalue problem for a stationary solution in a co-traveling frame, while

the other is as a periodic orbit modulo shifts. We connect the eigenvalues of the former with the Floquet

multipliers of the latter and based on this formulation derive an energy-based spectral stability criterion. It states

that a sufficient (but not necessary) condition for a change in the wave stability occurs when the functional

dependence of the energy (Hamiltonian) H of the model on the wave velocity c changes its monotonicity.

Moreover, near the critical velocity where the change of stability occurs, we provide an explicit leading-order

computation of the unstable eigenvalues, based on the second derivative of the Hamiltonian H ′′(c0) evaluated

at the critical velocity c0. We corroborate this conclusion with a series of analytically and numerically tractable

examples and discuss its parallels with a recent energy-based criterion for the stability of discrete breathers.

I. INTRODUCTION

Solitary traveling waves (STWs) are ubiquitous in Hamil-

tonian lattice dynamical systems with intersite interactions.

They arise in the model at the very foundation of nonlinear

science, namely the Fermi-Pasta-Ulam (FPU) lattice [1], as

well as in the Toda lattice [2], one of the key systems of inter-

acting particles, and, arguably, the most significant integrable

one. In addition to their theoretical relevance in the above

models, they constitute the most generic, robust and often ex-

perimentally tractable excitation in nonlinear systems, in par-

ticular, in granular crystals [3–5] and other materials.

Given the relevance of STWs in theoretical, numerical [6–

8] and experimental [3, 4] studies, it is natural to be concerned

about their stability. This may be accessible in some special

cases, such as the Toda lattice [9], or the FPU problem in the

low-energy (near-sonic) regime [10, 11], where specialized

techniques become available due to the system’s integrability

(or proximity to it). Nevertheless, from a physical perspec-

tive, it would be desirable to have a more general criterion

that would be intuitive as well as straightforward to test. This

is especially important given that in a number of studies [12–

14], the possibility of unstable STWs has been demonstrated.

In the present work, we offer such a criterion (a sufficient

yet not necessary condition) by establishing that a change in

the monotonicity of the STW’s energy (Hamiltonian H) de-

pendence on the velocity c will result in a change in its (spec-

tral) stability. In other words, we establish that when, for a

critical velocity c0, it happens that H ′(c0) = 0, a pair of

eigenvalues associated with the traveling wave vanish, entail-

ing the potential for instability. While this criterion first ap-

peared in [10], where it was motivated by the study of the

FPU problem in the near-sonic limit, here we provide both a

concise proof, and also a definitive leading-order calculation

for these two near-zero eigenvalues to explicitly show why

(and when) instability appears. We also systematically test

the criterion numerically in a broad array of physically rele-

vant cases.

Equally important in our approach is the fact that we pro-

vide a generalized perspective of the problem of the stabil-

ity of STWs in a Hamiltonian lattice. In the frame traveling

with the solution, the stability leads to a standard eigenvalue

problem. Yet, here, motivated by earlier works such as [15],

we also propose a complementary approach, where the solu-

tion is viewed as a periodic orbit of the map involving (a)

running the solution for a period of h/c, where h is the lat-

tice spacing, rescaled to unity below and (b) shifting back by

one lattice site. In light of this periodicity, Floquet analysis

can be brought to bear and will turn out to yield coincident

stability conclusions about instabilities produced by the crite-

rion put forth. Furthermore, this perspective enables a unifica-

tion of the lattice STWs in such Hamiltonian systems through

their consideration as discrete breathers. Here the effective

frequency ω is proportional to their velocity c according to

ω = 2πc/h. This, in turn, directly connects the criterion we

analyze with a recently established criterion for the spectral

stability of discrete breathers [16]. We emphasize here that

the unifying connection of STWs with breathers does not im-

pose any a-priori restrictions on the nature of their decay of at
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infinity.

The paper is organized as follows. In Sec. II we formulate

the problem, analyze the properties of the linear operator asso-

ciated with a STW and prove the energy-based stability crite-

rion. We also describe the behavior of the relevant eigenvalues

near the critical velocity, based on the derivation presented in

Appendix A. In Sec. III we discuss an alternative perspective

for the spectral stability, which is associated with the Floquet

analysis. Our results are corroborated by numerical examples

in Sec. IV, with further details provided in Appendix B. We

summarize our findings and discuss some open questions in

Sec. V.

II. STABILITY ANALYSIS IN THE CO-TRAVELING

FRAME AND THE ENERGY CRITERION

We consider a rescaled Hamiltonian system of the form

du

dt
= p,

dp

dt
= F (u) = −

∂H

∂u
, (1)

where H denotes the Hamiltonian energy density of the sys-

tem, u(t) and p(t) are infinite-dimensional vectors denoting

the displacement and particle velocity values on the lattice,

with components un and pn, respectively. In a more compact

notation, Eq. (1) can be written as

dU

dt
= J∇H(U), (2)

where

U =

(

u
p

)

, J =

(

0 I
−I 0

)

.

We assume the existence of STWs for a continuous interval of

velocities. These are localized solutions of the form

un(t) = û(ξ), pn(t) = p̂(ξ), ξ = n− ct,

where c denotes the velocity of the wave, and ξ is the co-

traveling frame variable (note that p̂(ξ) = −cû′(ξ)), with

finite energy (see Appendix A for more details). Lineariza-

tion about the STW in the co-traveling frame, with u(ξ, t) =
û(ξ) + ǫeλtW (ξ) and p(ξ, t) = p̂(ξ) + ǫeλtP (ξ) for small ǫ,
then yields the eigenvalue problem

λZ = LZ (3)

for the linear operator

L = c∂ξ + J∇2H(Û), (4)

where

Z =

(

W
P

)

, Û =

(

û
p̂

)

, J∇2H(Û) =

(

0 I
F ′(û) 0

)

.

Solving the problem in Eq. (3) provides information about the

stability of the STW, through the spectrum of the linearization

operator L, with adjoint

L∗ = (−∇2H(Û)J − c∂ξ) = −J−1LJ (5)

(note that JL is self-adjoint). Given the time translation sym-

metry, an important feature of L is the existence of an eigen-

vector e0 = −∂ξÛ associated with eigenvalue λ = 0. The

corresponding generalized eigenfunction is e1 = ∂cÛ , i.e.,

Le1 = e0. In other words, the spectrum of L always contains

a double eigenvalue at zero. Moreover, by symmetry, the al-

gebraic multiplicity of the zero eigenvalue can only be even.

The presence of an additional instability presupposes the in-

crease of the algebraic multiplicity of the 0 eigenvalue. Since

the kernel of L is one-dimensional, an algebraic multiplicity

higher than two (i.e., at least four) implies that there exists e2
such that Le2 = e1 = ∂cÛ . Since J−1e0 = −J−1∂ξÛ is in

the kernel of L∗, this yields the solvability condition

0 = 〈J−1e0, e1〉 =

∫

(−J−1∂ξÛ) · (∂cÛ)dξ

=

∫

1

c
∇H(Û) ·

∂Û

∂c
dξ =

1

c

∫

∂H(Û)

∂c
dξ =

1

c
H ′(c),

where H =
∫

Hdξ is the conserved Hamiltonian of the sys-

tem, and 〈·, ·〉 denotes the relevant inner product.

As soon as c deviates from the critical velocity c0 satis-

fying H ′(c0) = 0, the above solvability condition fails (e.g.

assuming H ′′(c0) 6= 0), and hence two eigenvalues start to

move away from zero and can possibly emerge on the real

axis. Thus the condition H ′(c0) = 0 constitutes a threshold

for instability of STWs, as per the concise proof above and de-

tailed numerical considerations below extending the formula-

tion of [10]. In fact, by computing the leading-order approx-

imation of these two near-zero eigenvalues near c0 one can

reveal the trend of their motion. Suppose, as will be typi-

cally the case when the stability changes (including examples

in Sec. IV below), that the generalized kernel of L is exactly

four-dimensional at c0, with L3e3 = L2e2 = Le1 = e0 =
−∂ξÛ . Then, as shown in Appendix A, the pair of eigenval-

ues of L responsible for the change of stability will be given

by

λ = ±

√

H ′′(c0)

α1c0
(c− c0) +O(|c− c0|) (6)

for c is near c0, where nonzero α1 is defined in (A2) in terms

of generalized eigenvectors.

In Sec. IV we numerically verify the theoretical predictions

(and test the validity of Eq. (6)), showing that a change of the

monotonicity of H(c) will constitute a sufficient (but not nec-

essary) condition for the transition from stability to instability,

or vice versa, depending on the sign of H ′′(c0)α1c0.

III. A COMPLEMENTARY PERSPECTIVE: FLOQUET

ANALYSIS OF THE TIME T = h/c MAP

Let us now envision anew the case of a STW on a lattice.

Over the period T = h/c (below we again set h = 1), the

STW Û moves over by one lattice site. However, due to the

integer shift invariance of the lattice, the configuration has to

be identical to the one with which we started. This means that
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upon running for a period and shifting back using the shift op-

erator S such that Sun(t) = un−1(t), we generate a periodic

orbit on the lattice [15]. Thus, a fixed point of this operation

consisting of (a) run for T = 1/c and (b) shift, is a discrete

breather (DB) i.e., a localized time-periodic solution [17, 18]

by construction with frequency ω = 2πc. Yet, at the same

time the resulting profile constitutes a lattice STW.

Two important consequences of this complementary per-

spective are as follows. (1) The fixed point operation dis-

cussed above has a corresponding monodromy matrix [17–

19] whose eigenvalues are the Floquet multipliers (FMs) of

the relevant periodic orbit. These FMs determine the stability

of the periodic orbit (i.e., in this case of the STW), as do the

eigenvalues of co-traveling problem computation. Hence, one

should expect that an instability manifested through an eigen-

value crossing zero should be accompanied by a FM µ cross-

ing unity, due to the well known relation µ = eλT between the

multipliers and eigenvalues [20]. (2) Given the intimate con-

nection of lattice STWs and DBs, an immediate correlation

emerges between the criteria for stability change of discrete

breathers, such as H ′(ω) = 0 that was recently established

in [16] and the stability of lattice STWs discussed here (and

also in [10]). Observing that for lattice STWs, ω = 2πc, an

alternative derivation of the latter from the former is, in fact,

immediate.

IV. NUMERICAL CORROBORATION

We now test the above prediction in a set of numerical ex-

amples with the generalized Hamiltonian of the form

H =

∞
∑

n=−∞

[

p2n
2

+ V (un+1 − un)

+

∞
∑

m=−∞

Λ(m)

4
(un − un+m)2

]

.

(7)

Here V (u) is a generic potential governing the nonlinear inter-

actions between nearest neighbors, and Λ(m) are the coeffi-

cients of all-to-all linear long-range interactions, which decay

as |m| → ∞; in the absence of such interactions, Λ(m) = 0.

For instance,

Λ(m) = ρ(eγ − 1)e−γ|m|(1− δm,0), (8)

with ρ > 0 and γ > 0, corresponds to the Kac-Baker inter-

actions, and Λ(m) = ρ|m|−s(1 − δm,0) with s = 5 (s = 3)

corresponds to the dipole-dipole (Coulomb) interactions be-

tween charged particles on a lattice. In principle, the method-

ology can capture nonlinear long-range interactions, but here

we consider linear ones for simplicity.

As our first example, we consider the analytically

tractable and well known case of the Toda lattice [2]

where V (u) = e−u + u − 1 while Λ(m) = 0,

which has a one-soliton solution of the form un(t) =
log [cosh(κ(n− ct− 1))sech(κ(n− ct))], where κ is the

unique positive solution of cκ = sinh(κ). The resulting
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FIG. 1: Top panel: dependence of the energy H on the wave velocity

c in the α-FPU model in Eq. (9) with Λ(m) = 0. Bottom panels:

typical profile of the traveling wave with c = 1.5 in the displacement

(un) and strain (yn = un+1 − un) variables.

Hamiltonian can be computed explicitly for the single soli-

ton family: H = sinh(2κ) − 2κ, leading to H ′(c) =
2(cosh(2κ)− 1)∂cκ > 0, resulting in generically (spectrally)

stable solitary waves in the Toda lattice. This is also in tune

with the nonlinear stability of the solitary waves in this case,

which has been explored, e.g., in [21].

A second famous example consists of the α-FPU case [1],

where

V (u) =
u2

2
−

u3

3
, (9)

while Λ(m) = 0. In this case too, as identified via the meth-

ods of [6–8, 22] (see Appendix B, for details on numerical

simulations) and shown in Fig. 1, the family of STWs numer-

ically features H ′(c) > 0, in full agreement with their iden-

tification as stable. Similar conclusions hold for the highly

experimentally relevant solitary waves of granular crystals [3–

5].

Arguably, these cases, while interesting from the prototyp-

ically nonlinear and experimental perspectives, are perhaps

somewhat less exciting from the point of view of our crite-

rion as they do not feature a stability change. Hence, we turn

to some examples which, while more exotic from the point

of view of practical applications, have been argued to be of

interest and, additionally, feature a change of stability, which

is especially relevant in the context of this work. The first

such case that we will consider concerns the Kac-Baker inter-

actions that have been argued to be of relevance for model-
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ing Coulomb interactions in DNA molecules in [13]. In this

case, we maintain the potential in Eq. (9) of the FPU case,

but add long-range interactions with the kernel in Eq. (8).

Fig. 2 showcases the power of the stability criterion and il-

lustrates the complementary nature of the co-traveling steady

state and the periodic orbit FM calculation approaches. It can

be seen that H ′(c) becomes negative (the top panel of Fig. 2)

for 1.6709 < c < 1.6937, for our chosen values of γ = 0.17,

ρ = 0.0172 selected in tune with [13]. For this very interval

of velocities, an eigenvalue of the operator L crosses through

λ = 0 and acquires a positive real part (dots in the bottom

panel of Fig. 2). In fact, it can be shown [10] that the stability

problem in the co-traveling frame also possesses eigenvalues

λ+ i(2πjc), where j ∈ Z. Finally, the solid curve in the bot-

tom panel of the Fig. 2 showcases the FM calculation associ-

ated with the time T = 1/c map of the corresponding periodic

orbit, transformed (in order to compare with the steady state

eigenvalue approach) according to the relation λ = log(µ)/T .

Confirming the complementary picture put forth, we find that

in this case a FM pair crosses through (1, 0) and into the real

axis for the exact same parametric interval.

To connect with the theoretical analysis of Eq. (6), the in-

set of Fig. 2 shows the dependence of λ2 with respect to

c−c0, which, according to Eq. (6), must be linear in the vicin-

ity of c0 ≈ 1.6937 with the slope β = H ′′(c0)/(α1c0) =
−2.9794 × 10−4. Our numerical calculations yield β =
−3.0383× 10−4; the mismatch of ∼ 2% is likely due to the

fact that α1 in Eq. (6) cannot be computed at the precise value

of c0 in the numerical setup. A similar agreement was also

found in the vicinity of the other critical point at c0 ≈ 1.6709.

As our final example, it is interesting to explore a case

where the relevant theory does not directly apply due to lim-

ited regularity. As such an example, we consider an FPU

model with the potential of the form

V (u) =

{

u2

2
, |u| ≤ uc

χ
2
(|u| − uc)

2 + uc|u| −
u2

c

2
, |u| > uc,

(10)

which allows construction of explicit solitary waves [14], and

Λ(m) = 0; here χ > 1 and uc > 0. In this case the potential

possesses only one continuous derivative, and hence the cal-

culation of eigenvalues λ and FMs µ is less straightforward

to justify, given the relevant jump discontinuities. Neverthe-

less our detailed computations, in line with the numerical re-

sults and stability conjecture in [14], are in a clear agreement

with the criterion put forth analytically in this work. Namely,

H ′(c) > 0 in this case too corresponds to dynamical stability,

while H ′(c) < 0 leads to the manifestation of instability.

In order to qualitatively measure the instability, we have de-

fined two diagnostic quantities. The first of them is the energy

dispersion, given by

ε(t) = 1−
H̄(t)

H
,

where H̄(t) is the energy at the nine central sites of the STW.

In the case of a stable propagating wave, ε(t) ∼ 10−4. The

other quantity is the relative velocity change defined as

η(t) =
X(t)−X(0)

tc
− 1,
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FIG. 2: Stability and instability of the lattice traveling waves in the

α-FPU lattice with nearest neighbor interactions governed by the po-

tential in Eq. (9) and Kac-Baker long-range interactions with the ker-

nel in Eq. (8). Here γ = 0.17 and ρ = 0.0172. The top panel shows

the energy dependence on the speed, withH ′(c) > 0 implying (spec-

tral) stability, and H ′(c) < 0 implying instability. The bottom panel

confirms this by showing the relevant eigenvalue obtained by diag-

onalizing the linearization operator L (dots) and transforming the

relevant Floquet multiplier µ into a corresponding eigenvalue (for

comparison) via the relation λ = c log(µ) (solid curve). The inset of

the bottom panel shows the dependence of λ2 on c − c0 for c near

c0 = 1.6937, the location of the second bifurcation; it fits a straight

line λ2 = β(c− c0), with β = −3.0383 × 10−4.

with X(t) being the energy center of the STW.

The top panel of Fig. 3 shows the curve H(c) for the FPU

model with the potential of Eq. (10) and parametersχ = 4 and

uc = 1; the bottom panels of this figure display the depen-

dence of ε∞ ≡ ε(2000T ) and η∞ ≡ η(2000T ) with respect

to c. In accordance with our stability criterion, ε∞ ∼ 10−4

in the region for which H ′(c) > 0, confirming a stable propa-

gation. In the region with H ′(c) < 0 there are three intervals

of high dispersion, as measured by corresponding values of ε,

and two intervals where the dispersion drops to low values.

The region of low dispersion corresponds to STWs whose
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FIG. 3: Stability and instability of the lattice traveling waves of the

model of [14] with the potential in Eq. (10). Here χ = 4 and uc = 1.

The top panel displays the H(c) dependence, which possesses a min-

imum at c = c0 = 1.0493. The bottom panels show the dependence

of the energy dispersion ε∞ and relative velocity change η∞ (see the

text) with respect to the velocity c, which manifest the instability of

solitary waves with c < c0, where c0 is such that H ′(c0) = 0.

velocity is higher than the initial one (indeed, higher than

the critical one and hence reverting to the stable propagation

regime). Fig. 4 shows the evolution of unstable STWs in two

cases, corresponding to high (c = 1.025) and low (c = 1.034)

dispersion. In the former, linear waves are continuously being

created and the STW degrades with time; in the latter, a linear

wave is expelled from the STW, which transforms into a wave

with a different (now in the stable regime of c > c0) veloc-

ity. Note that in addition to demonstrating instability of waves

with c < c0, these results suggest the potential bistability be-

tween dispersive waveforms and STWs with c > c0.

V. CONCLUSIONS AND FUTURE CHALLENGES

In summary, in this work we have presented a unified per-

spective connecting the stability of lattice solitary traveling

waves with that of discrete breathers of an appropriate map

involving running for the time associated with moving by

one lattice site and shifting back. We have also concisely

established a (sufficient but not necessary) criterion for the
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FIG. 4: Evolution of unstable travelling waves in the model of [14]

with the potential in Eq. (10). Here χ = 4 and uc = 1. The panels

show the profile of the strains yn(t) = un+1(t)−un(t) at t = 1500
and zooms in the space-time evolution dynamics of the strains are

represented in the insets. Top and bottom panels correspond to c =
1.025 and c = 1.034, respectively. In the the example shown in

the bottom panel, the velocity eventually oscillates in time around an

average value of 1.0626.

change in spectral stability of the Hamiltonian lattice STWs

that seems to be in very good agreement with numerical obser-

vations and to constitute a natural extension of a criterion re-

cently put forth for the spectral stability of discrete breathers.

The specific eigenvalue responsible for the instability was the-

oretically identified and favorably compared to detailed nu-

merical computations.

Nevertheless, there are numerous problems that remain

open for future consideration. One relevant issue concerns

the fact that the FM computation leads to as many multi-

pliers as lattice points, while the computation of eigenval-

ues for a STW involves a partial differential equation (PDE).

While the latter will capture the lattice instabilities, it may

also feature instabilities absent on the lattice, which are a by-

product of this PDE’s ability to resolve scales smaller than

h. Hence, a more systematic connection between the spec-

tra of the two problems (and of the instabilities that each may

feature) is of paramount importance. Observe also that while

this work dealt with families of STWs parameterized by ve-

locity, in some cases such entities occur for isolated velocity

values [23, 24], potentially being members of a wider family
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encompassing waveforms with non-vanishing tails. It would

be interesting to explore whether our considerations can be

extended to such cases. Another question is that of going to

the continuum limit: our proof did not directly use the under-

lying lattice nature of the system (only its time reversal invari-

ance). On the other hand, in the continuum limit, symmetries

(like Galilean or Lorentz invariance) may arise. Future work

will involve reconciling these two features in a consistent con-

tinuum limit picture, as well as connecting our criterion with

well-established existing stability criteria, such as [25–27], in

continuum systems. Finally, analysis of the stability of lat-

tice STWs in systems with limited regularity, such as our last

example, also merits future consideration.
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Appendix A: Proof of the leading-order approximation of the

near-zero eigenvalues

In this Appendix we prove Eq. (6) in Sec. II, which provides

the leading-order approximation of the eigenvalues splitting

away from zero at velocities near the critical value c0.

First, we observe that while we consider a lattice Hamil-

tonian system in the displacement form (2), the problem

can be alternatively formulated in terms of strain variables

yn(t) = (S−1 − I)un(t) = un+1(t) − un(t), where we re-

call from Sec. III that S denotes the shift operator such that

Sun(t) = un−1(t). If the Hamiltonian energy density can be

written as H(y, p, t), we have, for Y = (y, p)T ,

dY

dt
= J1∇H(Y ), J1 =

(

0 S−1 − I
I − S 0

)

. (A1)

In what follows, we focus on the formulation (2), but our ar-

guments also work for Eq. (A1).

Suppose Eq. (2) has a family of solitary traveling-wave so-

lutions U(t; c) parametrized by the velocity c taking values in

some continuous interval. Then

U(t; c) = Û(ξ; c) =

(

û(ξ)
p̂(ξ)

)

, ξ = n− ct,

where ξ is the co-traveling frame variable and p̂(ξ; c) =
−c∂ξû(ξ; c). Considering the ansatz

U(ξ, t) =

(

û(ξ)
p̂(ξ)

)

+ ǫeλt
(

W (ξ)
P (ξ)

)

= Û(ξ) + ǫeλtZ(ξ)

with small ǫ and linearizing around the traveling wave Û , we

obtain Eq. (3), where the operator L and its adjoint L∗ are

given by Eq. (4) and Eq. (5), respectively.

Suppose Û ∈ H1(R2), so that its partial derivatives in

ξ and c are in L2(R2). While this assumption implies that

the displacements are localized, for problems with kink-type

traveling waves in terms of displacement that tend to nonzero

constant limits at infinity, we can use the strain formulation

(A1), in which case we assume that the traveling wave solu-

tion Ŷ ∈ H1(R2), i.e., the strains are localized. One can show

that the operator L is densely defined on L2(R2). By differ-

entiating Eq. (2) in ξ and c, respectively, we find that Le0 = 0

and Le1 = e0, where e0 = −∂ξÛ and e1 = ∂cÛ (or, more

generally, e1 = ∂cÛ + d10e0, where d10 is any constant), im-

plying that the algebraic multiplicity of the eigenvalue λ = 0
for L is at least two. Let c0 denote the critical velocity such

that H ′(c0) = 0. Then 〈e1, J−1e0〉 = 0 at this critical value,

and there exists e2 such that Le2 = e1. Since

〈e2, J
−1e0〉 = 〈e2, J

−1Le1〉 = 〈J−1Le2, e1〉

= 〈J−1e1, e1〉 = 0,

we have e2 ∈ (ker(L∗))⊥ = im(L), so e2 belongs to the

range of L, and hence there exists e3 such that Le3 = e2. As-

suming that the zero eigenvalue of L at c0 is exactly quadru-

ple, which is the generic case for traveling waves in Hamilto-

nian lattices due to symmetry, we have

α1 = 〈e0, J
−1e3〉 = −〈e1, J

−1e2〉 6= 0. (A2)

We now consider a neighborhood of the critical speed c =
c0 where the derivative H ′(c) changes its sign. Assuming that

Û(ξ; c) is sufficiently smooth in c near c = c0, we have the

expansion Û(ξ; c0 + ǫ) = U0 + ǫU1 + ǫ2U2 + . . . for small

enough ǫ, where U0 = Û(ξ; c0), U1 = (∂cÛ(ξ; c))|c=c0 and

U2 = 1

2
(∂ccÛ(ξ; c))|c=c0 . Accordingly, the operator L at

c = c0 + ǫ can be written as L = L0 + ǫL1 + ǫ2L2 + . . . . Let

{e0, e1, e2, e3} be the eigenfunction and generalized eigen-

functions of L0 for λ = 0 such that

L3
0e3 = L2

0e2 = L0e1 = e0 = −∂ξÛ(ξ; c0).

We then define the following constants:

Kjk = 〈J−1ej ,L1ek〉, Ljk = 〈J−1ej ,L2ek〉. (A3)

Remark 1 If the generalized kernel of L0 is exactly four-

dimensional, then only the cases λ ∼ ǫ1/2 and λ ∼ ǫ are

possible.

Indeed, this follows from the fact that two of the four eigenval-

ues of L are always zero. It suffices to calculate the leading-

order terms of the eigenvalues for the perturbed operator L at

c = c0 + ǫ. By restricting the operator in the invariant sub-

space G4 = cl(span{e0, e1, e2, e3}), the question reduces to

the perturbation of the matrix

A =







0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0






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with two constraints that hold for any c,

L(∂ξÛ(ξ; c)) = 0 (A4)

and

L(∂cÛ(ξ; c)) = −(∂ξÛ(ξ; c)). (A5)

Note that the characteristic polynomial of the unperturbed ma-

trix A is λ4 = 0. For the matrix A with O(ǫ) perturbation, the

characteristic polynomial is λ4+a3λ
3+a2λ

2+a1λ+a0 = 0
where the coefficients aj are at most O(ǫ). Moreover, due to

two existing constraints in Eq. (A4) and Eq. (A5), two of the

eigenvalues are always zero, so we have λ2(λ2+a3λ+a2) =
0. Thus, either λ ∼ ǫ1/2 (if a2 6= 0) or λ ∼ ǫ (if a2 = 0).

Here we focus on the case λ ∼ ǫ1/2 and show below that it

requires H ′′(c0) 6= 0. Since Eq. (A4) holds for any c, direct

calculation shows that

0 = L0(∂ξU0), (A6)

0 = L0(∂ξU1) + L1(∂ξU0), (A7)

0 = L0(∂ξU2) + L1(∂ξU1) + L2(∂ξU0). (A8)

Moreover, utilizing the fact that (A5) is true for any c, one can

expand both sides in ǫ and obtain

L0U1 = −∂ξU0, (A9)

2L0U2 + L1U1 = −∂ξU1. (A10)

Since H ′(c0) = 0, we can write H(c) = H(c0)+
ǫ2

2
H ′′(c0)+

o(ǫ2), where

H ′′(c0) = ∇H · 2U2 + U1 · ∇
2HU1

=

∫

[c0J
−1(e0) · 2U2 + U1 · J

−1(L0 − c0∂ξ)U1]dξ

=

∫

[c0J
−1L0U1 · 2U2 + U1 · (J

−1L0U1 − c0J
−1∂ξU1)]dξ

=

∫

U1 · (J
−1e0)dξ + c0

∫

U1 · J
−1(L02U2 − ∂ξU1)dξ

= c0

∫

U1 · J
−1(−2∂ξU1 − L1U1)dξ

= −c0

∫

L0e2 · J
−12∂ξU1dξ − c0

∫

e1 · J
−1L1e1dξ

= −c0

∫

e2 · (−1)J−1L02∂ξU1dξ − c0

∫

e1 · J
−1L1e1dξ

= c0

∫

e2 · J
−1L12e0dξ − c0

∫

e1 · J
−1L1e1dξ

= −c0(2K20 −K11).

(A11)

Assuming λ = ǫ1/2λ1 + ǫλ2 + ǫ3/2λ3 + . . . and Z = Z0 +
ǫ1/2Z1+ǫZ2+ǫ3/2Z3+. . . and substituting these into Eq. (3),

we obtain

0 = L0Z0, (A12)

λ1Z0 = L0Z1, (A13)

λ1Z1 + λ2Z0 = L0Z2 + L1Z0, (A14)

λ1Z2 + λ2Z1 + λ3Z0 = L0Z3 + L1Z1, (A15)

λ1Z3 + λ2Z2 + λ3Z1 + λ4Z0 = L0Z4 + L1Z2

+ L2Z0.
(A16)

From Eq. (A12), we find that Z0 = −∂ξÛ(ξ; c0) = e0. Then

Eq. (A13) suggests that Z1 = λ1e1 + d10e0, where d10 is a

constant. Note that Z2 and Z3 can be written as

Z2 =

3
∑

j=0

(d2jej) + Z⊥
2 , Z3 =

3
∑

j=0

(d3jej) + Z⊥
3 ,

where Z⊥
2 and Z⊥

3 are in G⊥
4 , and d2j , d3j , j = 0, . . . , 3

are constants. Projecting Eq. (A14) onto J−1e0 yields

λ1〈J−1e0, Z1〉+λ2〈J−1e0, Z0〉 = K00. The left hand side is

zero since H ′(c0) = 0, and one can show that the right hand

side vanishes (K00 = 0) upon considering Eq. (A7). Project-

ing Eq. (A14) onto J−1e1 and recalling Eq. (A2), we obtain

d23〈J−1e1, e2〉+K10 = d23α1 +K10 = 0, so

d23 = −
K10

α1

. (A17)

Projecting Eq. (A14) onto J−1e2 and using (A2), we find that

d22〈J−1e2, e1〉+K20 = −d22α1 +K20 = −λ2
1α1, and thus

d22 = λ2
1 +

K20

α1

. (A18)

Projecting Eq. (A14) onto J−1e3, we have

d21α1 + d23α2 +K30 = (d10λ1 + λ2)α1, (A19)

where we used Eq. (A2) and set α2 = 〈J−1e3, e2〉. Pro-

jecting Eq. (A15) onto J−1e0 yields λ1d23〈J
−1e0, e3〉 =

−λ1d23α1 = λ1K01, which again yields Eq. (A17) since

K01 = K10. Projecting Eq. (A15) onto J−1e1, we obtain

d33α1 + λ1K11 + d10K10 = λ1d22α1. (A20)

Finally, projection of Eq. (A16) onto J−1e0 yields

d21K01 + d22K02 + d23K03 + L00

= −α1(λ1d33 + λ2d23).
(A21)

Using the equations (A17), (A18), (A19), (A20), (A21)

along with the fact that K is symmetric, we obtain

α1λ
4
1 + (2K20 −K11)λ

2
1

+ (L00 +
K2

20

α1

+
α2K

2
10

α2
1

−
2K10K30

α1

) = 0.

Since two eigenvalues are always zero, this equation should

have two zero roots. This implies

L00 +
K2

20

α1

+
α2K

2
10

α2
1

−
2K10K30

α1

= 0,
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which can also be shown directly using projections of

Eq. (A7) onto J−1ej , j = 0, . . . , 3, and projection of Eq. (A8)

onto J−1e0. We then obtain

λ2
1 = −

2K20 −K11

α1

=
H ′′(c0)

α1c0
.

Thus, for λ ∼ ǫ1/2 it is necessary to have H ′′(c0) 6= 0, and

the behavior of the two eigenvalues splitting away from zero

at c 6= c0 is described by Eq. (6) in Sec. II.

Appendix B: Numerical methods for computing solitary

traveling waves

In this Appendix, we describe the numerical procedures we

used to compute solitary waves in a lattice with the Hamil-

tonian in Eq. (7) and analyze their stability. The governing

equations corresponding to Eq. (7) are

ün − V ′(un+1 − un) + V ′(un − un−1)

+
∞
∑

m=1

Λ(m)(2un − un+m − un−m) = 0,
(B1)

where the overdots here and in what follows denote the time

derivatives. Since the solitary solutions we consider are kink-

like in terms of displacement, it is more convenient to rewrite

Eq. (B1) in terms of the strain variables yn = un+1 − un,

obtaining

ÿn + 2V ′(yn)− V ′(yn+1)− V ′(yn−1)

+
∞
∑

m=1

Λ(m)(2yn − yn+m − yn−m) = 0.
(B2)

To find solitary traveling wave solutions, we use the pro-

cedure followed in [28]. To this end, we seek solutions of

Eq. (B2) in the co-traveling frame corresponding to velocity

c:

yn(t) = Φ(ξ, t), ξ = n− ct,

obtaining the advance-delay partial differential equation

Φtt + c2Φξξ − 2cΦξt

= V ′(Φ(ξ + 1, t)) + V ′(Φ(ξ − 1, t))− 2V ′(Φ(ξ, t))

−
∞
∑

m=1

Λ(m)(2Φ(ξ, t)− Φ(ξ +m, t)− Φ(ξ −m, t)).

(B3)

Traveling waves φ(ξ) are stationary solutions of Eq. (B3).

They satisfy the advance-delay differential equation

c2φ′′(ξ) + 2V ′(φ(ξ)) − V ′(φ(ξ + 1))− V ′(φ(ξ − 1))

+

∞
∑

m=1

Λ(m)(2φ(ξ) − φ(ξ +m)− φ(ξ −m)) = 0.

(B4)

Solitary traveling waves are solutions that in addition satisfy

lim
ξ→±∞

φ(ξ) = 0. (B5)

Following the approach in [7], we assume that φ(ξ) = o(1/ξ)
and φ′(ξ) = o(1/ξ2) as |ξ| → ∞, multiply Eq. (B4) by ξ2

and integrate by parts to derive the identity

[

c2 −
∞
∑

m=1

m2Λ(m)

]

∫ ∞

−∞

φ(ξ)dξ −

∫ ∞

−∞

V ′(φ(ξ))dξ = 0,

(B6)

which imposes the constraint (B5) on the traveling wave solu-

tions. Here we assume that Λ(m) decays faster than 1/m3 at

infinity, so that the series on the left hand side converges.

To solve Eq. (B4) numerically, we introduce a discrete

mesh with step ∆ξ, where 1/∆ξ is an integer, so that the

advance and delay terms φ(ξ ± m) are well defined on the

mesh. We then use a Fourier spectral collocation method for

the resulting system with periodic boundary conditions [29]

with large period L. Implementation of this method requires

an even number N of collocation points ξj ≡ j∆ξ, with

j = −N/2 + 1, . . . ,N/2, yielding a system for ξ in the

domain (L/2, L/2], with L = N∆ξ being an even number,

and the long-range interactions are appropriately truncated.

To ensure that the solutions satisfy Eq. (B5), we addition-

ally impose a trapezoidal approximation of Eq. (B6) on the

truncated interval at the collocation points. This procedure is

independent of the potential and the interaction range. How-

ever, the choices of ∆ξ and L depend on the nature of the

problem. In the particular cases considered in the paper, we

used ∆ξ = 0.1, L = 800 for the α-FPU lattice with nearest-

neighbor potential in Eq. (9) and Kac-Baker long-range inter-

actions with coefficients in Eq. (8) and ∆ξ = 0.025, L = 200
for the FPU lattice with piecewise quadratic short-range inter-

action potential in Eq. (10) and no long-range interactions.

To investigate spectral stability of an obtained traveling

wave φ(ξ), we substitute

Φ(ξ, t) = φ(ξ) + ǫa(ξ) exp(λt),

into Eq. (B3) and consider O(ǫ) terms resulting from this

perturbation. This yields the following quadratic eigenvalue

problem:

λ2a(ξ) = −c2a′′(ξ) + 2λca′(ξ)− 2V ′′(φ(ξ))a(ξ)

+ V ′′(φ(ξ + 1))a(ξ + 1) + V ′′(φ(ξ − 1))a(ξ − 1)

−
∞
∑

m=1

Λ(m)(2a(ξ)− a(ξ +m)− a(ξ −m)).

(B7)

By defining b(ξ) = λa(ξ), we transform this equation into the

regular eigenvalue problem

λ

(

a(ξ)
b(ξ)

)

= M

(

a(ξ)
b(ξ)

)

(B8)

for the corresponding linear advance-delay differential oper-

ator M. Note that this problem is equivalent to the eigen-

value problem (3) via the transformation (a(ξ), b(ξ)) =
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(W (ξ), P (ξ)+ cW ′(ξ)). Spectral stability can be determined

by analyzing the spectrum of the operator M after discretiz-

ing the eigenvalue problem the same way as the nonlinear

Eq. (B4) and again using periodic boundary conditions. A

solution is stable when the spectrum contains no real eigen-

values.

An alternative method for determining the stability of the

traveling waves is to use Floquet analysis. To this end, we

cast traveling waves φ(ξ) as fixed points of the map

[

{yn+1(T )}
{ẏn+1(T )}

]

→

[

{yn(0)}
{ẏn(0)}

]

, (B9)

which is periodic modulo shift by one lattice point, with pe-

riod T = 1/c. Indeed, one easily checks that ŷn(t) =
φ(n − ct) = φ(n − t/T ) satisfies ŷn+1(T ) = ŷn(0) = φ(n)

and ˙̂yn+1(T ) = ˙̂yn(0) = −cφ′(n). To apply the Flo-

quet analysis, we trace time evolution of a small perturba-

tion ǫwn(t) of the periodic-modulo-shift (traveling wave) so-

lution r̂n(t). This perturbation is introduced in Eq. (B2) via

yn(t) = ŷn(t) + ǫwn(t). The resulting O(ǫ) equation reads

ẅn + 2V ′′(ŷn)wn − V ′′(ŷn+1)wn+1 − V ′′(ŷn−1)wn−1

+

∞
∑

m=1

Λ(m)(2wn − wn+m − wn−m) = 0.

(B10)

Then, in the framework of Floquet analysis, the stability prop-

erties of periodic orbits are resolved by diagonalizing the

monodromy matrix F (representation of the Floquet operator

for finite systems), which is defined as:

[

{wn+1(T )}
{ẇn+1(T )}

]

= F

[

{wn(0)}
{ẇn(0)}

]

. (B11)

For the symplectic Hamiltonian systems considered in this

work, the linear stability of the solutions requires that the

monodromy eigenvaluesµ (also called Floquet multipliers) lie

on the unit circle. The Floquet multipliers can thus be written

as µ = exp(iθ), with Floquet exponent θ.

Note that the two procedures for analyzing spectral stability

described above require the potential V (u) to be twice differ-

entiable, as in the case of the α-FPU problem considered in

Sec. IV. Due to the absence of such regularity in the case

of the piecewise quadratic potential in Eq. (10), the exami-

nation of stability was performed solely on the basis of di-

rect numerical simulations. Specifically, it was analyzed by

means of tracking the dynamics of a slightly perturbed solu-

tion [{ŷn(0)}, { ˙̂yn(0)}]. To this aim, the fourth order explicit

and symplectic Runge-Kutta-Nyström method developed in

[30], with time step equal to 10−3, was used.
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259 (1989).

[7] J. C. Eilbeck, R. Flesch, Phys. Lett. A149, 200 (1990).

[8] J. M. English, and R. L. Pego, Proc. Am. Math. Soc. 133, 1763

(2005).

[9] G. N. Benes, A. Hoffman, and C. E. Wayne. J. Math. Anal.

Appl. 386, 445 (2012).

[10] G. Friesecke, R. L. Pego, Nonlinearity 17, 207 (2004).

[11] G. Friesecke, R. L. Pego, Nonlinearity 15, 1343 (2002).

[12] S. F. Mingaleev, Y. B. Gaididei, F. G. Mertens, Phys. Rev. E 58,

3833 (1998).

[13] S. F. Mingaleev, Y. B. Gaididei, F. G. Mertens, Phys. Rev. E 61,

R1044 (2000).

[14] L. Truskinovsky, A. Vainchtein, Phys. Rev. E 90, 042903

(2014).
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