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The speed and stability of fronts near a weakly subcritical steady state bifurcation are studied,
focusing on the transition between pushed and pulled fronts in the bistable Ginzburg-Landau equa-
tion. Exact nonlinear front solutions are constructed and their stability properties investigated. In
some cases the exact solutions are stable but are not selected from arbitrary small amplitude initial
conditions. In other cases, the exact solution is unstable to modulational instabilities which select
a distinct front. Chaotic front dynamics may result and is studied using numerical techniques.

I. INTRODUCTION

In this paper we are interested in the speed with which
a nontrivial pattern invades either a stable homogeneous
state or an unstable one. These types of problems arise
frequently in applications [1–5] but the speed selection
process remains imperfectly understood despite much ef-
fort. This is because in the former case the speed is in-
evitably selected by nonlinear processes (the pushed front
case) while in the latter case selection may be via linear
processes (the pulled front case) although nonlinear se-
lection may survive well into the supercritical regime.
Moreover, the selected speed depends in general on the
initial condition, and in particular on the steepness of the
front connecting the pattern to the homogeneous state at
the initial instant.

In order to present a unified discussion of both pro-
cesses we focus here on the bistable Ginzburg-Landau
equation [6–13]

A
t

= µA+A
xx

+ ia1|A|2A
x

+ ia2A
2Ā

x

+d|A|2A� |A|4A.
(1)

This amplitude equation describes the evolution of the
complex amplitude A(x, t) on a slow spatial scale x and
a slow time scale t in systems undergoing a weakly sub-
critical steady state bifurcation to a patterned state with
wave number k0 at R = R

c

, where R is the bifurcation
parameter. Thus the physical field of interest takes the
form

u(x, t) = ✏A

✓

x

✏2
,
t

✏4

◆

eik0x + c.c.+ h.o.t., (2)

where ✏ is a small parameter measuring simultaneously
the distance from the primary bifurcation at R =
R

c

(R = R
c

+ ✏4µ) and the degree of subcriticality
�

b = ✏2d > 0
�

. Thus A 6= 0 corresponds to a stripe pat-
tern with wave number k0 while A = 0 corresponds to the
homogeneous state. Here b is the coe�cient of the cubic
term in the standard Ginzburg-Landau description of the
primary bifurcation; its smallness requires a rescaling of
the spatial and temporal scales, as indicated above, and
leads to the appearance of the three new terms in Eq. (1),
viz., the two terms with (real) coe�cients a1 and a2, and
of the quintic term whose coe�cient has been scaled to
�1 (stabilizing quintic term). It follows that either µ or

d can be set equal to +1 by a suitable choice of ✏. In
the following we set d = 1 and use µ as the bifurcation
parameter.

Equation (1) has the symmetries

A(x, t) ! Ā(�x, t), A(x, t) ! A(x, t) ei�, (3)

inherited from the assumed invariance of the original sys-
tem for u(x, t) under spatial reflections and translations
with respect to the fast spatial scale. In the absence
of spatial forcing on scales of order O(✏�2) the equation
is also invariant under spatial translations with respect
to the slow spatial scale x. The equation possesses a
Maxwell-like point µ = µ

M

at which a multitude of sta-
tionary spatially localized structures of varying widths is
present [12]. This point exists even when a2 6= 0, i.e.,
when the equation lacks gradient structure. In the lat-
ter case µ

M

corresponds to the presence of a heteroclinic
cycle connecting the trivial state A = 0 to a stationary
nontrivial state R

M

eiqMx given by

R
M

=
12

16� (3a1 � 5a2)(a1 + a2)
, (4)

q
M

=
3(a1 + a2)

(3a1 � 5a2)(a1 + a2)� 16
(5)

and back again.

Past studies of Eq. (1) focused mostly on the existence
and stability of periodic solutions and coherent structures
but a few also examine the well-posedness of the Cauchy
problem. The existence and local stability of rotating
wave solutions is treated in [8, 11–13] while nonlinear
stability criteria are provided in [9]. The existence of
pulses and fronts was examined in [8], and the persis-
tence of front solutions when the coe�cients acquire a
small imaginary part was studied in [10]. In the case
a2 = 0 a free energy can be defined and it is known that
the energy is bounded from below provided |a1| < 4p

3

[12]. This is a necessary condition for well-posedness of
solutions of Eq. (1) when a2 = 0. In the general case
(a2 6= 0) the condition |a1 � a2| < 2 is known to be su�-
cient for global existence of solutions of the Cauchy prob-
lem [14]. The same condition is required for the global
existence of periodic solutions of Eq. (1) and it was sug-
gested though not proved that in this case the bound is
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sharp [15]. However, the necessary and su�cient condi-
tion on the coe�cients a1, a2 for the global existence of
general solutions of Eq. (1) remains an open problem.

In the present work we are interested in the properties
of traveling fronts that are present when µ 6= µ

M

. Since
the system is bistable two types of fronts are possible:
pushed fronts describing the elimination of the nontrivial
state by an invading trivial state (µ < µ

M

) or vice versa
(µ

M

< µ < 0), and pulled fronts describing the invasion
of a linearly unstable trivial state by a stable nontrivial
state (µ > 0). In fact, as first pointed out by van Saarloos
[16] the transition between these two types of fronts does
not take place exactly at µ = 0, even when a1 = a2 = 0,
and this transition is of particular interest in the present
work as well.

The paper is organized as follows. In Sec. II we obtain
a three-parameter family of exact traveling front solu-
tions of Eq. (1) and study the stability of these solu-
tions in the relevant parameter region. This solution set
is a special case of that derived in [17]. The dynamic
nature of these fronts is closely related to the stability
of the asymptotic states at either end. In Sec. III we
review the two basic regimes of front propagation dis-
tinguished by the stability properties of the background
A = 0 state, and discuss the associated theoretical un-
derstanding of velocity selection in each case. Sections
IV and V describe case studies of these two front propa-
gation regimes, focusing in Sec. IV on the case in which
A = 0 is stable and in Sec. V on the case in which it is
unstable. In the latter case the “marginal stability cri-
terion” of Dee and Langer [18] can then be applied to
characterize the motion of the front, subject to certain
restrictions on the initial conditions [19]. Section V also
investigates the stability of the state deposited by the
moving front with respect to spatial modulation. Brief
conclusions follow in Sec. VI.

II. NONLINEAR FRONT

A procedure for finding exact coherent traveling struc-
tures of the Ginzburg-Landau equation has been outlined
by van Saarloos and Hohenberg [20, 21]. Such traveling
solutions inform bifurcation structure as well as dynamics
and are thus of significant value. One of the most famous
such examples is the one-parameter family of Nozaki-
Bekki hole solutions for the complex Ginzburg-Landau
equation which have been shown to play an important
role in its dynamics [22]. In this section we derive an ex-
act traveling front solution to Eq. (1) with fully general
parameter dependence and study the region of existence
and stability of the solution. These put restrictions on
the parameter values for which the exact front is valid
and dynamically relevant.

A. Spatial dynamics

If we restrict attention to traveling solutions, Eq. (1)
can be rewritten in the form of three real first order ODEs
[20] in a traveling frame with coordinate ⇠ ⌘ x� vt. To
do this we write

A(x, t) = W (⇠)e�i!t, (6)

where ! is a constant, and W (⇠) ⌘ a(⇠)ei�(⇠). In ad-
dition, we introduce the quantities q ⌘ �0 and  ⌘ a

0

a

,
where the prime denotes di↵erentiation with respect to
⇠. This procedure yields the real-valued equations

a0 = a, (7)

q0 = � (a1 + a2) a
2� q(v + 2)� !, (8)

0 = a2 [(a1 � a2) q � 1] + a4 � µ+ q2 � v� 2. (9)

The traveling front solutions that we seek correspond
to heteroclinic orbits between fixed points (a, q,) =
(a

N

, q
N

, 0) (the nontrivial state) and (0, q
L

,
L

) (the triv-
ial state). Given arbitrary values of the parameters
µ, a1, a2, these heteroclinics may exist only for certain
values of v, !. If a heteroclinic orbit exists only for dis-
crete values of v and ! (for each set of µ, a1, a2) it will
be known as a “discrete front” and otherwise it is a “k-
parameter front” where k indicates the number of free
parameters.
We suppose, without loss of generality, that the front

solution approaches (a
N

, q
N

, 0) as ⇠ ! �1 (the source
or upstream state) and (0, q

L

,
L

) as ⇠ ! 1 (the sink
or downstream state). It follows that the former must
be unstable in the space variable ⇠ while the latter must
have at least one stable eigendirection. An upper bound
on the number of free parameters within a family of such
heteroclinic solutions is therefore determined by the di-
mensions of the unstable manifold of the source fixed
point and the stable manifold of the sink [21]. If the
source has n unstable eigendirections then the solution
curve must lie in the corresponding n-dimensional un-
stable manifold. This condition restricts the number of
degrees of freedom of the solution curve by 1 leaving n�1
degrees of freedom. Adding the two free parameters v,!
the total number of degrees of freedom becomes n + 1.
A necessary condition for the existence of a heteroclinic
between the source and sink is that the solution curve
also lies in the stable manifold of the sink. If the sink
has l unstable eigendirections this requirement generi-
cally requires that l variables are fixed thereby leaving
k ⌘ n � l + 1 variables free. If k > 0 the solution curve
corresponds to a k-parameter front, if k = 0 it is a dis-
crete front, and if k < 0 no heteroclinic orbit exists be-
tween the two fixed points. A complete analysis of the
fixed points and associated stable/unstable manifold di-
mensions of Eqs. (7)–(9) is carried out in [8].
We follow [20] in using the Ansatz

q = q
N

+ e0
�

a2 � a2
N

�

,  = e1
�

a2 � a2
N

�

, (10)
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and suppose that the resulting front travels with speed
v = v

N

. This front is a discrete front, i.e., k = 0, and
both ! and v are determined by the system parameters.
Di↵erentiating the Ansatz and using Eq. (7) we find that
q0 = 2e0a2 and 0 = 2e1a2. Next, we eliminate q and
 from Eqs. (8) and (9), obtaining a pair of polynomial
identities in a. In order for these to be satisfied identically
each coe�cient of the polynomials must vanish. These
conditions produce a set of algebraic equations su�cient
to determine the constants a

N

, q
N

, e0, e1, vN ,!
N

. There
are generically two sets of values of the constants that
solve these equations due to a fold bifurcation in the µ <
0 region. The explicit form of the front can be found
by recalling the definition of  and solving the second
relation in Eq. (10) as a first order di↵erential equation
for a:

W (⇠) ⌘ a
N

eiqN⇠

⇣

1 + e2a
2
Ne1⇠

⌘� 1
2�i

e0
2e1

. (11)

Here e1 > 0 since we choose fronts that decay to zero as
⇠ ! 1. Figure 1 shows a sample plot of the solution
(11) with (a1, a2) = (2, 3) and µ = 0. The front solution
connects the rotating wave state A = a

N

ei(qN⇠�!N t) as
⇠ ! �1 to the trivial state A = 0 as ⇠ ! 1.

We now exhibit the explicit Ansatz parameters for
(a1, a2) 6= (0, 0). For simplicity of presentation we first
introduce the auxiliary parameters

� = 16� (3a1 � 5a2) (a1 + a2) ,

� = 16� (a1 + a2)
⇥

4a1 � 3a32 � a1a
2
2 + 2

�

a21 � 10
�

a2
⇤

,

⌥ = 8� (3a1 � 7a2)(a1 + a2),

⇤ = 2 + a2(a1 + a2), (12)

yielding e0 = � 1
4 (a1 + a2), e1 = 1

4

q

�
3 , !N

= �q
N

v
N

,

together with

a2
N± =

2(5⇤� 6)± 2⌥
p

(2⇤+ µ�)/�

�
,

q
N± =

a1 + a2
�

h

�2⇤± (6� ⇤)
p

(2⇤+ µ�)/�
i

, (13)

v
N± =

r

�

3

⇤� 6±p

(2⇤+ µ�)�

�
.

One of these solutions (±) is stationary at the Maxwell-
like point µ = µ

M

(a1, a2) ⌘ � 3
� [12]. Depending on the

sign of the quantity ⇤ � 6 the stationary front may be
located on either the a

N+ or the a
N� branch. These

branches meet at a fold at 2⇤ + µ� = 0. In addition,
since !

N

+ q
N

v
N

= 0, the source state is always station-
ary in the original frame. The coe�cients for the Ansatz
shown here may be obtained from the more general so-
lution derived in [17] that uses this Ansatz in a quintic
Ginzburg-Landau equation with complex coe�cients.

The Ansatz yields well-defined solutions even when
� = 0, despite the vanishing denominators in Eq. (13),
although there is now only one solution rather than two

FIG. 1. The nonlinear front with parameters (a1, a2) = (2, 3)
and µ = 0 shown at a fixed time. (a) The real (green) and
imaginary (red) parts of the solution A(⇠, ·) along with its
amplitude |A| in blue. (b) A 3D representation of the solution
in (a).

(up to an overall sign):

a2
N

=
µ⌥2 � 9(a1 + a2)2

(6� 5⇤)�
,

q
N

=
a1 + a2
4⇤�

⇥

µ(6� ⇤)2 � 6⇤
⇤

, (14)

v
N

=
�

1
2 (µ�+ 3)

2
p
3(6� ⇤)

.

Here e0 and e1 are as above but all the auxiliary variables
are understood to be restricted to the curve� = 0. There
is now only one branch of fronts with positive a

N

and no
fold in the branch. The Maxwell point is still given by
� 3

� . This case is not discussed in [17].

In the special case a1 = a2 = 0 we recover the result
of [16, 23]. The front solution (11) then takes the form

W (⇠) ⌘ a
N

p

1 + e2a
2
N⇠/

p
3

(15)
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with

a4
N

� a2
N

� µ = 0, v
N

=
4a2

N

� 3p
3

, (16)

provided µ > � 1
4 . The polynomial equation of a2

N

in

Eq. (16) has two real roots. A front with a2
N

= 1+
p
1+4µ
2

connects a stable constant amplitude state to the stable

trivial state and travels with speed v
N

= 2
p
1+4µ�1p

3
. Such

a front moves in the positive ⇠ direction when µ > � 3
16

and in the negative ⇠ direction when � 1
4 < µ < � 3

16 .
The Maxwell point is at µ

M

= � 3
16 . The other solution,

which only exists when � 1
4 < µ < 0, always travels in the

negative ⇠ direction as it connects an unstable constant
amplitude state to the stable trivial state.

In fact, the general case (13) reduces to Eq. (16) along
the whole line a1 = �a2, along which all of the constants
�, �, ⌥, ⇤ become independent of both a1 and a2. This
reduction results because in this case the cubic terms in
Eq. (1),

⇥

d|A|2 + ia1(ĀA
x

�AĀ
x

)
⇤

A, can be written in
the special form (d� 2a1q)|A|2A with q = 0. As a result
the coe�cient a1 drops out.

For strongly nonlinear front propagation problems it is
useful to develop a characterization of the intrinsic length
scale in the model. In view of the exact front solution
(11), it is natural to define this length scale, hereafter �,
as the inverse spatial decay rate of the front envelope,
i.e., � ⌘ 1

e1a
2
N
. We show this length scale, evaluated at

the Maxwell point µ = µ
M

(a1, a2), in Fig. 2. The figure
shows that in the case of a

N+, increasing |a1| leads to
front steepening while increasing |a2| leads to broaden-
ing. Unsurprisingly, the a

N� solution has both a smaller
amplitude and a smaller spatial decay rate than its sibling
above the fold. Specifically, when a2 > 0 the a

N� front
steepens for decreasing a1 and broadens for increasing a2
throughout the bulk of the parameter regime.

B. Existence conditions for the nonlinear front

The Ansatz (10) does not always generate a front so-
lution. For this to be the case the coe�cients in Eq. (13)
must be real and the amplitude of the nontrivial asymp-
totic state must be positive, i.e.,

� > 0, a2
N

> 0, 2⇤+ µ� > 0. (17)

These conditions place restrictions on the allowed values
of a1, a2 and µ. We remark that � > 0 implies ⇤ > 0, a
result that follows from the identity � = 8⇤�3(a1+a2)2.
Verifying these conditions requires an understanding of
the allowed values of µ which we examine next.

The front solutions typically bifurcate from the triv-
ial state in a subcritical pitchfork bifurcation, leading to
the coexistence of the trivial state with the two front
solutions, a = a

N±. This bifurcation is located at

µ = µ
P

⌘ 9(a1+a2)
2

⌥2 � 0 and the initial front ampli-

tude scales as a
N

/ |µ � µ
P

| 12 unless 5⇤ = 6 in which
case a

N

/ |µ� µ
P

| 14 and the pitchfork is degenerate. As
a consequence, when �(5⇤ � 6) > 0 a fold bifurcation
is present at µ = µ

F

⌘ � 2⇤
� . This fold lies to the left

(right) of the pitchfork bifurcation when the pitchfork is
subcritical (supercritical) and no fronts of the assumed
form is present µ < µ

F

(µ > µ
F

), with only one front
present for µ > µ

P

(µ < µ
P

). Note that µ
P

= 0 along
the line a1 = �a2.
The imposition of the requirements (17) leaves distinct

generic parameter regimes within which the nonlinear
front (11) exists. These depend on the values of �, ⌥,
and ⇤. The first of these that we shall consider depends
on the signs of � and 5⇤ � 6. Most of the parameter
space is covered by � > 0 but there is a sliver near the
boundary of the existence region where � < 0 (Fig. 3).
While the former case displays expected behavior, the
latter complicates the validity of the Ansatz and in many
cases only one of the solutions in Eqs. (13) remains valid.
In the following analysis we shall consider the e↵ects of
passing through the sign change in the auxiliary variables
by increasing a1. Since 5⇤ > 6 whenever � > 0 there are
three possible regimes encountered as a1 increases from
0: (1) � > 0 and 5⇤ > 6, (2) � < 0 and 5⇤ > 6, and (3)
� < 0 and 5⇤ < 6. As a1 increases from 0, � decreases
towards zero and µ

F

! �1. When � = 0 there is no
fold bifurcation on the front branch: the branch of exact
fronts bifurcates from the trivial state at µ = µ

P

and ex-
tends to µ = �1. This behavior persists into the region
� < 0 and 5⇤ > 6 in which only the a

N+ solution is
valid. Finally, if |a2| > 1p

5
then a third regime becomes

accessible in which � < 0 and 5⇤ < 6. At 5⇤ = 6 the
pitchfork switches from subcritical to supercritical and in
so doing regenerates a fold at µ

F

, now to the right of the
pitchfork. For µ

P

 µ  µ
F

both solutions of Eqs. (13)
are valid.
The remaining degenerate parameter regimes involve

⌥ and ⇤ (Fig. 3), and have direct physical interpretation
as a result of their e↵ect on the µ dependence of the
solutions. First, as ⌥ ! 0 from both above and below
µ
P

! 1. When ⌥ = 0, � is always positive and 5⇤ >
6 so both solutions in Eqs. (13) are valid but have the

same µ-independent amplitude, a2
N

= 2(5⇤�6)
� . A similar

phenomenon occurs in the case ⇤ = 6 when the deposited
wave number, q

N

, becomes independent of µ and takes
the same value for both solutions in Eqs. (13). That is,
the nonlinear front leaves the same patterned state in its
wake regardless of the forcing µ. Because µ represents
the bifurcation parameter that pushes the system into
the pattern-forming regime, a dependence of a

N

and q
N

on µ is to be expected. The fact that this expectation
fails in these subcases is indicative of a nontrivial front
selection mechanism and a nongeneric balance among the
cubic nonlinear terms of Eq. (1). These e↵ects are new
and cannot be seen in the well-studied case a1 = a2 = 0.
Bifurcation diagrams for the amplitude of the front so-

lutions for sample parameters are shown in Figs. 4 and
5 in which we plot kWk1 = a

N

versus the parameter µ.
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FIG. 2. The length scale � ⌘
�
e1a

2
N

��1
at the Maxwell point µ = µ

M

(a1, a2) for fronts on (a) the a

N+ branch and (b) the a

N�
branch. Regions colored dark red represent values � 8. The solution that lies below the fold on the branch of front solutions
has a smaller amplitude and decay rate as compared to that above the fold.

FIG. 3. The existence regions for a

N± when (a) µ = �0.1, (b) µ = 0, (c) µ = 0.1. The dark grey indicates existence of both
solutions, light grey indicates existence of only a

N+, black indicates existence of only a

N�, while white implies nonexistence of
both solutions. The lines � = 0 (red), ⇤ = 6 (blue), 5⇤ = 6 (magenta), ⌥ = 0 (green) and� = 0 (orange) are shown restricted to

the region � > 0, required for the validity of the Ansatz (10). The dots indicate the locations (a1, a2) = (±3,±1),
⇣
±
p
5,⌥ 1p

5

⌘

on the curve � = 0.



6

First, Fig. 4(a) demonstrates the generic behavior of the
nonlinear fronts for a2 = 0, while Figs. 4(b) and (c) show
nongeneric behavior that arises when the remaining key
coe�cients ⌥ and � pass through zero. Since ⌥ = 0 at

a1 =
q

8
3 while � = 0 at a1 = 2 we separate Fig. 4 into

three diagrams around a1 = 0,
q

8
3 , and 2. In the bulk

of the parameter space the generic case with a1, a2 6= 0
shares the same qualitative characteristics as the cases
in Fig. 4 with the corresponding signs of �, ⌥ and ⇤.
Second, Fig. 5 focuses on the regime 5⇤ � 6 ⇡ 0, only
realizable for |a2| > 1p

5
. Here the pitchfork bifurcation

responsible for the branch of fronts switches from subcrit-
ical to supercritical (at 5⇤ = 6). The resulting solution
branch moves towards the left with decreasing a1 until
the Ansatz fails at a1 = � 7

3 ⇡ �2.33 where � = 0.

C. Stability of exact front solutions

We analyze the linear stability of a front by lin-
earizing Eq. (1) about such a front, i.e., writing A =
W (⇠)e�i!t(1 + �(⇠, t)), |�| ⌧ 1. This yields

�
t

= �
⇠⇠

+ U�
⇠

+ ia2|W |2�̄
⇠

+ V (� + �̄), (18)

where

U(⇠) ⌘ v + 2W�1W
⇠

+ ia1|W |2,
V (⇠) ⌘ |W |2 � 2|W |4 + i

�

a1W̄W
⇠

+ a2WW̄
⇠

�

. (19)

The quantities U(⇠) ⌘ U
r

+ iU
i

and V (⇠) ⌘ V
r

+ iV
i

may
be computed from the identities

|W |2 =
a2
N

1 + e2a
2
Ne1⇠

,

W�1W
⇠

= iq
N

+ (e1 + ie0)
�|W |2 � a2

N

�

. (20)

We search for temporal eigensolutions of the form
�(⇠, t) = e�t(�1 + �2) + e�̄t(�̄1 � �̄2), where �1 and �2 are
functions of ⇠ alone, leading to the eigenvalue problem

�

✓

�1
�2

◆

=

✓

@
⇠⇠

+ U
r

@
⇠

+ 2V
r

i
�

U
i

� a2|W |2� @
⇠

i
�

U
i

+ a2|W |2� @
⇠

+ 2V
i

@
⇠⇠

+ U
r

@
⇠

◆✓

�1
�2

◆

⌘ L
✓

�1
�2

◆

. (21)

The spectrum of the operator L consists of a point
spectrum �

p

and the essential spectrum �
c

. However,
this operator is non-normal: it does not commute with its
adjoint. Non-normal operators do not obey the spectral
theorem, may not have orthogonal eigenfunctions and
can have a point spectrum with high sensitivity to per-
turbations [24, 25]. Such operators arise, for example, in
the study of spatially varying fluid flows [25, 26]. Con-
clusions about stability from point spectra of non-normal
operators are complicated by the possibility of transient
growth and we opt in this work to treat only the essential
spectrum of L, which can be computed analytically.

The essential spectrum for a front solution consists of
the union of the essential spectra of the ⇠ ! ±1 states.
The trivial state (at ⇠ ! 1) is only stable when µ is neg-
ative. In the notation of [13] infinitesimal perturbations
of the periodic state present at ⇠ ! �1 have the growth
rate

�(q) = ivq � (g + q2)±
p

g2 + q2 (2g � f), (22)

where q is the perturbation wave number and

g ⌘ 2(µ� q2
N

) + [1 + q
N

(a2 � a1)] a
2
N

, (23)

f ⌘ (4 + a22 � a21)a
4
N

� 2 [1 + q
N

(a2 + a1)] a
2
N

� 4q2
N

.
(24)

We call a solution linearly stable if its spectrum is con-
tained in the left half of the complex plane. In [13] it
was shown that this rotating wave state is stable if and
only if f and g are both nonnegative. Thus the essen-
tial spectrum of the front is stable provided f, g � 0 and
µ < 0. It was further shown in [13] that there are two
distinct regimes by which the rotating wave can go un-
stable: (I) f < 0 and f  g or (II) g < 0 and f > g.
The first is characterized by a marginal wave vector with
nonzero real part and the latter by one with zero real
part. Though a complete analysis of the point spectrum
is not included here we can calculate the eigenfunctions
of the zero eigenvalue analytically. This eigenvalue has
double multiplicity: translation symmetry gives rise to a
zero eigenvalue “Goldstone mode” [27] �(⇠, t) = W�1W

⇠

while rotation symmetry generates the zero eigenvalue
phase mode �(⇠, t) = i.

Although the rotating wave states of (1) form a one
parameter family of states (for fixed system parameters)
[12, 13], the front solution computed here selects one par-
ticular rotating wave in the asymptotic limit ⇠ ! �1.
This reduction enables us to plot the stability in the
(a1, a2) plane for fixed µ. In Figs. 6 and 7 we exclude
the spectrum of A = 0 and plot the stability of the ro-
tating wave selected by the nonlinear front Ansatz in the
two qualitatively distinct regimes µ 7 0. For µ < 0
the a

N+ branch is stable in a region of parameter space



7

FIG. 4. The front amplitudes a

N+ (blue) and a

N� (red) for (a) ⌥ > 0, � > 0, (b) several values of ⌥ ⇡ 0 while � > 0, and
(c) for several values of � ⇡ 0 while ⌥ < 0. The parameter values in each of these plots are a2 = 0 and (a) a1 = (0, 0.7, 1), (b)

a1 =
⇣
1.6,

q
8
3 , 1.65

⌘
, and (c) a1 = (1.92, 2, 2.1) as indicated in the panels. The special cases ⌥ = 0 and � = 0 are shown in

black.

FIG. 5. The front amplitudes a
N+ (blue) and a

N� (red) as functions of µ for a2 = 1 and a1 = �2.3,�1.9,�1.85,� 9
5 ; the latter

branch, corresponding to 5⇤ = 6, is shown in black.
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surrounding the line a1 = �a2, while the a
N� branch

is rarely stable. For µ > 0 the a
N+ branch is stable

in a significantly larger parameter region while the a
N�

branch remains mostly unstable. Despite the large re-
gions of instability revealed in the figure, the dynamical
significance of an unstable rotating wave in the wake the
front solution is more subtle. Because we are concerned
with the asymptotic dynamics of the front as t ! 1, in-
stabilities behind it are only relevant provided that they
propagate to the right with a speed not less than that of
the front, i.e., to have an e↵ect the instability must be
absolute in the frame of the leading edge. The propaga-
tion speeds of these instabilities and their e↵ect on the
front are computed and analyzed in Sec. VB below.

The stability of the deposited rotating wave is partic-
ularly relevant at the Maxwell point µ = � 3

� at which
the front is stationary. This front is associated with the
branch a

N+ when ⇤ � 6 < 0 and a
N� when ⇤ � 6 > 0.

We show the stability of the rotating wave selected by
the stationary front in Fig. 8. It is easy to see from
the figure that the region of stability is contained in the
intersection of �(a1, a2) > 0 and ⇤(a1, a2) < 6, so the ro-
tating wave selected at the Maxwell point is only stable
for fronts on the a

N+ branch. The instability of the a
N�

fronts is always of type II and has been confirmed using
direct numerical simulation. The stability at µ = µ

M

of
other branch of the Ansatz for which v

N

6= 0 can also
be studied. The rotating wave selected by this branch is
always unstable. When ⇤� 6 < 0 the instability can be
either of type I or II depending on parameters but for
⇤� 6 > 0 it is always of type II.

III. FRONT DYNAMICS

We now turn to the question: “at what speed does a
front between the patterned state and the trivial state
propagate?”, a phenomenon known as “spreading.” It
turns out that in many cases physically relevant initial
conditions evolve into a front whose profile and “spread-
ing” speed as t ! 1 depend only on the system parame-
ters and not on the initial data. Indeed, in many systems
these asymptotic front speeds are unique for a large class
of su�ciently localized initial conditions [28, 29].

Front propagation into a trivial state may arise in one
of two qualitatively di↵erent ways. When µ < 0 and
the primary pattern-forming instability is subcritical, as
assumed here, the system exhibits bistability between a
stable trivial state and a stable nontrivial state, imply-
ing that the heteroclinic orbit between them corresponds
to a front propagating into a stable state. This type of
front is known as a “pushed” front. In systems with gra-
dient structure (here a2 = 0) the speed of such fronts
is determined by the energy di↵erence between the two
stable states connected by the front. Propagation fa-
vors the state with lowest energy and the front velocity
vanishes when the energy di↵erence vanishes, i.e., at the
Maxwell point. More generally (a2 6= 0), a stationary

front of the Ansatz (10) corresponds to a Maxwell-like
point and the front speed v in the vicinity of this point
satisfies v ⇡ v

M

⌘ 3(µ�µM )

2(�µM )
3
2
[4� a2(a1 + a2)]

�1 [13]. In

contrast to this picture, when µ > 0 the trivial state is
unstable and the speed of the resulting “pulled” front is
frequently (but not always) determined by the properties
of the linearization of Eq. (1) about A = 0. This change
in the speed selection mechanism is a consequence of the
growth of infinitesimal perturbations of the A = 0 state
ahead of the front [18].

Problems of front propagation into unstable states
have been known in the plasma physics community since
the 1950s [30] but the term “marginal stability” was
not proposed until 1983 by Dee and Langer [18]. The
marginal stability conjecture is based on the idea that
the front propagating into an unstable state that is se-
lected at large times is marginally stable in the comoving
frame. In practical terms this means that in the comov-
ing frame of the selected front instabilities of the unstable
state ahead of the front are neither advected to ⇠ = �1
behind the front nor grow into a faster front. This de-
scription is closely related to the notions of convective
and absolute instability in systems with imposed flow. A
system is said to be convectively unstable if su�ciently
spatially localized perturbations grow but do not spread
upstream rapidly enough to overcome the imposed flow.
It is called absolutely unstable if the perturbation can
spread upstream against the flow. In the former case
the perturbation at any fixed position ultimately decays,
while in the latter case instability is ultimately observed
at all locations in the domain. The marginal stability
condition corresponds to the transition between convec-
tive and absolute instabilities in the comoving frame.

When the state A = 0 ahead of the front is un-
stable, growth of small amplitude perturbations ahead
of the leading edge is governed by the linearization of
the PDE around A = 0. We assume that the front
speed is determined by the growth of these perturba-
tions as described by the marginal stability conjecture.
According to this conjecture the spreading speed can be
computed from the linear evolution equation A

t

= LA
via the dispersion relation for linear waves of the form
A = A0e

�(q)t+iqx, where q = q
r

+ iq
i

. Consider a com-
pactly supported initial perturbation of the system and
express the solution in terms of its Fourier decomposi-
tion A(x, t) =

R

R Â(q)e�(q)t+iqxdq. By shifting into the
frame of the right edge of this perturbation and apply-
ing a saddle-point analysis in the limit t ! 1 one finds
that the group speed must vanish. Moreover, the per-
turbation must be neutrally stable in this frame. These
requirements are summarized by the conditions [4]

< [�0(q)] = 0, �= [�0(q)] =
<[�(q)]
=[q] = v⇤, =[q] > 0

(25)
from which one may compute the complex -valued wave
number q⇤ and the linear spreading speed v⇤ = <[�(q⇤)]

=[q⇤]
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FIG. 6. Stability of the rotating wave selected in the wake of an a

N+ front (a) and an a

N� front (b) in the (a1, a2) plane
at µ = �0.1. Stable regimes are indicated in dark grey, unstable regimes in light grey, and regions with no front solutions in
white. The lines � = 0 (red) and the lines ⇤ = 6 (blue) and � = 0 (orange) in the region � � 0 are also shown.

FIG. 7. Stability of the rotating wave selected in the wake of an a

N+ front (a) and an a

N� front (b) in the (a1, a2) plane at
µ = 0.1. Stable regimes are indicated in dark grey, unstable regimes in light grey, and regions with no front solutions in white.
The lines � = 0 (red), ⇤ = 6 (blue) and � = 0 (orange) in the region � � 0 are also shown.
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FIG. 8. Stability of the rotating wave selected in the wake
of the stationary front at the Maxwell point µ = � 3

� in the
(a1, a2) plane. The relevant solution branch is determined by
the sign of the quantity ⇤�6. Stable regimes are indicated in
dark grey, unstable regimes in light grey, and regions with no
front solutions in white. The lines � = 0 (red), ⇤ = 6 (blue)
and � = 0 (orange) in the region � � 0 are also shown.

that characterize the leading edge of the front [19]. The
reader is referred to [4] for a comprehensive review of the
derivation of this criterion and its applications. Although
this criterion relies on linearity it provides accurate pre-
dictions for many nonlinear front propagation problems
when the front propagates into an unstable state. The
criterion is also known to apply to systems that do not
admit uniformly traveling profiles, such as the supercrit-
ical Swift-Hohenberg equation [21]. These ideas have
been employed extensively in the context of fluids [31–33],
plasmas [30, 34] and biological systems [35]. In contrast
the speed of propagation into a stable state is determined
by a nonlinear mechanism and bears no relation to the
stability of the state ahead of the front.

In the next two sections we apply these ideas to front
propagation in Eq. (1). To validate theoretical predic-
tions we study the evolution of either a localized pulse in
the stationary frame or a half-pulse in the moving frame.
Specifically, we take two types of initial half-pulses (re-
flecting in x to get a localized pulse): A(⇠) = ⇥(�⇠ � `)
(Heaviside), where ⇥(⇠) is the Heaviside function and `
is a constant, and A(⇠) = �1(⇠)ei�2(⇠)⇥(�⇠�`) (random-
Heaviside), where �1, �2 are chosen randomly from uni-
form distributions on (0.7, 2) and (0, 2⇡), respectively.
The latter initial condition is constructed so that it does
not select any wave number or amplitude preferentially
but still has su�cient amplitude not to decay. Details
about the numerical schemes that are used can be found
in Appendix C.

IV. FRONT PROPAGATION INTO A STABLE
STATE

We turn first to the regime in which the asymptotic
state A = 0 ahead of the front is stable (µ < 0). We
are concerned with the time evolution of localized initial
conditions. Since the state A = 0 is stable in this regime,
the initial condition must be of su�cient amplitude so
as to avoid immediate decay back to A = 0. When
the pitchfork bifurcation to the branch of front states
is subcritical and µ < µ

F

all initial conditions collapse
towards A = 0. When µ

F

< µ < 0, initial conditions of
su�ciently large amplitude typically evolve in their bulk
towards one of the stable rotating wave states of Eq. (1)
generating a pair of fronts connecting the interior rotat-
ing wave at either end to A = 0. After an initial transient
the fronts travel at a constant speed and in opposite di-
rections. When the pitchfork bifurcation is supercritical
the fold always occurs at µ > 0 and the dynamical picture
depends more strongly on the parameters. We address
specific cases capturing the distinct behaviors that result
next.
We find empirically that the selected speed from Heav-

iside but not random Heaviside initial conditions is cor-
rectly predicted by Eq. (13) in many cases, provided that
the corresponding solution is stable and the system is
known to be well-posed. In Fig. 9 we plot the speed of
the two possible fronts, v

N±, as a function of the param-
eter µ in the subcritical regime for a series of values of
the coe�cients (a1, a2). Figure 9(a) shows the classical
case a1 = a2 = 0 and similar behavior is obtained when
one of a1 or a2 is increased to 1. For these parameters
Heaviside initial conditions evolve on a fast time scale
towards the rotating wave corresponding to the stable
branch indicated in a continuous blue line and then a
pair of fronts propagate outwards at speed v

N+ > 0 ex-
panding the structure, or inwards if v

N+ < 0 contract-
ing the structure. Random Heaviside initial conditions
in contrast typically do not approach a fully developed
front and instead decay. The red (dashed) part of the
velocity curves below the fold corresponds to v

N� and
these fronts are unstable since they connect to an unsta-
ble rotating wave. These findings extend previous results
for (a1, a2) = (0, 0).
In panel (b) of Fig. 9 we show that the rotating wave

selected by Eq. (13) need not be stable. For µ < 0 the
curve with parameter values (a1, a2) = ( 92 , 4) is always
unstable while the (a1, a2) = (0, 4) solution restabilizes
at a finite negative value of µ. In the former case the
initial value problem is well-posed and initial conditions
appear to decay to A = 0. For the (0, 4) solution it
is not known whether the initial value problem is well-
posed, but when the wave selected by Eq. (13) is stable
we observe that Heaviside initial conditions converge to
a steady front solution with velocity v

N+ and random
Heaviside initial conditions do not. Also shown in this
plot is the case (a1, a2) = (0, 2) in which the Maxwell
point is located at the fold on the branch of Eq. (13).
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Time stepping simulations suggest that solutions initi-
ated at the Maxwell point on this branch are not stable
and decay to A = 0. Moreover, since the Maxwell point
coincides with the fold there is no parameter region in
which fronts can contract; amplitude decay occurs when
µ < µ

F

and expansion when µ > µ
F

.

We next turn to some of the cases in which � < 0
and only one branch of the front solution exists, persist-
ing for all µ < 0. This branch may be either stable or
unstable. In panel (c) of Fig. 9 this is the + branch
of the Ansatz and it is stable below some finite µ < 0.
For (a1, a2) = (�2, 1) and when the predicted velocity
v
N+ > 0, we find convergence to the Ansatz solution
from both Heaviside and random Heaviside initial con-
ditions. For (a1, a2) = (2.1, 0), when the predicted ve-
locity v

N+ > 0 and the solution is unstable, both types
of initial conditions converged to a solution with wave
number and speed near but not equal to the Ansatz pre-
diction. When (a1, a2) = (2.1, 0) the front is predicted
to be stable and v

N+ > 0, but we do not observe con-
vergence to this solution unless initial conditions of the
form A(⇠) = eiqN⇠⇥(�⇠ � `) are adopted. In both cases
when v

N+ < 0 neither Heaviside nor random Heaviside
initial conditions evolve towards a steady front. We are
able to realize a front moving at speed v

N+ only with the
initial condition A(⇠) = eiqN⇠⇥(�⇠ � `). In panel (d) of
the figure a similar bifurcation structure is present but
all initial conditions adopted immediately collapsed to
A = 0. This behavior supports the conjecture of [21] that
whenever v

N

< 0, the selection process is more complex
and depends strongly on initial conditions. Furthermore
the behavior in the (a1, a2) = (2.1, 0) case for which a
stable front with a positive velocity is predicted suggests
that the system may select a di↵erent front solution even
when the predicted front is stable. Moreover, the fronts
in Figs. 9(c,d) persist as µ ! �1, in contrast to previous
work. For example, the fronts computed in [12] do not
reveal this property because each is computed for a fixed
wave number whereas the exact front computed here has
a wave number that is µ-dependent. In this case all suf-
ficiently large amplitude initial data with wave number
near q

N

result in dynamics associated with the + branch
of the exact front solution.

V. FRONT PROPAGATION INTO AN
UNSTABLE STATE: SPREADING AND

MARGINAL STABILITY

When µ > 0 the state A = 0 ahead of the front is
unstable. In the case of Eq. (1) the spreading speed is
easy to calculate but its interpretation is complicated by
the nonlinear terms. An application of Eq. (25) to Eq. (1)
linearized about the state A = 0 leads to the prediction

v⇤ = 2
p
µ, q⇤ = i

p
µ, �⇤ = 2µ. (26)

This result implies that the leading edge of a pulled front
takes the form e2µt�

p
µx but does not predict the nonlin-

ear state that is left in its wake. The simplest possibility
is that front moves at a constant speed in which case
A ⌘ A(x� v⇤t). A necessary condition for this to be the
case is that the traveling wave A = Reiq(x�v

⇤
t)+i=(�⇤)t

solves the full nonlinear problem for some amplitude
R but trails the leading edge of the front [21]. This
is distinct from the “node-counting” argument of [18],
which is automatically satisfied for fronts that are uni-
formly propagating. In the present case q = 0 and
R2 = 1

2

�

1 +
p
4µ+ 1

�

, so this front moving with speed
v⇤ would deposit a zero wave number. This front is
excluded, however, whenever a1, a2 6= 0: at the loca-
tion of the front interface ia1|A|2A

x

, ia2A
2Ā

x

6= 0 and
Eq. (1) cannot have a purely real solution. In the fol-
lowing we show that dynamics at the leading edge of the
front nonetheless result in the deposition of a state with
zero wave number in the wake of a pulled front.

A. Pulled versus pushed: nonlinear selection

In certain cases the selected asymptotic velocity for
fronts propagating into unstable states cannot be pre-
dicted by the marginal stability criterion and a nonlin-
ear mechanism produces velocities that di↵er from the
linear prediction. This phenomenon, known as “nonlin-
ear selection,” was first pointed out in the work of [36].
Nonlinear selection is extensively reviewed in [16] where
Eq. (1) is proposed as the most general model for the
dynamics near a subcritical steady-state bifurcation. In
[16] nonlinear selection is defined as follows: if there ex-
ists a front solution with velocity v† and spatial decay
rate † that satisfy

v† > v⇤, † > ⇤ (27)

then this front is established as t ! 1 from localized
initial conditions. That is, only under these conditions
is a “pulled front” moving at speed v⇤ not selected and
a “pushed front” moving at speed v† is selected instead.
In [21] van Saarloos and Hohenberg conjecture that for
a specific class of Ginzburg-Landau equations including
(1) the pushed front is precisely that corresponding to
Eq. (10) such that v† = v

N

and † = 
N

. This conjec-
ture also requires that the initial conditions have a spa-
tial decay rate not less than max

�

†,⇤�. These criteria
for nonlinear selection are lent mathematical credence
by the work of [37]. Specific cases of nonlinear selection
are studied rigorously in [29] and lowerbounds on front
speeds quantifying violations of linear speed selection are
derived in [38, 39] among others. Although a general re-
sult characterizing the speed v† is not known, the wide
applicability of the linear criterion determining v⇤ makes
it relatively easy to test the hypothesis in (27) numeri-
cally. Here v

N

and 
N

have been computed exactly and
we analyze all possible selection regimes analytically in
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FIG. 9. The velocity v

N± of the exact front solution is shown in blue and red, respectively. The parameters (a1, a2) are
indicated next to each curve and dashed lines represent instability of the essential spectrum. The line v = 0, shown as a black
dashed line, is included for reference.
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Appendix B.

Figure 10 shows standard behavior of the front speeds
predicted from Eq. (27). The case (a1, a2) = (0, 0) is
well-studied [19, 23] and is shown in Fig. 10(a). Here the
transition from pushed to pulled as determined by (27)
occurs at µ = 3

4 . Although v
N

� v⇤ for all µ > 0, the lin-
ear decay rate surpasses 

N

at µ = 3
4 and remains above

it as µ ! 1. This behavior is typical and validates
the intuitive prediction that at high enough forcing all
fronts will be pulled. The data points shown in the fig-
ure are computed with a finite di↵erence (FD) code and
are plotted with an error bar indicating an associated
deterministic correction to the speed. Details of this cor-
rection and its interpretation can be found in Appendix
C. As shown in Fig. 10(b) and (c), v

N

and 
N

depend
strongly on a1, a2 and v

N

need not supersede v⇤ at large
µ. We mention that despite the continuity in the speed
at the pushed-pulled transition the selected wave number
of the deposited state in the wake of the front is generally
discontinuous. This “structural instability” has been ob-
served previously in the cubic-quintic complex Ginzburg-
Landau equation [21] and appears here generically with
the inclusion of either a1 or a2.

Fig. 11 shows some nonstandard predictions of Eq. (27)
when a2 6= 0. In Fig. 11(a) the nonlinear front possesses
a speed and decay rate that always exceed the linear one.
This serves as a counter-example to the suggestion [21]
that the linear front will always be selected at su�ciently
large µ. In this particular case the decay rate of the se-
lected front is quite small when µ ⇡ 0. Consequently a
very large domain is needed to measure the front speed
accurately, significantly larger than our standard domain
length L = 300. The best results were obtained for Gaus-
sian initial conditions and a spectral method with a do-
main size L(µ) determined by the decay rate �(µ), here
L = 400�(µ) so that L(0) ⇡ 1100. In Fig. 11(b) the non-
linear front has a negative velocity for all µ > 0 where
it exists. In this case Eq. (27) does not apply and the
asymptotically selected front depends more strongly on
initial conditions. We have found that initial conditions
in the form of a sharply peaked Gaussian pulse undergo
blow-up in finite time, while Heaviside initial conditions
decay immediately to A = 0. We conjecture that in this
parameter regime the Cauchy problem is not well posed.
In Fig. 11(c) the nonlinear front Ansatz fails at some fi-
nite µ > 0. When µ is larger than this value it is not
clear whether the nonlinear terms in the equation satu-
rate for all initial conditions or not. Whereas the case in
(b) su↵ers from blowup we have found that fronts initi-
ated beyond the µ value where the Ansatz fails are well
behaved. After an initial transient, Heaviside initial con-
ditions evolve with a leading edge moving at the pulled
front speed and deposit a rotating wave with a finite wave
number in their wake.

B. The Benjamin-Feir instability and secondary
fronts

Further complicating the selection problem is the fact
that the dynamically realized front may su↵er from sec-
ondary instabilities. The deposited rotating wave in the
wake of the front can undergo two types of instabilities
[13] that may interfere with the propagation of the front.
One such possibility is a Benjamin-Feir (BF) instability
that generates a state of nonzero wave number. If this
instability propagates with a large enough velocity that
it overtakes the leading edge of the front, phase slips and
spatio-temporal chaos can occur [2, 18, 21, 40].
If the deposited state is unstable to the BF instability

then a secondary front inside the deposited state can re-
sult. This front is a pulled Kuramoto-Shivashinsky front
[4]. In this case there are two regimes corresponding to
whether or not the secondary front speed, v

BF

, is less
or greater than the primary one, v. If v

BF

< v then
the deposited pattern behind the primary front grows in
size at a rate v � v

BF

and the instability is advected
away from the leading edge. This leads to a double-front
structure in the profile of the solution in which the dis-
tance between the primary and secondary fronts grows
with time [3]. In the second case, v

BF

> v, the insta-
bility catches up with the leading edge producing a front
whose asymptotic character depends on the existence of
stable rotating waves. If the primary front is pushed
and the secondary instability deposits a stable rotating
wave then a di↵erent pushed front results. If the primary
front is pulled and the secondary instability deposits a
stable rotating wave then phase slips at the leading edge
must take place in order that the rotating wave be de-
posited in the wake of the front. If no stable rotating
waves exist then the pulled front may become incoherent
[21]. We have searched a variety of regimes in which all
rotating waves are unstable but have not observed inco-
herent pulled fronts. On the other hand incoherent front
dynamics can occur for pushed fronts provided the de-
posited state with wave number q

N

is unstable. In the
following we elaborate on these notions for both pulled
and pushed fronts.
Pulled fronts su↵er from secondary instability to

phase-winding states with nonzero wave number. The
dispersion relation for disturbances to a generic rotating
wave state in the stationary frame is provided by Eq. (22)
with v = 0 and the instabilities only occur when one or
both of f , g is non-positive [12, 13]. As shown at the
beginning of Sec. V the leading edge of pulled fronts
coincides with that of the front that deposits a state of
constant amplitude R and zero wave number. Although
these fronts cannot be the true pulled fronts for generic
values of a1 and a2, our observation is that pulled fronts
nonetheless deposit a rotating wave with approximately
zero wave number in their wake and the necessary phase
gradient ✓

x

(where u = Rei✓) takes the form of a strongly
localized pulse at the leading edge. Consequently the pre-
diction of v

BF

for the zero wave number rotating wave is
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FIG. 10. Front speed v

N

(blue) relative to the linear spreading speed v

⇤ (red) for parameters (a1, a2): (a) (0, 0), (b)
�
� 8

5 ,
1
2

�
, (c)⇣q

8
3 , 0

⌘
. The selected (not selected) speed is indicated by a solid (dashed) line according to Eq. (27). The black dots represent

speeds calculated by time-stepping Heaviside initial conditions with FD in the stationary frame and tracking the motion of the
front. The space and time discretizations are �x = 0.05 and �t = (�x)2, further details are contained in Appendix C. The
deterministic corrections as a result of the FD approximation (computed in Appendix C) are shown using error bars on the
points.

FIG. 11. Front speed v

N

(blue) relative to the linear spreading speed v

⇤ (red) for parameters (a1, a2,±), where the symbol
± specifies the front: (a) (�15, 16,+), (b) (4, 1.86,�), (c) (�2, 1,+). The selected (not selected) speed is indicated by a solid
(dashed) line according to Eq. (27). The black squares represent speeds calculated in a domain of length L = 400� by time-
stepping Gaussian initial conditions in the stationary frame using a spectral method with parameters �t = 0.01, N

x

= 4096 and
✏ = 8 (Appendix C). The black dots represent speeds calculated by time-stepping Heaviside initial conditions in the stationary
frame using a finite di↵erence (FD) code with space and time discretizations �x = 0.05, �t = (�x)2, and tracking the motion
of the front (Appendix C). The deterministic corrections as a result of the FD approximation (computed in Appendix C) are
shown using error bars on the points.
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a good estimate for the speed of pulled fronts undergoing
this secondary instability.

The zero wave number rotating wave has f =
�

4 + a22 � a21
�

R4 � 2R2, g = 2µ + R2, where R2 =
1
2

�

1 +
p
4µ+ 1

�

. When µ > 0 one can show that g > 0
always but f > 0 only if a21 � a22 < 2. The state su↵ers
from instability when a21�a22 � 4 for any positive µ, and

when 4 > a21 � a22 > 2 for 0  µ <
2(a2

1�a

2
2�2)

(4�a

2
1+a

2
2)

2 . Applying

the marginal stability criterion to the dispersion relation
for the secondary instabilities produces a prediction for
the front speed, wave number, and frequency of the sec-
ondary front. This calculation is shown explicitly at the
end of Appendix A. We discuss an application next.

FIG. 12. Speeds v

⇤ (red), v

N

(green), and v

BF

(blue) for
pulled fronts as a function of the variable h defined in Ap-
pendix A 3 for (a1, a2) =

�
5
2 , 1

�
. Increasing h corresponds

to increasing µ. The parameters corresponding to µ = 0,1
are indicated with dotted lines and the region in which pulled
fronts are selected and v

BF

> v

⇤ is delimited by blue shading.
The transition from pushed to BF-unstable pulled fronts, and
subsequently from BF-unstable to BF-stable pulled fronts is
marked by black dots.

As an example we consider the case (a1, a2) =
�

5
2 , 1

�

and plot the velocities v⇤, v
N

, and v
BF

in Fig. 12. For
this figure we plot velocities as a function of a variable
h which is an order-preserving one to one reparametriza-
tion of µ and depends on a1 and a2. The choice of h(µ)
arises naturally in the calculation of v

BF

and is defined
in Appendix A. In this plot the BF velocity corresponds
to instabilities of the zero wave number rotating wave
and not the rotating wave left in the wake of the non-
linear front. The rotating wave for the nonlinear front
Ansatz is stable for µ . 5, throughout the pulled-pushed
crossover. After the transition occurs from pushed to
pulled at µ ⇡ 0.072 (left black dot), v

BF

> v⇤ and the
pulled front is unstable. This is shown in Fig. 13 with
µ = 0.4 (raised above threshold for clarity) and the pre-
diction of the leading edge motion based on the speed v⇤

is shown in red. After a transient, the front propagates at

the linear spreading speed but deposits a nonzero wave
number approximately equal to q

N

. This is enabled by
phase slips at the leading edge. By µ ⇡ 0.55 (right black
dot) the pulled front restabilizes as its speed exceeds that
of the BF instability for the zero wave number rotating
wave. This phenomenon is pictured in Figs. 15 and 14
(µ = 1) in which the speeds v⇤ and v

BF

are shown in
red and blue, respectively. The primary front deposits
a state with near-zero wave number followed by a sec-
ondary front that generates a larger amplitude asymp-
totic state with a di↵erent wave number in its wake, but
still close to q

N

. The separation of the primary and sec-
ondary fronts hearkens to the double front structure ob-
served in [3].

Figures 13 and 14 also reveal two features at the lead-
ing edge that we cannot predict theoretically. First is
the periodic nucleation of amplitude holes or “grooves”
whose profile is shown in Fig. 15. These holes increase
and then decrease in depth as time passes eventually
merging with the otherwise homogeneous amplitude state
left in the wake of the front. In the case of Fig. 13 the time
scale on which the holes anneal is much longer than the
time scale for the front propagation and the holes there-
fore grow in number as the front propagates. In the case
of 14 the holes vanish on a comparable time scale to the
primary front and thus only one is present at any given
time. This phenomenon can also be seen in Figs. 16 and
17 at the secondary front interface and has been verified
using both FD and Fourier discretizations. This feature
has also been observed in [3] in a nonvariational case, al-
though there the holes, once nucleated, do not disappear.
The second feature visible in both figures is the presence
of phase slips. These occur at the leading edge of the
front in Fig. 13 and at the edge of the secondary front
(which we suspect is also pulled) in Fig. 14. These phase
slips occur at the spatial location of the holes and at the
time when the holes reach their greatest depth. These
locations correspond to the darkest points along the hole
trajectory in a space-time plot of |A(x, t)|. The phase
slips are not a surprise, since the leading edge dynamics
for pulled fronts are set by the linearization about the
unstable state and these may not generate in their wake
a stable solution to the nonlinear problem. The eventual
wave number that is deposited by the passage of the front
is near q

N

throughout the domain but modulated on a
much larger length scale.

Turning now to pushed fronts, we compute the veloc-
ity of propagation for the BF instability around an ar-
bitrary phase-winding state deposited in the wake of the
front Eq. (10). Although this analysis was carried out in
[13], we generalize it and show that there are additional
solutions to the marginal stability equations for type I
instabilities that have not been previously reported. The
details of this calculation are included in Appendix A.
There are two broad instability regimes for pushed fronts
depending on whether the far-field marginal wave num-
ber has a nonzero (type I) or zero (type II) real part.

We first discuss the case of instability to perturbations
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FIG. 13. Space-time plot of the evolution of (a) |A(x, t)| and (b) <[A(x, t)] from Heaviside initial conditions in the stationary
frame for (a1, a2) =

�
5
2 , 1

�
and µ = 0.4 computed using FD. The calculation is done on a domain [�100, 100] with Dirichlet

boundary conditions on both <(A) and =(A) and only half of the simulation window is shown. The space and time discretizations
are �x = 0.2 and �t = 0.0025. In this regime after an initial transient the front is pulled, traveling at speed v

⇤ to a good
approximation. An o↵set line representing propagation at speed v

⇤ is shown in red.

FIG. 14. Space-time plot of the evolution of (a) |A(x, t)| and (b) <[A(x, t)] from Heaviside initial conditions in the stationary
frame for (a1, a2) =

�
5
2 , 1

�
and µ = 1 computed using FD. The calculation is done on a domain [�100, 100] with Dirichlet

boundary conditions on both <(A) and =(A) and only half of the simulation window is shown. The space and time discretizations
are �x = 0.1 and �t = 0.005. In this regime after an initial transient the front is pulled, traveling at speed v

⇤ and a secondary
front separates from the leading edge traveling at a speed v

BF

. O↵set lines representing propagation at speeds v

⇤ (red) and
v

BF

(blue) are also pictured.
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FIG. 15. Solution A(x, t = 35) computed from Heavi-
side initial conditions in the stationary frame using FD for
(a1, a2) =

�
5
2 , 1

�
and µ = 1, showing <(A) (green), =(A)

(red) and |A| (blue) on half of the computation domain. The
discretization parameters are �x = 0.1 and �t = 0.005.

with a wave number of finite real-part at onset, type I.
This case includes the parameter values (a1, a2) =

�

5
2 , 1

�

of the previous discussion but not near µ = 0 where a
pushed front is predicted. In order to find finite wave
number instability near µ = 0 we must choose parame-
ters in the region � < 0 and so select (a1, a2) =

��2, 1
2

�

.
The corresponding far-field rotating wave is unstable for
µ 2 (�0.1888, 0.5184]. An evolution plot for Heaviside
initial data at µ = 0 is shown in Fig. 16 in a frame
moving at speed v

N

. The initial data are immediately
unstable to a traveling wave which is advected leftwards
relative to the primary front moving at speed v

N

to the
right. Simultaneously the leading edge of the front gener-
ates a distinct rotating wave with a wave number exactly
equal to q

N

as can be seen from Fig. 17 in which we plot
the amplitude Ã(⇠, t) that omits the wave number of the
primary rotating wave (Appendix C). The resulting sec-
ondary front between these two rotating waves is slower
than the primary one indicating that the secondary front
instability is convective in the frame moving at speed v

N

and so separates from the leading edge. Our prediction
for the secondary front speed, v

BF

, can be checked by
transitioning to a frame moving at that speed as shown
in Fig. 17. Because the rotating wave in the wake of the
primary front has not been restored in this plot the sec-
ondary front can be clearly distinguished. After a tran-
sient the secondary front is stationary in this frame and
generates a rotating wave behind the primary one with
a di↵erent wave number.

The case of instability with respect to perturba-
tions with asymptotically zero wave number (type II)

is realized when (a1, a2) = ( 92 , 5). This correspond-
ing far-field rotating wave exhibits instability for µ 2
[�0.0283, 0.1087). When µ < 0 Heaviside initial data
decay to A = 0 but for µ > 0 a front subsists. A space-
time plot is shown in Fig. 18. Initially a rotating wave
born at the front interface invades the initial condition to
the left, leaving an amplitude gradient across the struc-
ture. The invasion is largely complete by t ⇡ 500 and
the resulting state persists over a long time scale, until
t ⇡ 1000. At this point an amplitude perturbation grows
to such an extent that it triggers an abrupt collapse of
the structure. Since µ > 0 the A = 0 solution is unstable,
and the remnant of the front near the leading edge gen-
erates a sequence of traveling pulses that break-up into
an interval of spatio-temporal chaos (1000 . t . 1800).
Near t ⇡ 1800 the chaos abruptly subsides and the most
of the original front is restored. This state persists for
a few hundred timesteps or so before it collapses again.
The longer time series shown in Fig. 19 shows that this is
part of a recurrent process with alternating coherent and
incoherent episodes. The space-time plots demonstrate
that the primary front travels at the predicted speed v

N

when the deposited state is coherent but that the front
is slightly delayed when the deposited state is incoher-
ent. We cannot predict the front speed in these chaotic
intervals. Figure 20 provides another perspective on the
chaotic behavior shown in Fig. 19. The figure shows the
time series |A(⇠ = 100, t)| and highlights the abrupt col-
lapse episodes towards |A| ⇡ 0 that trigger the intervals
of spatio-temporal chaos, before the system returns to
coherence. It is noteworthy that even in the coherent
phase the amplitude |A| always initially overshoots the
target amplitude a

N

and thereafter decreases, ultimately
triggering a collapse episode.

Since the secondary instability is of type II we can
easily compute v

BF

⇡ 1.878 using the methods in [13].
This speed is much greater than both the frame speed
v
N

⇡ 0.3623 and the linear spreading speed v⇤ ⇡ 0.3162
and so the secondary instability quickly catches up with
the front. The speed v

BF

is indicated in Fig. 19 as an
o↵set blue line and shows good agreement to the ob-
served speed at which large amplitude perturbations im-
pact the front triggering the onset of incoherent front
propagation. In contrast, the speed between the u ⇡ 0
amplitude holes behind the leading edge and the spatio-
temporally chaotic state is also well defined but cannot
be predicted with our methods. It is also worth not-
ing that in the intervals of incoherent motion the leading
edge of the front propagates neither at v

N

nor v⇤. If the
episodic breakdown of the front exhibited in Fig. 19 per-
sists for all time it would generate a counterexample to
the nonlinear marginal stability conjecture of van Saar-
loos and Hohenberg that the front must in the long time
limit propagate at the predicted speed, v

N

[21].

We were unable to find parameter regimes for which
v
BF

> v
N

in the pushed front regime and the secondary
instability was of type I. This would be an interesting
case since it is not clear what would happen to the pri-
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FIG. 16. Space-time plot of the evolution of (a) |A(⇠, t)| and (b) <[A(⇠, t)] from Heaviside initial conditions in the moving
frame for (a1, a2) =

�
�2, 5

2

�
and µ = 0. The speed of the moving frame is v

N

and the front is pushed. In this simulation we
use time step �t = 0.01, number of Fourier modes N

x

= 6144, and cuto↵ exponent ✏ = 10.

FIG. 17. Space-time plot of the evolution of (a) |Ã(⇠, t)| and (b) <[Ã(⇠, t)] from Heaviside initial conditions in a frame moving
at speed v

BF

for (a1, a2) =
�
�2, 5

2

�
and µ = 0. In this simulation we use time step �t = 0.005, number of Fourier modes

N

x

= 6144, and cuto↵ exponent ✏ = 10.
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mary front velocity. In the pushed case the front velocity
depends on a nonlinear mechanism and is a↵ected by
the rotating wave in the wake of the front. If an in-
stability overtakes the front thereby changing it to one
outside of the family described by the Ansatz would the
speed change? The search for this situation is nontriv-
ial because for every di↵erent choice of (a1, a2) one must
recompute and invert the function h(µ) whose branches
must in general be chosen by hand (Appendix A), evalu-
ate v

BF

on the appropriate elliptic curve and write v
N

in
terms of h on each branch. As a result it is not straight-
forward to scan parameter space.

VI. DISCUSSION

In this paper we analyze in some considerable detail
the properties of fronts connecting a stripe pattern to
a spatially homogeneous state. For this purpose we use
the generic amplitude equation describing a weakly sub-
critical bifurcation to the pattern state. For µ < 0 (the
subcritical regime) this equation exhibits bistability be-
tween the pattern and the homogeneous state implying
that the speed of the front is determined by nonlinear
processes. Fronts of this type are called pushed fronts.
In contrast, in the supercritical regime (µ > 0) the ho-
mogeneous state is unstable and the marginal stability
criterion of Dee and Langer [18] then suggests that su�-
ciently localized initial conditions evolve into an invasion
front whose speed is selected by linear processes. Such
fronts are pulled.

To examine these predictions and the transition be-
tween them as the bifurcation parameter µ varies we
construct a class of exact nonlinear front solutions with
an explicit expression for the front speed. In the sub-
critical regime this speed vanishes at an analogue of a
Maxwell point, corresponding to the presence of a hete-
roclinic connection between the stripe state and the ho-
mogeneous state. These exact solutions extend into the
supercritical regime and the question arises therefore as
to when the marginal stability criterion prevails. This
question is addressed already in the work of van Saarloos
[16] (see also [23]) but only for the special case when the
coe�cients (a1, a2) both vanish, and the system exhibits
gradient dynamics. This early work highlighted the fact
that pushed fronts, propagating at v

N

, do indeed persist
well into the supercritical regime and are dynamically se-
lected by localized initial conditions. Our work extends
this result to cases where (a1, a2) are nonzero and shows
that (i) the linear stability mechanism does indeed pre-
vail for su�ciently large µ and most values of (a1, a2),
i.e., that for 0 < µ  µ‡(a1, a2) nonlinear speed selection
does indeed take place while the speed is selected by lin-
ear processes only for µ > µ‡(a1, a2), and that (ii) there
exist parameters (a1, a2) for which µ‡(a1, a2) = 0 and
others for which µ‡(a1, a2) = 1. Examples of these de-
generate cases are shown in Fig. 11(a),(b). In Appendix
B we show that options (i) and (ii) are the only ones that

can occur and obtain the conditions on (a1, a2) for the
presence of degeneracies mentioned above. These condi-
tions are complicated, but can in principle be replotted
in the (a1, a2) plane. In particular, we show that the
speed selection inequalities do not allow the selection of
a nonlinear front after the first transition from pushed to
pulled (µ > µ‡(a1, a2)).
In fact, the details of the transition from pushed to

pulled fronts are complex since the selection process de-
pends on the steepness of the initial solution profile, and
the stripe state deposited in the wake of the moving front
may or may not be stable. We emphasize that the wave
number of this state is selected dynamically and is not in
general the equilibrium wave number k

c

of the underly-
ing pattern. As a result the deposited state is susceptible
to secondary instabilities. These are of Benjamin-Feir
type and may be convective or absolute in the frame of
the front [2]. The former do not disrupt the stripe state
since the growing perturbations are advected away from
the front, but in the latter case the instability manifests
itself in the vicinity of the front and may lead to its dis-
ruption. We have exhibited several examples where the
front undergoes episodic complex time-dependence that
we attribute to this process. Specifically, we have identi-
fied four distinct processes that bear on the wave number
of the invading stripe state:

• The wave number becomes k
c

+ ✏q
N

if the front is
pushed and the rotating wave with this wave num-
ber is stable,

• The wave number remains k
c

when the front is
pulled and v

BF

< v⇤, where v
BF

corresponds to
the secondary instability of the invading k

c

state,

• We do not have an analytical prediction of the wave
number if the front is pulled and v

BF

> v⇤ and the
secondary instability interacts with the original k

c

front, although it appears to remain near k
c

+ ✏q
N

despite the presence of phase slips,

• We do not have an analytical prediction of the wave
number if the front is pushed and v

BF

> v
N

, where
v
BF

is now the speed of the secondary front gener-
ated by instability of the k

c

+ ✏q
N

front; in the ex-
ample shown in Fig. 11(a) the intermittent dynam-
ics of the front preclude the selection of an asymp-
totic wave number.

Our work provides a detailed discussion of the di↵er-
ent regimes that may be encountered as one traverses the
(a1, a2) parameter space. We believe that some of the
conditions required for the applicability of the Ansatz
are likely related to the conditions for well-posedness of
the non-gradient system a2 6= 0. We have not, however,
studied instabilities associated with unstable point eigen-
values in the spectrum of the front but note that these, if
present, may lead to rich dynamics localized at the front.
Evidently much remains to be learned about problems
involving the invasion of one state by another, even in
situations as simple as that studied here.
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FIG. 18. Space-time plot of the evolution of A(⇠, t) from Heaviside initial conditions in the moving frame for (a1, a2) = ( 92 , 5)
and µ = 0.025. The speed of the moving frame is v

N

and the front is pushed. In this simulation we use time step �t = 0.01,
number of Fourier modes N

x

= 3072, and cuto↵ exponent ✏ = 5.

FIG. 19. Continuation of the space-time plot in Fig. 18 over a longer time interval with an initial condition of di↵erent
amplitude. O↵set lines representing propagation at speed v

BF

(blue) are also pictured.
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FIG. 20. Time-series of |A(⇠0, t)| (red) and ln |A(⇠0, t)| (blue)
representing a vertical slice of the evolution shown in Fig. 19
at ⇠0 = 100. The amplitude A = a

N

is plotted with a thick
dashed line (black) and A = 0 is also shown for reference.
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Appendix A: Benjamin-Feir instability

This appendix is devoted to finding all solutions of Eq. (25) obtained from the dispersion relation for perturbations of
nonlinear rotating wave solutions of Eq. (1). Because the marginally unstable wave number, q⇤, is generically complex
the dispersion relation can exhibit branch cuts and complicated dependance on the phase of the radicand. These
properties render the task of solving the marginal stability equations analytically in their standard form intractable
and their numerical solution unstable. In this section we instead transform these equations into polynomial equations
and show that after appropriate transformations all the solutions lie along a unique elliptic curve. We thus provide
an explicit parametrization of the solution curves and provide a numerically tractable route to computing the desired
front velocity. The entirety of the calculation is done in the stationary frame and we are particularly interested in the
velocity v

BF

selected by secondary (Benjamin-Feir) instabilities.
Before analyzing the generic case, we note that there are two nongeneric situations that can occur, corresponding

to 2g � f = 0 and g = 0, respectively. When g = 0 the dispersion relation reads � = ±
p

�fq2 � q2 and for each sign
of the root there are four cases to consider depending on the sign of f and the quadrant of q. In each case we solve
the marginal stability equations in the original variables to verify that q lies in a consistent quadrant. In the table
below we take the positive root.

sgn(f) quadrant of q � solution of Eq. (25)

�1 1 , 4
p|f |q � q2 q⇤ =

p
|f |
2 (1± i)

�1 2 , 3 �p|f |q � q2 q⇤ =
p

|f |
2 (�1± i)

1 1 , 2 �i
p|f |q � q2 q⇤ = 0

1 3 , 4 i
p|f |q � q2 q⇤ = 0

As shown in the table, the first two cases are consistent while the second two are not. Since the case of the negative
root is obtained by switching the dispersion relations and q values of rows 1 $ 2 and 3 $ 4, there is no consistent case
and hence no solution for the branch with negative root. In the case 2g = f the dispersion relation is � = ±|g|�g�q2

and the condition < [�0(q)] = 0 implies q
r

= 0 so that q⇤ = i
p|g|� g.

In the general case (f 6= 2g, g 6= 0) we work in terms of the parameters c = g

2g�f

, d = 1
cg

and we define ✓(q) via
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the relation �(q) = ✓(q)+c�1
cd

. We also introduce the shorthand notation s
z

⌘ sgn(z). The condition (25) becomes

< [✓0] = 0, �= [✓0]=[q] = < [✓] + c� 1, =[q] > 0, (A1)

along with the obvious requirement <[�] > 0. With the introduced parameters and relation (22) we have

✓ = ±s
g

p

dq2 + 1� c
�

dq2 + 1
�

, ✓0 = ±s
g

dq
p

dq2 + 1
� 2cdq. (A2)

To resolve the branches in
p

dq2 + 1, consider the holomorphic substitution q = 2tp
|d|(sd�t

2)
which parametrizes both

branches in t but double-counts the physically irrelevant point q = 0 at t = 0 and 1. With this substitution the

argument of square roots becomes the square of sd+t

2

sd�t

2 . Letting t = x + iy, where x, y 2 R, it becomes clear that
x and y always appear squared in the relevant parts of Eq. (A1). Thus we are free to choose their sign such that

=
h

sd+t

2

sd�t

2

i

> 0. Eliminating the square roots produces

s
g

✓ =
1
2
h+sd
h�sd

�

t2 + s
d

�2 ± (1� t4)

(t2 � s
d

)2
,

s
g

✓0
p|d| =

(

4t
h�sd

h+t

2

1�t

4 (+)
4sdt
h�sd

1+ht

2

1�t

4 (�)
, (A3)

where h is a real variable defined by

h ⌘ 2 |c|� s
d

2 |c| s
d

+ 1
.

Since the factor
p|d| cancels out in the equation for =[✓0], the change of variables reduces a 4-parameter problem

(q, f, g) into a 3-parameter problem (t, h) with eight cases depending on s
d

and s
g

and the sign of the root.

1. First condition

We are now prepared to begin resolving the condition < [✓0] = 0 and focus first on the positive root. In the (t, h)
variables this reduces to

<
"

t
�

h+ t2
�

1� t4

#

= 0. (A4)

We now proceed by clearing all denominators under the assumption that they do not vanish and return to nongeneric
points like t =

p
i later. Setting t = x+ iy, relation (A4) expands to

x
n

h
�

x4 � 2x2y2 � 3y4 � 1
�

+
�

x2 + y2
�3 � x2 + 3y2

o

= 0. (A5)

Note that the trivial condition x = 0 results in a purely imaginary t and this is the well-known solution with purely
imaginary q [13]. In addition to this solution there is a set of solutions with nontrivial x and it is those solutions that
we consider in what follows.

When x 6= 0 Eq. (A5) is a polynomial in even powers of x and y. Introducing u = x2 and v = y2 we obtain

u =
1

4

✓

h� k3

hk � 1
+ 3k

◆

(A6)

with k = u + v. The case of h = ±1 in which there are extra solutions k = ±1 is included in the set of nongeneric
cases that are discussed above at the beginning of the section.

As for the negative root, the relation <


t(1+ht

2)
1�t

4

�

= 0 gives

x
�

3y4
�

hx2 � 1
�

+ y2
�

3h
�

x4 + 1
�� 2x2

�

+
�

x4 � 1
� �

hx2 + 1
�

+ hy6
 

= 0. (A7)
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Ignoring the case x = 0, the other factor may be written in terms of (u, k) as

u =
1

4

✓

hk3 � 1

h� k
+ 3k

◆

. (A8)

From here we work in the (h, k) variables where k remains to be set by the second condition in Eq. (A1).

2. Second condition

The second condition in Eq. (A1) for the positive root can be written as

� 8s
g

h� s
d

=
"

t
�

h+ t2
�

1� t4

#

=


t

s
d

� t2

�

= s
g

<
"

1
2
h+sd
h�sd

�

t2 + s
d

�2
+ (1� t4)

(t2 � s
d

)2

#

+ c� 1, (A9)

where c can be eliminated in favor of h. Depending on the signs s
d

and s
g

, there are four cases, each generating
an equation in t and h. We proceed with each by clearing denominators and writing the expressions in the form of
polynomials.

After writing relation (A9) in the variables defined in Sec. A 1 and imposing the relation (A6) we obtain the
polynomial equation

P(h, k) ⌘ �

h2 � 1
� �

k2 + 1
�2

(k � s
d

)2 + s
g

(hk � 1)
�

h
�

k4 + 3
�

k � 3k4 � 1� 2s
d

�

k3 + k
�

(hk � 1)
 

= 0. (A10)

This equation must be solved along with constraints u, v > 0. The solution curves of di↵erent s
d

and s
g

are plotted
in red in Fig. 21 along with the region in which both u, v > 0 and <[�] > 0 (also written in h, k variables) in blue.
Intersections of the red curve with the blue regions correspond to secondary solutions of Eq. (25) in which q is not
purely imaginary.

The polynomial equation P = 0 can be transformed into a simpler form, the Weierstraß form. Since P is quadratic
in h we write the equation in the form (Ah + B)2 = m(k)2n(k) where m is quadratic or cubic in k and n is quartic
in k. We then define h0 = Ah+B

m(k) so the equation takes the form (h0)2 = n(k). Using standard techniques to put

the curve into Weierstraß form, we choose the point k = 1 and compute the quadratic `(k) that is triply tangent to
p

n(k). The quantity `(k) has a second intersection with the original curve at k
c

. We define

l =
k � 1

h0 � `(k)
, p =

(k � 1)(k � k
c

)

h0 � `(k)
,

which takes the original curve to an elliptic curve in (l, p). Subsequently, we take L = A(p)l+B(p) choosing A,B so
that the L2 term has unit coe�cient and the term linear in L vanishes. Next take P = Cp+D where C,D are chosen
to set the P 3 coe�cient to 4 and the P 2 coe�cient to 0. The resulting elliptic curve can be parametrized by the
Weierstraß }-function. After a final rescaling of both L,P to clear denominators the first case s

d

= s
g

= 1 reduces to

L2 = 4P 3 � 435P + 1081,

whose solutions are parametrized by a particular Weierstraß }-function with elliptic invariants (g1, g3) = (435, 1081).
In fact, all four cases of di↵erent (s

d

, s
g

) have solution curves that can be parametrized by the same Weierstraß
}-function albeit in di↵erent variables. We thus provide an explicit description of the solution curves.

The second condition in Eq. (A1) for the negative root can be written as

� 8s
g

s
d

h� s
d

=
"

t
�

1 + ht2
�

1� t4

#

=


t

s
d

� t2

�

= s
g

<
"

1
2
h+sd
h�sd

�

t2 + s
d

�2 � (1� t4)

(t2 � s
d

)2

#

+ c� 1 (A11)

and reduces to another polynomial equation,

P(k, h) ⌘ �

h2 � 1
� �

k2 + 1
�2

(k � s
d

)2 + s
g

(h� k)
�

3hk4 + h� �

k4 + 3
�

k � 2s
d

�

k3 + k
�

(h� k)
 

= 0. (A12)

The solutions of this equation in each of the four cases are plotted in red in Fig. 22. This case can also be reduced to
the same Weierstraß }-function.
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FIG. 21. Four cases of the <[q] 6= 0 generic solutions to the Benjamin-Feir stability equations for the positive root (a)
g > 0, d > 0 (b) g > 0, d < 0 (c) g < 0, d > 0 (d) g < 0, d < 0. Here the zero level-set of Eq. (A10) is plotted in red and the
region u, v > 0 and =[�] > 0 is plotted in blue. The solutions correspond to the intersections of the red curve with the blue
regions.

3. Velocity

The analysis above shows that there is in general either one or two solutions to the marginal stability equations
for the Benjamin-Feir instability. The solution with q

r

= 0 is given in [13] and here we show that there is also a
solution q

r

6= 0. The secondary solution with nontrivial wave number q
r

only exists under certain conditions and
never coexists with the q

r

= 0 solution. For each pair s
g

, s
d

the values of h for which there is instability are restricted
to the following intervals:

Parameters Instability conditions q
r

6= 0 q
r

= 0

d > 0 g > 0 h 2 (�1, 0) all h nowhere

d > 0 g < 0 h 2 (�1, 1) h 2 ��1, 7
9

�

h 2 �

7
9 , 1

�

d < 0 g > 0 stable

d < 0 g < 0 h 2 (�1,�1) [ (1,1) nowhere all h
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FIG. 22. Four cases of the <[q] 6= 0 generic solutions to the Benjamin-Feir stability equations for the negative root (a)
g > 0, d > 0 (b) g > 0, d < 0 (c) g < 0, d > 0 (d) g < 0, d < 0. Here the zero level-set of Eq. (A10) is plotted in red and the
region u, v > 0 and =[�] > 0 is plotted in blue. The solutions correspond to the intersections of the red curve with the blue
regions.

based on the instability requirements derived in [13]. The q
r

= 0 velocity was computed in [13] but can be written in
h, d variables for the two relevant cases when g < 0:

v
BF

=

8

>

>

<

>

>

:

(5�
p
9h2+2h�7�3h)

3
2

p
2d(h+1)(

p
h+1�

p
9h�7)

, d > 0,
p

(h�1)(9h+7)sh+1+3h+5p
(h�1)(9h+7)sh+1+1�h

rp
(h�1)(9h+7)sh+1+3h+5

2d(1�h) , d < 0.

(A13)

The velocity for solutions with nonzero q
r

may be written

v
BF

=

8

<

:

8k(sdh�1)
(k2+1)(h2�1)

q

(hk�1)(h+k)
|d|(k2�1) (+)

8k(h�sd)
(k2+1)(h2�1)

q

(k�h)(hk+1)
|d|(k2�1) (�)

. (A14)

The signs (±) correspond to the two di↵erent branches of the dispersion mentioned at the beginning of this section
and k is to be evaluated on the curves of solutions obtained above. Once a pair (a1, a2) has been selected h and d are
functions of µ only, although it is typically more convenient to plot the results in terms of h. When plotted in this
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fashion the h-values corresponding to µ = 0,1 depend on a1 and a2.
To apply the above results we consider the instability of a rotating wave with wave number, as is observed in the

wake of pulled fronts. Recall that these fronts exist along the entire line a1 = �a2 for all µ and at discrete values of
µ o↵ it. The expressions for f, g take the form

f =
�

4 + a22 � a21
�

R4 � 2R2

g = 2µ+R2,

where R2 = 1
2

�

1 +
p
4µ+ 1

�

and thus g > 0. Based on the results above these are unstable to BF instability when
d > 0 and the instability deposits a fixed nonzero wave number q

r

6= 0. With ↵ ⌘ a22 � a21 the expression for c yields
a relation between µ and h:

µ =
2(h� 1)((↵� 2)h+ ↵+ 2)

((↵� 4)h+ ↵+ 4)2
. (A15)

Next, d can be written in terms of h by first passing to µ variables,

p

|d| =
s

�

�

�

�

↵

4µ+ 1

�

�

�

�

=

�

�

�

�

↵+ (↵� 4)h+ 4p
↵(h+ 1)

�

�

�

�

. (A16)

It is now clear that with this parametrization h = 2+↵

2�↵

corresponds to µ = 0 and h = 4+↵

4�↵

to µ = 1 and v†, v⇤ and
v
BF

can all be plotted in terms of h as in Fig. 12.

Appendix B: Nonlinear selection inequalities

In this section we determine the selection pattern dictated by the inequalities (27) governing the selection of the
pushed front, referred to as the nonlinear marginal stability criterion (NMS). By selection pattern we mean the
intervals of µ 2 [0,1) in which the pair of inequalities are either satisfied (N, nonlinear selection) or not (L, linear
selection). The boundaries of these intervals, generically a set {µ‡(a1, a2)}, occur when at least one of the inequalities
becomes an equality and define the selection pattern (e.g. N–L–N or N–L...etc). In the original variables, the (a1, a2)
dependence of the inequalities (27) is far from obvious and the expressions are manifestly unwieldy. Numerical
examination of these inequalities in all three parameters is di�cult to carry out, let alone visualize. To overcome this
di�culty we focus only on determining possible selection patterns and not the explicit values {µ‡(a1, a2)}; thus we
seek general conditions on (a1, a2) independent of µ that are required for a given selection pattern.

To proceed we introduce changes of variables to show that (27) may be recast as a pair of quadratic inequalities.
In order to determine which selection patterns are possible we reduce these to finite cases of inequalities that only
depend on a1, a2 and not on µ. After su�cient simplification these logical statements can be verified analytically
using a computer algebra system (Mathematica). We consider all possible selection patterns and show either that a
particular pattern is not possible or provide a pair (a1, a2) for which it occurs.

We first determine which root of the Ansatz (13) is appropriate for NMS. The inequalities (27) can be rewritten as

p
�

2
p
3

⇤� 6

�
± �

2
p
3�

s

2⇤

✓

1 + s�
µ|�|
2⇤

◆

>
p
µ, (B1)

p
�

2
p
3

(5⇤� 6)

�
± ⌥

2
p
3�

s

2⇤

✓

1 + s�
µ|�|
2⇤

◆

>
p
µ. (B2)

Here s� denotes the sign of �. To apply the marginal stability criterion we select the sign (±) in the inequalities
(B1) and (B2) corresponding to faster spatial decay rate and larger velocity and both must be positive at µ = 0 [21].
In particular, in order for the front speed to be selected by NMS either

⇤� 6±
p
2�⇤ > 0,

p
�(5⇤� 6)±⌥

p
2⇤ > 0, � > 0 (B3)

or

⇤� 6±
p
2�⇤ < 0,

p
�(5⇤� 6)±⌥

p
2⇤ < 0, � < 0 (B4)
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must hold and the root with larger velocity and faster decay rate must be chosen. When �,⌥ > 0 this always
corresponds to the positive root, which always exists. When � > 0 and ⌥ < 0 the positive root always exists with
positive velocity while the negative root has negative velocity whenever it exists. Thus the positive root is selected.
For � < 0 and ⌥ > 0 both roots violate the conditions in Eq. (B4). For � < 0 and ⌥ < 0 the positive root always
satisfies the NMS conditions while the negative root never does. These results are summarized in Table I.

⌥ > 0 ⌥ < 0

� > 0 + +

� < 0 NMS does not apply +⇤

TABLE I. The selected root of Eq. (13) for nonlinear marginal stability near µ = 0. The case �,⌥ < 0 is complicated at larger
values of µ because the two decay rates and the corresponding velocities are oppositely ordered (see text).

It is further possible to show that when µ > 0 both of the selections in the � > 0 cases remain valid. When � < 0
neither solution ever exists with positive velocity for ⌥ > 0 while for ⌥ < 0 the selection can be quite complicated. As
shown in Fig. 5, for 5⇤� 6 < 0 the negative sign solution exists for µ su�ciently large and this solution has positive
velocity. In fact, it is easy to see from Eqs. (B1) and (B2) that when both solutions exist with positive velocity their
decay rates and velocities will be oppositely ordered, v

N+ < v
N� and 

N+ > 
N�. Because of this it is not clear

that NMS applies in this µ range and which solution to choose if it does. We check whether either choice results in
the selection of a nonlinear front according to the NMS inequalities.

We now proceed to reduce Eqs. (B1) and (B2) to polynomial inequalities. Because we consider µ > 0 we define

µ̃ ⌘ µ|�|
2⇤ which is strictly positive and also the constants

b1 = s�
(⇤� 6)

2
p
3

s

�

2⇤|�| , b2 = s�
�

2
p

3|�| , b3 = s�
(5⇤� 6)

2
p
3

s

�

2⇤|�| , b4 = s�
⌥

2
p

3|�| (B5)

so that the pair of inequalities take the form b
i

± b
i+1

p
1 + s�µ̃ >

p
µ̃ for i = 1, 2. To eliminate the square roots

we introduce a holomorphic substitution µ̃ = f(t) with t 2 (0, 1) (see Table B) chosen to be bijective on the full
domain µ̃ 2 [0,1) so that the arguments of both roots are squares of positive quantities. After this substitution each
inequality reduces to an inequality quadratic in the parameter t.

s� µ̃ 1 + s�µ̃ µ̃�domain b
i

± b
j

p
1 + s�µ̃ >

p
µ̃

1 4t2

(1�t

2)2
(1+t

2)2

(1�t

2)2 µ̃ 2 (0,1) (b
j

� b
i

)t2 � 2t+ (b
i

+ b
j

) > 0

�1 4t2

(1+t

2)2
(1�t

2)2

(1+t

2)2 µ̃ 2 (0, 1) (b
i

⌥ b
j

)t2 � 2t+ (b
i

± b
j

) > 0

TABLE II. Substitutions that eliminate both square roots in Eqs. (B1) and (B2). The root signs have been chosen to match
s� according to the relevant roots classified in Table I. In both cases t 2 (0, 1).

At this point the question of selection can be reduced to one of solving quadratic equations in t in the interval
(0, 1). In the generic case, each of the inequalities Eqs. (B1) and (B2) lose validity at µ values for which an inequality
becomes an equality, or the square root of the quadratic terms in Table B becomes zero. That is, the intervals on
which the selection is either N or L are separated by points at which at least one of the inequalities becomes an
equality. The nongeneric case in which a double root occurs is of higher codimension and is dealt with separately.
Thus we can determine selection patterns by tracking the roots obtained when Eq. (B1) and Eq. (B2) are equalities.
Each of Eq. (B1) and Eq. (B2) corresponds to a single quadratic equation which may have 0, 1, or 2 roots in (0, 1), so
there are 19 possible arrangements of the roots each of which could be a di↵erent selection pattern. In what follows
we show that the only possible selection regimes are N, L, and N–L. Thus the set {µ‡(a1, a2)} reduces to a single
member where µ‡(a1, a2) is either 0 (L), finite (N–L) or 1 (N).

To proceed we derive t-independent conditions on the coe�cients of the quadratic equations that determine prop-
erties of their roots. We organize this discussion based on various properties of the root arrangements. To simplify
the discussion we introduce two polynomials

h1(t) = ↵t2 � 2t+ �,

h2(t) = �t2 � 2t+ � (B6)
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to represent the two polynomials inherited from Eqs. (B1) and (B2). We assume � > 0 based on the qualification
in [21] that NMS holds when the nonlinear velocity is positive at µ = 0. Without loss of generality we also assume
that Eq. (B2) is satisfied at m = 0 because it is proportional to a2

N

so � > 0. We use the standard logical notation
for “AND”, A ^ B to represent the condition that A and B are both true. Note that since the conditions generally
depend on parameters, the joint condition ^

i

A
i

is only false when it fails for all parameter values. Recall that both
�, ⇤ are positive and the conditions (� > 0) ^ (⌥ > 0) ^ (5⇤� 6 < 0) and (� > 0) ^ (⌥ < 0) ^ (⇤� 6 > 0) are false.

1. Number of roots

In subcritical systems Eq. (27) is typically satisfied at µ = 0, so if both equations (B6) have an even number of
roots the inequalities will also be satisfied for µ ! 1. This is unphysical since at a su�ciently large forcing the
linear dynamics usually take over [21]. In order to translate this property to one of the quadratic roots consider h1.
If h1(0) > 0 then the equation has an even number of roots in (0, 1) provided h1(1) > 0 (recall that we exclude the
nongeneric case of double roots) or

� > 0 and ↵� 2 + � > 0

with a similar statement for h2. In order to distinguish between the polynomial having zero or two roots we also
check the discriminant and the derivative at t = 1. If the polynomial has positive discriminant then it has two roots.
If there are two roots, because both polynomials have derivative �2 at t = 0 then both roots are in (0, 1) if and only
if the derivative is positive at t = 1. These conditions (for two roots) are

↵� < 1 and ↵ > 1. (B7)

Applying this procedure to the equations from Table B yields the conditions in Table B 1.

s� even # of roots 2 roots

1 b
j

> 1 and b
i

> �b
j

b2
j

� b2
i

< 1 and b
j

� b
i

> 1

�1 b
i

> 1 and b
i

> �b
j

b2
i

� b2
j

< 1 and b
i

� b
j

> 1

TABLE III. Conditions for each of Eqs. (B1) and (B2) to have an even number of points of equality. In the case � < 0 the
positive root was selected.

a. Case �, ⌥ > 0

The conditions for an even number of roots are:

�

�2 > 12|�|� ^
⇣

⇤� 6 > �
p
2⇤�

⌘

,
�

⌥2 > 12|�|� ^
⇣

(5⇤� 6)
p
� > �⌥

p
2⇤

⌘

(B8)

which can be true individually or both together. The conditions for two roots are:

�

2⇤�2 � (⇤� 6)2� < 24�⇤
� ^

⇣

2
p
3
p
2⇤� < �

p
2⇤� (�� 6)

p
�
⌘

, (B9)

�

2⇤⌥2 � (5⇤� 6)2� < 24�⇤
� ^

⇣

2
p
3
p
2⇤� < ⌥

p
2⇤� (5�� 6)

p
�
⌘

. (B10)

The first of these Eq. (B9) can be true or false but Eq. (B10) is false for all parameters so h1 always has 0 or 1 roots.
A summary of all possible scenarios is provided in Table IV along with sample parameters when possible. These
results rule out 12 of the possible 19 root arrangements.

b. Case � > 0, ⌥ < 0

The conditions for an even number of roots of h1 are the same as those above but must now be checked along with
⌥ < 0 instead. For h2 it is easy to see that the condition b

j

> 1 or ⌥ > 2
p
3� fails and it therefore always has a
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h1(t)

zero one two

h2(t)

zero (�15, 16)
�

3, 9
2

�

impossible

one impossible (2, 2)
�

0, 1
2

�

two impossible impossible impossible

TABLE IV. Summary of the possible numbers of roots for �, ⌥ > 0. When the condition can be satisfied an example (a1, a2)
for which this is possible is shown. All of the parameters except the zero-zero case satisfy the known condition su�cient for
global existence of solutions to the Cauchy problem.

h1(t)

zero one two

h2(t)

zero impossible impossible impossible

one impossible
�

2, 1
5

� �� 7
4 , 0

�

two impossible impossible impossible

TABLE V. Summary of the possible numbers of roots for � > 0, ⌥ < 0. When the condition can be satisfied an example
(a1, a2) for which this is possible is shown. All of the parameters satisfy the known condition su�cient for global existence of
solutions to the Cauchy problem.

single root. As before the allowed possibilities are summarized in Table V and a total of 14 root configurations are
ruled out.

c. Case � < 0, ⌥ < 0

In this section we only treat the positive root of Eqs. (B1) and (B2) and leave the case where both roots exist to
Sec.B 4. The conditions for an even number of roots are

�

(⇤� 6)2� > 24⇤|�|� ^ �

(⇤� 6)2� > 2⇤�
�

,
⇣

�(5⇤� 6)
p
� > 2

p
3
p

2⇤|�|
⌘

^
⇣

�(5⇤� 6)
p
� > ⌥

p
2⇤

⌘

,

(B11)
where we used the fact that ⇤� 6 is negative in this regime to simplify the expressions. The latter set of inequalities
is always false so h2 always has a single root. The condition for two roots of h1 is

�

(⇤� 6)2�� 2⇤�2 < 24⇤|�|� ^
⇣

�(⇤� 6)
p
�+ �

p
2⇤ > 2

p
3
p

2⇤|�|
⌘

. (B12)

Checking the three remaining cases produces the results in Table VI.

2. Root ordering

Next we derive conditions to determine the root ordering for the two polynomials. This dictates whether or not
the selected velocity can jump discontinuously.

If selection of either L or N changes three times there will generically be a discontinuous jump in the selected
velocity. The analysis in Sec. B 1 does not rule this out because in the case that h1 has two roots and h2 has one,

h1(t)

zero one two

h2(t)

zero impossible impossible impossible

one impossible
��2, 1

2

�

(�2, 1)

two impossible impossible impossible

TABLE VI. Summary of the possible numbers of roots for � < 0, ⌥ < 0. When the condition can be satisfied an example
(a1, a2) for which this is possible is shown. None of the regimes fall in the known global existence region.
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both roots of h1 may be smaller than that of h2. Thus when the root of h2 is encountered (as µ is increased) the
predicted velocity will jump discontinuously. We assume that h2 has a single root in the interval because the case in
which both quadratics have two roots in (0, 1) was ruled out in Sec. B 1. Another possible cause of discontinuity in
the selected velocity occurs if Eq. (B2) breaks first, before Eq. (B1), since both inequalities are satisfied at µ = 0.
Given the previous results this can only occur in the case that h2 has one root in (0, 1) that is smaller than any of
the roots of h2 in the interval.

We now derive a condition that is implied by the two root orderings mentioned above, thus indicating whether
or not they can occur. First, it is possible to show that � > � > 0 regardless of the parameter values. Because of
this ordering it is clear that for either of the two properties mentioned above to occur, h1 and h2 must cross and

the common value must be positive. In the former case t
cross

is greater than both roots of h1, and in the latter
case t

cross

is smaller than any roots of either polynomial. It is easy to see that the di↵erence of the polynomials,
(h2 � h1)(t) = (� � ↵)t2 + (� � �) has either zero roots or two roots of opposite signs. Since h2(0) > h1(0) then the
root of h2 is smaller than those of h1 if and only if h2 � h1 has a root t

cross

2 (0, 1) such that (h2 � h1)(tcross) > 0.
These conditions are equivalent to the conditions

� + � < 2 h2 has one root in (0, 1)

� � ↵ < 0 h2 � h1 has a root

� � � < � � ↵ t
cross

2 (0, 1)

(� � ↵)(� � �) + � � � > 0 (h2 � h1)(tcross) > 0.

We have verified that these conditions cannot be satisfied which shows that the selected velocity cannot su↵er discon-
tinuous jumps.

3. The case of double roots

Each double root in either of the quadratic inequalities generically drops the dimension of phase space by one. In
order for a double root to exist the discriminant must vanish, either ↵� = 1 or �� = 1. In each case these conditions
factor,

(a1 + a2)� = 0, (B13)

(16 + (a1 + a2)(3a1 + 11a2))� = 0, (B14)

and each case can be reduced to a 1-parameter space of solutions. It can be shown that 16+(a1+a2)(3a1+11a2) = 0
is incompatible with the requirement � > 0, so the second case can be reduced further to � = 0. Interestingly, if
there are two double roots the solutions are still described by a 1-parameter space, parametrized exactly by � = 0.
As mentioned in II B, when � = 0 the Ansatz solutions that are used here cease to be valid and a di↵erent analysis
has to be conducted using the appropriate solutions. We omit this step.

Excluding the case � = 0 we analyze the root structure for a single double root of h1. When a1 = �a2 then h1

has a double root and all of the coe�cients collapse to h1(t) =
p
3
⇣

t� 1p
3

⌘2
, h2(t) = �2

⇣

t� 1p
3

⌘

. The roots are

independent of parameters and coincide. This is the classic case that arises when a1 = a2 = 0 and hereby extends
along the whole line a1 + a2 = 0.

4. The case ⌥, � < 0 with both solutions of the Ansatz

In this case the negative root solution to Eq. (13) exists for µ 2
⇣

1� �(5⇤�6)2)
2⇤⌥2 , 1

i

and corresponds to a positive

velocity. Although this solution does not exist at µ = 0, this velocity can be compared to the linear prediction.

Because we know that 
N+ > 

N� and 
N� = 0 at µ = 1� �(5⇤�6)2)

2⇤⌥2 we focus on h2 in order to see if Eq. (B2) can
ever be satisfied. First one can check that � + � < 2, which means that h2 is negative at 1. Since we know that h2 is

negative at µ = 1 � �(5⇤�6)2)
2⇤⌥2 this means that it has either 0 or two roots. Then one can check that �� < 1 (h2 has

roots) and � < 0 (h2 is positive between the roots) cannot both be satisfied. Thus the a
N� branch is never relevant.

Appendix C: Numerical methods

Time-stepping simulations were carried out using two
numerical approximation schemes. The first is a Fourier

collocation method with suitable de-aliasing and the
time-stepping scheme ETD4RK [41]. Depending on the
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initial data and the possible types of front propagation
behavior the simulations are either performed in a frame
at rest or in one moving at constant speed. In the
moving frame the spatially extended front solutions typ-
ically have a nontrivial wave number q

N

6= 0 in the

limit ⇠ ! �1. To overcome the di�culty of approxi-
mating the boundary condition for this state, we write
A(x, t) = Ã(⇠, t)ei(qN⇠�!t) = Ã(⇠, t)eiqNx and solve the
following equation instead:

Ã
t

= (µ� q2
N

)Ã+ (v + 2iq
N

)Ã
⇠

+ Ã
⇠⇠

+ i
⇣

a1|Ã|2Ã
⇠

+ a2Ã
2 ¯̃A

⇠

⌘

+
⇣

1 + q
N

(a2 � a1)� |Ã|2
⌘

|Ã|2Ã (C1)

subject to Neumann (Dirichlet) conditions on the real
(imaginary) part of the solution at both boundaries. Af-
ter an initial de-aliasing Heaviside initial conditions gen-
erate continuous initial data.

We also employ a finite di↵erence (FD) method using
implicit Euler for the time discretization. The FD simu-
lation is carried out in the stationary frame with Dirichlet
boundary conditions imposed on both real and imaginary
parts of the solution. We study the evolution of localized
Heaviside initial data originating in the center of the do-
main. The scheme takes the form

uj+1
i

� uj

i

�t
= L

⇣

uj+1
i�1 , u

j+1
i

, uj+1
i+1

⌘

+N
⇣

uj

i�1, u
j

i

, uj

i+1

⌘

,

(C2)
where uj

i

is the solution value at spatial point i and time
step j and centered di↵erences are used for all of the
spatial derivatives. The operators L and N indicate the
linear and nonlinear terms in the evolution equation, re-
spectively.

When µ > 0 the A = 0 state is unstable resulting in
the amplification of any numerical instabilities that occur
ahead of the front. Growth of such instabilities interferes
with the propagation of the leading edge and renders a
velocity measurement of the initial leading edge impossi-
ble. For the FD code this is not a problem since solution
values initialized at 0 remain 0 until the leading edge
reaches them. However, the Fourier scheme propagates
small errors in each mode throughout the spatial domain
and can nucleate instabilities ahead of the front. To pre-
vent this we set A(x) = 0 for any x such that |A(x)| < ✏
at every time step. If ✏ is small enough this has the e↵ect
of quenching instabilities ahead of the front before they
can grow but leaves the front at amplitude above ✏ intact.
The required magnitude of ✏ depends on both the time-
step and the value of µ and is chosen to be as large as
feasible. Values of ✏ used here vary from 10�12 to 10�4.5.
For any ✏ > 0, but decreasingly as it is reduced, the cuto↵
a↵ects the speed of the front. Because it quenches the in-
stability of the leading state the speed of pulled fronts is
reduced. This makes any prediction of the front velocity
di�cult and typically produces a speed less than the an-

alytical prediction. Consequently we almost exclusively
use the FD method to explicitly measure front speeds.
In order to measure the velocity of fronts numerically

we select a fixed height h and calculate the trajectory,
x
f

, of the level set |A(x
f

)| = h. After an initial transient
the front reaches a constant velocity and we measure its
speed ẋ

f

by a linear fit to x
f

(t). We keep h as small as
possible to avoid behavior that occurs behind the leading
edge. The prescription for computing the data in Figs.
10 and 11 is:

• Initialize Heaviside initial data of extent 50 at the
center of the domain of length 300. Run a simula-
tion with �x = 0.05 and �t = (�x)2.

• The simulation is run for time T = 100
2
p
v

⇤�t

and the

location of the front is measured by the level set
with h = 0.01. This allows the front to remain a
distance > 50 away from the boundary throughout
the experiment. For simulations near µ = 0, where
v⇤ = 0, the simulation time is taken to be in the
range [30000, 50000] such that a stable velocity is
achieved and h = 0.0001.

• A line is fitted to the second half of the data x
f

(t)
(i.e. t > T

2 ) to measure the front speed. This en-
sures that we discard the transient associated with
the initial condition and measure the front speed
only for a well-developed front.

It is pointed out in [42] that for an FD scheme an ex-
act prediction of the errors in the linear spreading speed
in terms of the FD discretization can be derived. Let-
ting un

m

= ✏e�FD(n�t)�iqFD(m�x) in (C2) and keeping
lowest order terms in ✏ yields the FD dispersion relation
�
FD

(q
FD

) which solves the transcendental equation

1� e��FD�t

�t
= µ�

✓

2

�x
sin

✓

�xq
FD

2

◆◆2

. (C3)

In the limit �x,�t ⌧ 1 we can apply the marginal sta-
bility criterion and determine that
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v⇤
FD

= 2
p
µ+ 2µ

3
2 (�t) +

5µ
5
2

3
(�t)2 +

µ
3
2

12
(�x)2 +O(�t,�x)3 ,

q⇤
FD

= i

p
µ� µ

3
2 (�t) +

5µ5/2

6
(�t)2 � µ3/2

8
(�x)2

�

+O(�t,�x)3 ,

�⇤
FD

= 2µ+
4µ3

3
(�t)2 � µ2

6
(�x)2 +O(�t,�x)3 (C4)

FIG. 23. Front speed v

N

(blue) relative to the linear spread-
ing speed v

⇤ (red) for parameters (a1, a2) = (0, 0). The se-
lected (not selected) speed is indicated by a solid (dashed)
line according to Eq. (27). The navy (�x = 0.1) and or-
ange (�x = 0.05) circles represent speeds calculated by
time-stepping Heaviside initial conditions using FD in the
stationary frame and tracking the motion of the front with
�t = (�x)2. The squares represent the values of the speeds
after subtracting the corrections identified in Eq. (C4).

by solving linear algebraic problems order by order. Since
�x, �t are assumed to be positive, the signs of the re-
sulting corrections are determined. Here we assume that
the errors do not cause the spreading wave number to

become complex. We have not seen any evidence in our
numerics that this should be the case and it greatly sim-
plifies the calculation. Because the time integration uses
a first order method the resulting velocity has an error
of first order in �t. However, since we impose the con-
straint that �t = (�x)2 in every simulation so the error
is O((�x)2).
Assuming that the method for measuring the velocity

from simulations is accurate and a pulled front occurs,
then the measured front velocity is biased deterministi-
cally by the corrections in Eq. (C4). We can interpret
the analytically predicted corrections in two ways. We
can either compare simulation results directly to v⇤

FD

and not v⇤ or we can subtract the deterministic correc-
tion v⇤

FD

� v⇤ from the data and compare it to v⇤. In
this work we have chosen to plot the simulation data
with an error bar showing the unbiased quantity because
we do not have any result concerning the corrections to
v
N

due to FD (Figs. 10 and 11). The corrected value
e↵ectively eliminates the discretization error caused by
the finite di↵erences approximation but does not miti-
gate any other errors that could be introduced by the
simulation parameters or implementation. A compari-
son of these corrections for simulations with varying dis-
cretizations �x is shown in Fig. 23. Here the mea-
sured data are shown as circles and the corrected data as
squares. The collapse of the data after corrections have
been subtracted supports the robustness of the correc-
tions in Eq. (C4) and suggests that there is an additional
slowing of the velocity below the expected v⇤ value. This
slowing is almost certainly due to the imposed Dirichlet
boundary conditions in the simulation which artificially
pin the leading edge of the front. The e↵ect of boundary
conditions and finite domain size is studied in [42] and is
known to lead to this type of slowing down.
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