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Diffusion can be conceptualized, at microscopic scales, as the random hopping of particles between
neighboring lattice sites. In the case of diffusion in inhomogeneous media, distinct spatial domains
in the system may yield distinct particle hopping rates. Starting from the master equations (MEs)
governing diffusion in inhomogeneous media we derive here, for arbitrary spatial dimensions, the
deterministic lattice equations (DLEs) specifying the average particle number at each lattice site
for randomly diffusing particles in inhomogeneous media. We consider the case of free (Fickian)
diffusion with no steric constraints on the maximum particle number per lattice site as well as the
case of diffusion under steric constraints imposing a maximum particle concentration. We find, for
both transient and asymptotic regimes, excellent agreement between the DLEs and kinetic Monte
Carlo simulations of the MEs. The DLEs provide a computationally efficient method for predicting
the (average) distribution of randomly diffusing particles in inhomogeneous media, with the number
of DLEs associated with a given system being independent of the number of particles in the system.
From the DLEs we obtain general analytic expressions for the steady-state particle distributions for
free diffusion and, in special cases, diffusion under steric constraints in inhomogeneous media. We
find that, in the steady state of the system, the average fraction of particles in a given domain is
independent of most system properties, such as the arrangement and shape of domains, and only
depends on the number of lattice sites in each domain, the particle hopping rates, the number of
distinct particle species in the system, and the total number of particles of each particle species in
the system. Our results provide general insights into the role of spatially inhomogeneous particle
hopping rates in setting the particle distributions in inhomogeneous media.

PACS numbers: 05.40.Fb, 87.10.Hk, 87.10.Mn, 66.10.C-, 02.50.Ey

I. INTRODUCTION

Diffusion processes are of ubiquitous importance
throughout science. At microscopic scales, diffusion may
be conceptualized as the random hopping of particles be-
tween neighboring lattice sites [1–3]. For a given particle
species, the particle hopping rate generally depends on
the particular properties of the medium through which
the particles diffuse. In inhomogeneous media, particles
may therefore show distinct hopping rates in distinct spa-
tial domains of the system. Diffusion in inhomogeneous
media occurs in a variety of different contexts, includ-
ing protein diffusion in cell membranes [4, 5], ecology
[6–8], earth science [9–12], biomedical imaging [13], and
astrophysics [14, 15]. The general mathematical features
of diffusion in inhomogeneous media have been studied
extensively [16–19] using generalized diffusion equations
with spatially-varying diffusion coefficients. A conceptu-
ally and practically important scenario is thereby pro-
vided by the diffusion of particles through systems with
periodic boundary conditions, in which particles do not
directly interact with the system boundaries.

For the case of diffusion in homogeneous media with
periodic boundary conditions, the average steady-state
distribution of particles is uniform. In contrast, for par-
ticles diffusing through inhomogeneous media one gener-
ally expects that the average steady-state distribution of
particles is non-uniform and dependent on the relative
particle hopping rates in the distinct spatial domains of
the system. Furthermore, in the pre-asymptotic regime,

the average particle distribution in inhomogeneous me-
dia may show a complex temporal evolution towards the
steady state of the system. In this article we derive, start-
ing from the master equations (MEs) describing the ran-
dom hopping of particles in inhomogeneous media, the
lattice Langevin equations governing the particle num-
ber at each lattice site in the system. We consider the
case of free (Fickian) diffusion with no steric constraints
on the maximum particle number per lattice site as well
as the case of diffusion under steric constraints imposing
a maximum particle concentration. The deterministic
parts of the lattice Langevin equations provide the de-
terministic lattice equations (DLEs) specifying the aver-
age particle number at each lattice site. From the DLEs
we obtain general analytic expressions for the (average)
steady-state particle distributions for free diffusion and,
in special cases, diffusion under steric constraints in in-
homogeneous media. We show that numerical solution
of the DLEs offers a computationally efficient method for
predicting the (average) distributions of randomly diffus-
ing particles in inhomogeneous media for free diffusion as
well as diffusion under steric constraints. For both tran-
sient and asymptotic regimes, we test our solutions of the
DLEs using kinetic Monte Carlo (KMC) simulations of
the underlying MEs. Our results provide general insights
into the role of spatially inhomogeneous particle hopping
rates in setting the particle distributions in inhomoge-
neous media. We first consider, in Sec. II, free diffusion
in inhomogeneous media. We then consider, in Sec. III,
inhomogeneous systems with steric constraints and sin-
gle or multiple diffusing particle species. We conclude, in
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FIG. 1: Illustration, for d = 2, of the hypercubic lattice model
of diffusion in inhomogeneous media we consider here. Lat-
tice sites are indicated by unit squares with lattice spacing
a. A particle occupying a given lattice site is allowed to hop
randomly to any one of its 2d nearest-neighbor sites. Distinct
colors indicate lattice sites with distinct hopping rates 1/τα(i)

for a particle to leave the lattice site, with α = 1, . . . , D and
D = 4 here. Domain α encompasses all lattice sites i with
hopping rate 1/τα(i).

Sec. IV, with a summary and discussion of our results.

II. FREE DIFFUSION

We consider in this article particles diffusing in sys-
tems with K lattice sites i = 1, 2, . . . ,K. We focus on
the special case of lattice systems with periodic bound-
ary conditions, but our formalism could be extended to
other types of boundary conditions. Throughout this ar-
ticle, we model particle diffusion as the random hopping
of particles between nearest-neighbor lattice sites [1–3].
For simplicity, we focus on hypercubic lattices of dimen-
sion d with lattice spacing a, implying that each lattice
site has 2d nearest-neighbor sites (see Fig. 1). To model
spatially inhomogeneous particle hopping rates, we allow
for D distinct domains in the system, labelled by an in-
dex α = 1, 2, . . . , D, with the rate for a particle at lattice
site i in domain α to hop to a nearest-neighbor lattice
site being given by 1/τα(i). Note, in particular, that if
two or more lattice sites have the same hopping rate we
consider them to be part of the same domain (Fig. 1)
irrespective of whether the lattice sites are connected via
lattice sites with the same hopping rate, or not. In this
section we focus on the case of free (Fickian) diffusion,
for which the probability that a given particle hops to a
nearest-neighbor lattice site is constant in each domain.
In Sec. III we generalize the formalism developed here to
scenarios in which particles interact with each other via
steric constraints on the maximum particle number per
lattice site and, as a result, the probability for a given
particle to hop to a nearest-neighbor lattice site depends
on the particle number per lattice site.

A. Stochastic lattice model

In our stochastic lattice model of diffusion in inho-
mogeneous media we specify, at each lattice site i, the
number of particles (occupation number) through the
stochastic variable Ni ≥ 0. We use here the conven-
tion that Ni/ǫ, with the normalization constant ǫ > 0,
is the particle number at site i. While not necessary
for the purposes of the present discussion, using such
a normalized Ni is convenient [20–22] if one allows for
steric constraints on the occupation number by imposing
a fixed upper limit on Ni (see Sec. III). By definition,
the number of lattice sites in domain α, Mα, must obey

D
∑

α=1

Mα = K . (1)

Furthermore, since we use periodic boundary conditions,
the total number of particles in the system, N , is con-
served:

1

N

K
∑

i=1

Ni

ǫ
= 1 . (2)

The stochastic lattice model we consider here is Marko-
vian and, hence, the state of the system at each time t is
completely characterized by the set of occupation num-
bers (lattice occupancy) N(t) = {Ni(t)} with 1 ≤ i ≤ K.
The temporal evolution of the lattice occupancy N is de-
termined by the ME [19, 23]

∂P

∂t
=
∑

m

[

W (N−m;m)P (N−m, t)−W (N;m)P (N, t)
]

,

(3)
where P (N, t) is the probability that the system is in
state N at time t, W (N;m) is the transition rate from
lattice occupancy N to lattice occupancy N + m, and
m = {mi} with 1 ≤ i ≤ K is the array of jumps in
lattice occupancy. For the random hopping of particles
to nearest-neighbor (n.n.) sites j, the transition rate in
Eq. (3) is given by

W (N;m) =
1

2dǫ

∑

i

Ni

τα(i)
δ(mi + ǫ)

×
∑

j n.n. of i

δ(mj − ǫ)
∏

k 6=i,j

δ(mk) , (4)

where 2d is the coordination number of the hypercubic
lattice in d dimensions, the factor of 1/ǫ arises because
we use the convention that 1/τα(i) is the hopping rate
per particle, and δ(x) is the Dirac-delta function. We
use Dirac-delta functions, rather than Kronecker-delta
functions, in Eq. (4) in order to make the connection be-
tween the ME (3) and the corresponding DLEs in Eq. (9)
more transparent (see below), which amounts to replac-
ing the summation in the ME (3) by an integral over all
(continuous) m [24, 25].
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B. Deterministic lattice equations

Following the approach in Refs. [19, 20, 24–27] we
transform the ME (3) into the more tractable lattice
Langevin equations

dNi

dt
= K

(1)
i + ηi , (5)

where the ηi are Gaussian noises with zero mean and
covariance

〈ηi(t1)ηj(t2)〉 = K
(2)
i,j δ(t1 − t2) , (6)

the K
(1)
i and K

(2)
i,j are the first and second moments of

the transition rate in Eq. (4),

K
(1)
i (N) =

∫

miW (N;m)dm , (7)

K
(2)
i,j (N) =

∫

mimjW (N;m)dm , (8)

and we have taken the Ni to be continuous variables
[19, 20, 24–27]. The deterministic parts of the lattice
Langevin equations (5) yield the DLEs associated with
the ME (3) with Eq. (4):

dφi

dt
= −

φi

τα(i)
+

1

2d

∑

j n.n. of i

φj

τα(j)
, (9)

where the φi are the average Ni, φi(t) = 〈Ni(t)〉. The
first (negative) term in Eq. (9) arises from the average
rate for particles to hop away from site i, while the other
(positive) terms in Eq. (9) correspond to the hopping of
particles from the nearest-neighbor sites of site i to site i.
Since the noise in Eq. (5) has zero mean, Eq. (2) implies
that φi is conserved:

1

N

K
∑

i=1

φi

ǫ
= 1 . (10)

For a given set of initial conditions {φi(0)}, the DLEs (9)
can be readily solved numerically using standard meth-
ods [28], yielding a unique solution for the average par-
ticle occupancies φi(t) for all i and all t. Indeed, in the
steady state of the system with dφi/dt = 0 for all i, the
DLEs in Eq. (9) together with the constraint in Eq. (10)
fixing the total particle number in the system constitute a
set of K linearly independent algebraic equations, which
uniquely specify the steady-state φi at each lattice site.

C. Particle distribution

We characterize the (average) distribution of randomly
diffusing particles in inhomogeneous media through the
average fraction of all particles in domain α, Fα. In terms
of the solutions of the DLEs (9), Fα can be expressed as

Fα =

∑

i in domain α φi
∑K

i=1 φi

. (11)

As described in Sec. II B, the φi(t) are readily obtained
numerically from the DLEs (9) with Eq. (10), from which
Fα can be computed by directly evaluating Eq. (11). At
least for special cases, it is also feasible to obtain analytic
expressions of Fα. In particular, we construct the steady-

state (s.s.) particle distribution F
(s.s.)
α by setting the left-

hand side of Eq. (9) equal to zero, and matching positive
and negative terms on the right-hand side of Eq. (9).
Note that Eq. (9) then implies that, in the steady state
of the system, all the φi lying in a particular domain α
with hopping rate 1/τα take the same value φ(α). More
generally, Eq. (9) implies that, in the steady state of the
system, the particle occupancies in any two domains α
and β satisfy

φ(α)

τα
=

φ(β)

τβ
, (12)

as also expected based on the principle of detailed bal-
ance. We thus find that, in the steady state of the sys-
tem, the average fraction of all particles in domain α is
given by

F (s.s.)
α =

Mαφ
(α)

D
∑

β=1

Mβφ(β)

=
Mατα

D
∑

β=1

Mβτβ

, (13)

whereMατα corresponds to the characteristic time a ran-
domly hopping particle spends in domain α. Thus, the
steady-state particle fraction in domain α is directly pro-
portional to the inverse of the hopping rate in domain
α, and to the number of lattice sites in domain α. Note,

in particular, that F
(s.s.)
α is independent of the system

geometry, i.e., the arrangement and shape of domains,
as well as the system dimensionality d. Since we do not
allow here for any interactions between particles, the re-
sults in Eqs. (9), (12), and (13) readily generalize to an
arbitrary number of different (non-interacting) particle
species.
Some further insight into the steady-state distribution

of randomly diffusing particles in inhomogeneous media
can be gained by drawing an analogy between Eq. (12)
and the self-assembly of particle aggregates in dilute so-
lutions [29, 30]. In particular, introducing a constant µ,
Eq. (12) can be rewritten as

ǫα + logφ(α) = µ (14)

for any domain α, where ǫα = log (τ0/τα), in which τ0
is a constant. Viewed as an equation for φ(α), Eq. (14)
takes the same basic form as the thermodynamic equilib-
rium distribution of self-assembled particle aggregates in
dilute solutions with energy ǫα per particle in particle ag-
gregate α and particle chemical potential µ [29, 30]. From
Eq. (14), together with the constraint

∑

α Mαφ
(α) = N ǫ

implied by Eq. (10), we find

eµ =
N ǫ

D
∑

α=1
Mαe−ǫα

. (15)
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Equations (14) and (15) allow us to construct a gen-
eral expression for the steady-state lattice occupancies
for freely diffusing particles in inhomogeneous media,

φ(α) =
N ǫτα

D
∑

β=1

Mβτβ

, (16)

which yields the same expression for F
(s.s.)
α as in Eq. (13).

D. Simulation of free diffusion

As discussed in Secs. II B and IIC, the DLEs (9) al-
low prediction of the (average) transient and steady-state
distributions of particles diffusing freely through inho-
mogeneous media. To test these predictions, we car-
ried out KMC simulations of the ME (3) with Eq. (4).
For our KMC simulations we used the Next Subvolume
Method [31]. In particular, we considered 2D systems
with three distinct domains (see Fig. 2). Keeping the
values of M1,2,3 fixed, we allowed for two distinct system
geometries. On the one hand, we considered a scenario
in which one domain, with the shape of a square, was
enclosed by the other two domains [see Fig. 2(a)]. On
the other hand, we considered a system geometry with
two separate square-shaped domains enclosed by a third
domain [see Fig. 2(b)]. For both of these two system
geometries, we find excellent agreement between the Fα

obtained from the DLEs (9), the F
(s.s.)
α obtained from

Eq. (13), and the corresponding Fα obtained by averag-
ing over KMC simulations of the ME (3) with Eq. (4)
(Fig. 2).

As predicted by the steady-state analytic solutions in
Eq. (13), we find that the steady-state particle distribu-
tions obtained from the DLEs (9) and KMC simulations
of the ME (3) with Eq. (4) are spatially inhomogeneous
with φ(α) ∝ τα. Furthermore, as predicted by Eq. (13),

the F
(s.s.)
α obtained from the DLEs (9) and KMC sim-

ulations of the ME (3) with Eq. (4) are independent of

the system geometry considered, with F
(s.s.)
α ∝ Mατα.

In contrast, the temporal evolution of the particle dis-
tribution strongly depends on the system geometry, in
both the ME (3) with Eq. (4) and the DLEs (9). We
find that, in the case of two square-like domains with
τ3 < τ1 < τ2, domain 1 shows a pronounced “over-
shoot” in F1 [Fig. 2(b)]. No such overshoot is obtained in
Fig. 2(a). We attribute the observed overshoot in F1 in
Fig. 2(b) to a slow equilibration between domains 1 and 2
in Fig. 2(b). In agreement with this picture, we find that
the magnitude of the overshoot in Fig. 2(b) decreases if
the distance between domains 1 and 2 is reduced.

FIG. 2: Free diffusion of particles for d = 2 and three domains
with 1/τ1 = 32 s−1, 1/τ2 = 16 s−1, and 1/τ3 = 80 s−1 employ-
ing the two distinct system geometries shown in (a) and (b).
We used K = 100 with M1 = 16 and M2 = 9, periodic bound-
ary conditions, and a homogeneous initial particle distribu-
tion Ni(0) = 30ǫ with ǫ = 1/100. The upper panels in (a,b)
show 〈Ni〉 in transient and steady-state regimes obtained from
KMC simulations of the ME (3) with Eq. (4). The minima
and maxima of the plotted 〈Ni〉 are (Nmin, Nmax) = (0.1, 1.0),
and we use the same color bar in (b) as in (a). The lower pan-
els in (a,b) show the temporal evolution of F1,2. The dashed
curves indicate numerical solutions of the DLEs (9), the sym-
bols denote averages over KMC simulations of the ME (3)
with Eq. (4), and the gray lines show the steady-state ana-
lytic solutions in Eq. (13). All KMC results were averaged
over 1000 independent realizations each.
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III. DIFFUSION UNDER STERIC

CONSTRAINTS

In this section we generalize the formalism developed
in Sec. II to allow for interactions between randomly dif-
fusing particles in crowded environments in the form of
steric constraints. In particular, we impose the constraint
that, at each lattice site i, the particle occupancy can-
not increase beyond Ni = 1, which means that Ni is re-
stricted to the range 0 ≤ Ni ≤ 1, with the maximum par-
ticle number per lattice site being given by 1/ǫ. To im-
plement particle crowding in our stochastic lattice model
we use a phenomenological approach, and assume that
the rates of all diffusion processes increasing the parti-
cle number at lattice site i are ∝ [1− fi (Ni)], where
0 ≤ fi(Ni) ≤ 1. The form of the function fi(x) will, in
general, depend on the particular properties of the sys-
tem under consideration. For instance, if the steric con-
straints in the system are non-uniform, different fi(x)
may need to be used for different lattice sites. We fo-
cus here on the most straightforward choice of a uniform
fi(x) = x that has previously been successfully employed
in the context of population biology [32–34], protein dif-
fusion in crowded cell membranes [20–22, 25], and gen-
eral models of non-Fickian diffusion [35, 36]. We first
consider, in Secs. III A and III B, the case of a single
particle species diffusing through inhomogeneous media
under steric constraints and then, in Secs. III C and III D,
allow for multiple diffusing particle species.

A. Single particle species

As in Sec. II, our stochastic lattice model of particles
diffusing through inhomogeneous media under steric con-
straints is defined by the ME (3). However, the transition
rate in the ME (3) now takes the form

W (N;m) =
1

2dǫ

∑

i

Ni

τα(i)
δ(mi + ǫ)

×
∑

j n.n. of i

(1−Nj)δ(mj − ǫ)
∏

k 6=i,j

δ(mk) .

(17)

Proceeding as in Sec. II, we find that the DLEs associated
with the ME (3) with Eq. (17) are given by

dφi

dt
= −

φi

2dτα(i)

∑

j n.n. of i

(1− φj) +
1− φi

2d

∑

j n.n. of i

φj

τα(j)
,

(18)
where, as in Sec. II, the negative (positive) terms cor-
respond to the hopping of particles away from (to) lat-
tice site i. The DLEs (18) are readily solved numerically
starting from a given set of initial conditions {φi(0)} us-
ing standard methods [28], which uniquely specifies φi(t)
and hence allows computation of Fα through direct eval-
uation of Eq. (11).

The steady-state particle distribution F
(s.s.)
α can be cal-

culated following similar steps as in Sec. II. We first note
that, as in Sec. II, Eq. (18) suggests that, in the steady
state of the system, all the φi lying in a particular do-
main α with hopping rate 1/τα take the same value φ(α).
Equation (12) now generalizes to

1

1− φ(α)

φ(α)

τα
=

1

1− φ(β)

φ(β)

τβ
. (19)

From the above relations, together with Eq. (10), the av-
erage steady-state occupancies φ(α) are readily obtained

numerically [28], from which we compute F
(s.s.)
α by evalu-

ating Eq. (11). At least for special cases, it is also feasible
to analytically solve Eq. (19) with Eq. (10) for the steady-
state particle distribution. For instance, consider a sys-
tem with two domains α = 1, 2. In this case, Eqs. (10)
and (19) yield

φ(2) =
τ2φ

(1)

(τ2 − τ1)φ(1) + τ1
, (20)

with φ(1) fixed by the quadratic equation

A
(

φ(1)
)2

+ Bφ(1) + C = 0 , (21)

where A = M1(τ2−τ1), B = M1τ1+M2τ2−N ǫ (τ1 − τ2),
and C = −N ǫτ1. Equation (21) admits the two solutions

φ
(1)
± =

−B ±
(

B2 − 4AC
)1/2

2A
. (22)

Since 0 ≤ φ(α) ≤ 1, φ(1) = φ
(1)
+ is the only physically rel-

evant solution (see below), which yields φ(2) via Eq. (20),

and hence F
(s.s.)
1,2 through Eq. (11):

F
(s.s.)
1,2 =

M1,2φ
(1,2)

M1φ(1) +M2φ(2)
. (23)

The above analytic solution procedure can be generalized
to more complicated systems with D > 2, which gener-
ally requires solution of a D-th order polynomial. Note

that, as for the case of free diffusion, the F
(s.s.)
α for dif-

fusion under steric constraints implied by Eq. (19) with
Eq. (10) are independent of the arrangement and shape
of domains, as well as the system dimensionality.
As in Sec. II, the DLEs (18) are expected to yield a

single (unique) physically relevant steady-state solution.
To see this explicitly, it is convenient to rewrite Eqs. (10)
and (19) in the form

D
∑

α=1

Mαφ
(α) = N ǫ , (24)

[

1− f
(

φ(β)
)] φ(α)

τα
=
[

1− f
(

φ(α)
)] φ(β)

τβ
, (25)
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where we have allowed for a generalized steric constraint
∝ (1− f(Ni)), with f(x) being a monotonically increas-
ing function of x and 0 6 f(x) 6 1. Assume that, as
in the example of a system with two domains consid-

ered above, domain 1 admits two solutions φ
(1)
± , and let

φ
(1)
+ > φ

(1)
− . If the system is initially in a steady state

with φ(1) = φ
(1)
+ then, according to Eq. (24), a transition

to a competing steady state with φ(1) = φ
(1)
− would re-

quire an increase in the value of at least one φ(γ) with
γ 6= 1. But a decrease in φ(α) produces an increase in
[

1− f
(

φ(α)
)]

if 0 ≤ φ(α) ≤ 1, and vice versa, result-
ing in violation of Eq. (25). Thus, the physically rel-
evant steady-state solutions φ(α) for particles diffusing
through inhomogeneous media under steric constraints
are expected to be unique with, starting from a given set
of initial conditions {φi(0)}, φi(t) being uniquely deter-
mined by the DLEs (18) for all i and all t. Finally, we
note that Eq. (19) with Eq. (10) can be connected to the
thermodynamic formalism describing the self-assembly of
particle aggregates in dilute solutions [29, 30] following
similar steps as in Sec. II C. We return to this point in
Sec. III C.

B. Simulation of single-species diffusion under

steric constraints

As in Sec. II D, we tested the accuracy of the parti-
cle distributions predicted by the DLEs (18), with the
steady-state particle distributions implied by Eq. (19)
with Eq. (10), by carrying out KMC simulations of the
ME (3) with Eq. (17) using the Next Subvolume Method
[31]. We first considered the same system geometries and
parameter values as in Fig. 2, but for diffusion under
steric constraints (see Fig. 3). We find excellent agree-
ment between the Fα predicted by the DLEs (18), the
steady-state particle distributions implied by Eq. (19)
with Eq. (10), and the corresponding Fα obtained by
averaging over KMC simulations of the ME (3) with
Eq. (17). As predicted by Eq. (19) with Eq. (10), and

as in the case of free diffusion, we find that the F
(s.s.)
α

in Fig. 3 are independent of the system geometry consid-
ered. Furthermore, as in the case of free diffusion, we find
that the steady-state particle distributions in Fig. 3 are
spatially inhomogeneous, provided that we do not have
Ni = 1 for all i. Comparison of Figs. 2 and 3 shows that
crowding tends to reduce spatial inhomogeneity in the
steady-state particle concentration. Furthermore, com-
parison of Figs. 2 and 3 shows that crowding reduces the
overshoot in F1 in Fig. 2(b). Indeed, decreasing the ef-
fects of crowding in Fig. 3(b) by decreasing the value of
〈Ni〉 in the system we obtain, upon repeating the KMC
simulations in Fig. 3(b), an overshoot in F1.
Figures 4 and 5 provide detailed comparisons between

diffusion in inhomogeneous media for d = 1 and d = 2, for
free diffusion as well as diffusion under steric constraints.
For all the scenarios considered in Figs. 4 and 5 we obtain

FIG. 3: Same results as in Fig. 2, but for a single par-
ticle species diffusing through inhomogeneous media under
steric constraints, described by the ME (3) with Eq. (17), the
DLEs (19), and the analytic solutions of the steady-state re-
lations in Eq. (19) with Eq. (10), for the two distinct system
geometries shown in (a) and (b). We use the same color bar
as in Fig. 2.

excellent agreement between the average system proper-
ties predicted by the DLEs (9) or (18), the steady-state
relations in Eq. (13) or Eq. (19) with Eq. (10), and KMC
simulations of the ME (3) with Eq. (4) or Eq. (17). We
first consider a system with d = 1 and two distinct do-
mains, with M1 = K/10 and τ1 = 5 τ2 (see Fig. 4). Start-
ing from homogeneous initial conditions in Ni, we find a
net flux of particles from domain 2 into domain 1, until
the system reaches its steady state. In particular, domain
1 “fills up” from its boundaries inwards [see Fig. 4(a)]. To
quantify these observations we calculated, in addition to
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FIG. 4: Single-species diffusion in inhomogeneous media for
d = 1 and two domains with 1/τ1 = 16 s−1 and 1/τ2 =
80 s−1. We used K = 100 with M1 = 10, periodic bound-
ary conditions, and a homogeneous initial particle occupancy
Ni(0) = 40ǫ with ǫ = 1/100. (a) Average particle occu-
pancy 〈Ni〉 as a function of time obtained from KMC sim-
ulations of the ME (3) with Eq. (4) and Eq. (17) for free dif-
fusion (left panel) and diffusion under steric constraints (right
panel), respectively. The black vertical lines show the domain
boundaries. The minima and maxima of the plotted 〈Ni〉 are
(Nmin, Nmax) = (0.1, 1.4), and we use the same color bar in
the left and right panels. (b) Temporal evolution of the aver-
age fraction of all particles located in domain 1, F1, for free
diffusion (upper panel) and diffusion under steric constraints
(lower panel). The insets show the temporal evolution of 〈Ni〉
and φi for individual lattice sites at the center and boundary
of domain 1. The dashed curves indicate numerical solutions
of the DLEs (9) or (18), the symbols denote averages over
KMC simulations of the ME (3) with Eq. (4) or Eq. (17), and
the gray lines show steady-state analytic solutions obtained
from Eq. (13) or Eq. (19) with Eq. (10). All KMC results
were averaged over 1000 independent realizations each.

F1, the average occupation number of individual lattice
sites located at the center and at the boundary of domain
1, as a function of time [see Fig. 4(b)]. We indeed find

FIG. 5: Same results as in Fig. 4, but for d = 2 with domain 1
split up into two sub-domains, for (a) free diffusion and (b)
diffusion under steric constraints. The insets in the lower
panels show the temporal evolution of 〈Ni〉 and φi for the
individual lattice sites at the center and boundary of domain 1
indicated in the upper panels. As in Fig. 4, all results were
obtained from the DLEs (9) or (18), the steady-state relations
in Eq. (13) or Eq. (19) with Eq. (10), and KMC simulations
of the ME (3) with Eq. (4) or Eq. (17). We use the same color
bar as in Fig. 4.

that the 〈Ni〉 for center cites in domain 1 lag behind the
〈Ni〉 for boundary sites in domain 1 in their approach
towards the steady state. Finally, we note that, com-
pared to free diffusion, steric constraints produce a more
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FIG. 6: F
(s.s.)
1,2 versus average particle occupancy per lattice

site in the system, N ǫ/K, for the system in Fig. 5. As in
Fig. 5, all results were obtained from the steady-state relations
in Eq. (13) and Eq. (19) with Eq. (10) (horizontal solid lines
and solid curves, respectively), and KMC simulations of the
ME (3) with Eq. (17) (symbols).

rapid approach towards the steady state of the system in
Fig. 4.

In Fig. 5 we consider diffusion in inhomogeneous me-
dia with the same system parameter values as in Fig. 4,
but for d = 2 rather than d = 1 with domain 1 split
up into two sub-domains. As predicted by the steady-
state analytic solution in Eq. (13) for free diffusion and
by Eq. (19) with Eq. (10) for diffusion under steric con-

straints, we find identical F
(s.s.)
1,2 for d = 1 and d = 2 in

Figs. 4 and 5, for free diffusion as well as diffusion un-
der steric constraints. However, for d = 2 the system
approaches its steady state more rapidly than for d = 1.
This can be understood by noting that, for the system
geometries considered here, the length of the boundary
separating domains 1 and 2 is larger for d = 2 than for
d = 1, which is expected to facilitate particle exchange
between distinct domains. Consistent with our results
for d = 1 in Fig. 4, the evolution of the d = 2 system in
Fig. 5 towards its steady state is more rapid for diffusion
under steric constraints than for free diffusion, and the
〈Ni〉 for center cites in domain 1 lag behind the 〈Ni〉 for
boundary sites in domain 1 in their approach towards the
steady state.

To further quantify the role of steric constraints in dif-
fusion in inhomogeneous media we calculated, for the

system in Fig. 5, the dependence of F
(s.s.)
1,2 on the (nor-

malized) particle number in the system (average particle
occupancy per lattice in the system) N ǫ/K for particles
diffusing under steric constraints (see Fig. 6). Again, we
obtain excellent agreement between the average system
properties predicted by the steady-state particle distri-
bution in Eq. (19) with Eq. (10) and the corresponding
results obtained from KMC simulations of the ME (3)
with Eq. (17). We find that, as N ǫ/K → 0, steric con-
straints become increasingly irrelevant and our results

for F
(s.s.)
1,2 approach the corresponding results for free dif-

fusion in Eq. (13), with F
(s.s.)
2 /F

(s.s.)
1 → M2τ2/M1τ1 as

N ǫ/K → 0. In contrast, as N ǫ/K is increased, the ef-
fects of steric constraints become more and more pro-

nounced, with F
(s.s.)
2 /F

(s.s.)
1 → M2/M1 as N ǫ/K → 1.

Thus, depending on the values of M2/M1 and τ2/τ1 con-
sidered, steric constraints can tend to increase or decrease

the inhomogeneity in F
(s.s.)
α .

C. Multiple particle species

In the presence of steric constraints, the diffusion of
one particle species can be affected [22, 25, 35, 36] by
the diffusion of other particle species in the system, and
vice versa. We generalize here our formalism to allow
for S distinct particle species. We denote the occupation
number at lattice site i associated with particle species
s = 1, 2, . . . S by Ni;s, with Ni;s/ǫs corresponding to the
number of particles of species s at lattice site i so that

0 ≤
S
∑

s=1

Ni;s ≤ 1 (26)

for all i. Furthermore, we denote the hopping rate of
particle species s in domain α by 1/τα(i);s. We assume
that the total number of particles of each species in the
system is conserved:

1

Nsǫs

K
∑

i=1

Ni;s = 1 , (27)

where Ns is the total number of particles of species
s in the system. Redefining the lattice occupancy as
N(t) = {Ni;s(t)} with 1 ≤ i ≤ K and 1 ≤ s ≤ S,
our stochastic lattice model of the diffusion of multiple
particle species in inhomogeneous media under steric con-
straints is defined by the ME (3) with the transition rate

W (N;m) =
1

2d

∑

i,s

Ni;s

τα(i);sǫs
δ(mi;s + ǫs)

×
∑

j n.n. of i

(

1−
S
∑

l=1

Nj;l

)

δ(mj;s − ǫs)
∏

k 6=i,j

δ(mk;s) ,

(28)

where the array of jumps in lattice occupancy m =
{mi;s} with 1 ≤ i ≤ K and 1 ≤ s ≤ S. Note that

the factor
(

1−
∑S

l=1 Nj;l

)

in the above transition rate

couples the lattice occupancies associated with distinct
particle species.

Denoting the average occupation number of particle
species s at lattice site i by φi;s(t) = 〈Ni;s(t)〉 and pro-
ceeding as in Sec. II, we find that the DLEs associated
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with the ME (3) with Eq. (28) are given by

dφi;s

dt
=−

φi;s

2dτα(i);s

∑

j n.n. of i

(

1−
S
∑

l=1

φj;l

)

+
1−

∑S
l=1 φi;l

2d

∑

j n.n. of i

φj;s

τα(j);s
, (29)

where, similarly as in Secs. II and III A, the negative
(positive) terms correspond to the hopping of particles
of species s away from (to) lattice site i. As in Secs. II
and IIIA, the DLEs (29) are, for a given set of initial
conditions {φi;s(0)}, amenable to direct numerical solu-
tion using standard methods [28], which uniquely speci-
fies φi;s(t) for all i, all s, and all t. From the φi;s(t) the
average fraction of all particles of species s in domain α,
Fα;s, can be computed by evaluating

Fα;s =

∑

i in domain α φi;s
∑K

i=1 φi;s

. (30)

To calculate the steady-state particle distribution

F
(s.s.)
α;s associated with Eq. (30) we follow steps analogous

to those in Sec. III A. Equation (29) suggests that, in
the steady state of the system, all the φi;s lying in a par-
ticular domain α with hopping rate 1/τα;s take the same

value φ(α;s). In the steady state of the system, Eq. (19)
then generalizes to

1

1−
∑S

l=1 φ
(α;l)

φ(α;s)

τα;s
=

1

1−
∑S

l=1 φ
(β;l)

φ(β;s)

τβ;s
. (31)

Together with Eq. (27), Eq. (31) allows (numerical) cal-
culation of φ(α;s) for each domain and each particle
species. The resulting solutions for the steady-state par-
ticle distribution are expected to be unique. For instance,
consider a system with only two domains α and β. Upon
applying Eq. (31) to the two particle species s and k and
dividing the resultant relations, we find

φ(α;s)

τα;s

τα;k
φ(α;k)

=
φ(β;s)

τβ;s

τβ;k
φ(β;k)

. (32)

If φ(α;s) is changed from a steady-state solution φ(α;s) =

φ
(α;s)
+ to a steady-state solution φ(α;s) = φ

(α;s)
− , with

φ
(α;s)
+ > φ

(α;s)
− and 0 ≤ φ

(α;s)
± ≤ 1, Eq. (27) requires a cor-

responding increase in φ(β;s). According to Eq. (32), such
a change in the distribution of particle species s requires
a decrease in φ(α;k)/φ(β;k) which, because of Eq. (27), can
only be achieved if φ(α;k) decreases and φ(β;k) increases,
thus violating Eq. (31).
The analogy with the thermodynamic formalism de-

scribing the self-assembly of particle aggregates in dilute
solutions [29, 30] drawn in Sec. II C for free diffusion can
be extended to include steric constraints as well as mul-
tiple diffusing particle species. Equation (27) mandates
that the particle number is conserved for each particle

species, yielding a distinct µs for each particle species s.
As in Sec. II C, Eq. (31) can then be rewritten as

φ(α;s)

1−
∑S

l=1 φ
(α;l)

= eµs−ǫα;s , (33)

where ǫα;s = log (τ0/τα;s) and τ0 is a constant. Equa-
tion (33) implies that

∑S
s=1 φ

(α;s)

1−
∑S

s=1 φ
(α;s)

=

S
∑

s=1

eµs−ǫα;s , (34)

which can be rearranged to

1−
S
∑

s=1

φ(α;s) =
1

1 +
∑S

s=1 e
µs−ǫα;s

. (35)

Insertion of Eq. (35) back into Eq. (33) yields the steady-
state distribution of particles diffusing through inhomo-
geneous media under steric constraints,

φ(α;s) =
eµs−ǫα;s

1 +
∑S

l=1 e
µl−ǫα;l

, (36)

where the µs are determined by Eq. (27) via

D
∑

β=1

Mβe
µs−ǫβ;s

1 +
∑S

l=1 e
µl−ǫβ;l

= Nsǫs , (37)

which couples distinct domains and particle species.
Equations (36) and (37) reduce the calculation of φ(α;s)

to the solution of Eq. (37). The special case S = 1 in
Eqs. (36) and (37) yields the steady-state distribution of
particles diffusing through inhomogeneous media under
steric constraints for a single diffusing particle species
(see Sec. III A).

D. Simulation of multi-species diffusion under

steric constraints

As in Secs. II D and III B, we tested the accuracy of the
particle distributions predicted by the DLEs (29), with
the steady-state particle distributions implied by Eq. (31)
with Eq. (27), by carrying out KMC simulations of the
ME (3) with Eq. (28) using the Next Subvolume Method
[31] (see Figs. 7 and 8). We considered the same system
geometries and parameter values as in Figs. 2 and 3, but
allowed for a second particle species with hopping rates
that were reduced compared to the hopping rates of par-
ticle species 1. We find excellent agreement between the
Fα;s predicted by the DLEs (29), the steady-state parti-
cle distributions implied by Eq. (31) with Eq. (27), and
the corresponding Fα;s obtained by averaging over KMC
simulations of the ME (3) with Eq. (28). As predicted
by Eq. (31) with Eq. (27), we obtain spatially inhomo-

geneous steady-state particle distributions, with F
(s.s.)
α;s
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FIG. 7: Two-species diffusion under steric constraints for
d = 2 and three domains with (1/τ1;1, 1/τ2;1, 1/τ3;1) =
(32, 16, 80) s−1 and (1/τ1;2, 1/τ2;2, 1/τ3;2) = (3.2, 8, 16) s−1

employing the same system geometry as in Figs. 2 and 3 for
(a) species 1 and (b) species 2. We used K = 100 with
M1 = 16 and M2 = 9, periodic boundary conditions, and
the homogeneous initial particle distributions Ni;1(0) = 30ǫ1
and Ni;2(0) = 30ǫ2 with ǫ1 = ǫ2 = 1/100. The upper
panels in (a) and (b) show 〈Ni;1〉 and 〈Ni;2〉 at the indi-
cated t obtained from KMC simulations of the ME (3) with
Eq. (28). The minima and maxima of the 〈Ni;s〉 in (a) and
(b) are (Nmin, Nmax) = (0.2, 0.6). The lower panels in (a)
and (b) show the temporal evolution of Fα;s for α = 1, 2 and
s = 1, 2. The dashed curves indicate numerical solutions of
the DLEs (29), the symbols denote averages over KMC simu-
lations of the ME (3) with Eq. (28), and the gray lines show

the F
(s.s.)
α;s obtained from Eq. (31) with Eq. (27). The KMC

results were averaged over 1000 independent realizations.

being independent of the arrangement and shape of do-

FIG. 8: Same results as in Fig. 7, but for the system geometry
shown in the upper panels of (a) and (b) using the same values
of K and M1,2,3 as in Fig. 7. As in Fig. 7, all results were
obtained from the DLEs (29), the ME (3) with Eq. (28), and
the steady-state relations in Eq. (31) with Eq. (27). We use
the same color bar as in Fig. 7.

mains. Comparison of Figs. 7 and 8 with Fig. 3 shows
that the presence of more than one diffusing particle
species can have complex effects on the temporal evolu-
tion of Fα;s. In particular, Figs. 7 and 8 show that inter-
actions between diffusing particle species via steric con-
straints can slow down the approach towards the steady
state of the system, and alter even basic qualitative fea-
tures of the temporal evolution of Fα;s. For instance, we
find a pronounced overshoot in F1;1 in Fig. 7 as well as
Fig. 8, while no such overshoot occurs for F1 in Fig. 3.
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IV. SUMMARY AND CONCLUSIONS

Diffusion can be conceptualized [1–3] as the random
hopping of particles between neighboring lattice sites
with, in the case of diffusion in inhomogeneous media,
distinct particle hopping rates in distinct spatial domains
in the system. Starting from the MEs [19, 23] describing
the random hopping of particles in inhomogeneous me-
dia, we have derived here the DLEs governing diffusion in
inhomogeneous media in arbitrary spatial dimensions for
free diffusion as well as diffusion under steric constraints.
For a given initial particle distribution, the DLEs can
be readily solved numerically. We have also obtained
general analytic expressions for the steady-state particle
distributions for free diffusion and, in special cases, dif-
fusion under steric constraints in inhomogeneous media.
We find that the particle distributions obtained from the
DLEs are, for both transient and asymptotic regimes, in
excellent agreement with averages over KMC simulations
of the underlying MEs. We used here ǫ = 1/100, which
is suitable [22, 25] for modeling protein diffusion in cell
membranes. For general ǫ, the MEs and DLEs are ex-
pected to yield similarly good agreement if ǫ / 1/10 [25].
The origin of the observed agreement between MEs and
DLEs may lie [25] in the conservation of particle number
in the stochastic lattice models of diffusion considered
here, which constrains the fluctuations in the MEs [37].

From a computational perspective, solution of the
DLEs obtained here for a system composed of S distinct
particle species hopping between K lattice sites amounts
to the solution of S × K coupled, first-order ordinary
differential equations, which can be efficiently achieved,
starting from a given set of initial conditions, using stan-
dard methods [28]. If only the average steady state of the
system is of interest, the computational complexity of the
problem can be reduced further with, for a system con-
taining D domains with distinct particle hopping rates,
solution of only S×D algebraic equations being required
to predict the steady-state particle distribution. Note, in
particular, that the number of DLEs associated with a
given system is independent of the number of particles
in the system. Thus, the DLEs provide a particularly
favorable approach for situations in which the particle
number is large, which is often the case when modeling
experiments on diffusion in inhomogeneous media [4–15].

We find that the average fraction of particles in a given
domain may show—depending on key system properties
such as the system geometry, the initial conditions used,
the dimensionality of the system, and the number of dis-
tinct diffusing particle species—a complex approach to-
wards the steady state of the system. For instance, de-
pending on the detailed system properties, the average
fraction of particles in a given domain may overshoot
when approaching the steady state of the system, due
to a slow equilibration between domains with distinct
particle hopping rates. We find that the magnitude of
this overshoot depends critically on the separation of do-
mains, with larger domain separations yielding a more

pronounced overshoot. For systems comprising only a
single particle species, molecular crowding tends to re-
duce the magnitude of the overshoot in the average frac-
tion of particles in a given domain. Our results suggest
that, in systems with many domains with distinct par-
ticle hopping rates, the particle distribution can show
a highly non-monotonic temporal evolution towards the
steady state of the system, with a hierarchy of timescales
set by the particle hopping rates in different domains and
the system geometry. We find that the complexity of the
temporal evolution of the particle distribution can be fur-
ther increased if the system comprises multiple particle
species interacting via steric constraints. In this case, the
presence of one particle species can, for instance, induce
an overshoot in the average fraction of another particle
species in a given domain. Furthermore, we find that
interactions between multiple particle species via steric
constraints can slow down the approach of the particle
distribution towards the steady state of the system.

The DLEs derived here suggest that, in the steady
state of the system, the average fraction of particles in
a given domain is independent of most system proper-
ties, even if the particles interact via steric constraints.
We find that the average steady-state concentration of
particles is uniform in each domain, and only depends
on the number of lattice sites in each domain, the parti-
cle hopping rates, the number of distinct particle species
in the system, and the total number of particles of each
particle species in the system. In particular, the DLEs
derived here suggest that the average steady-state con-
centration of particles in each domain is independent
of the arrangement and shape of domains. While we
have focused here on the deterministic parts of the lat-
tice Langevin equations associated with diffusion in in-
homogeneous media, the formalism employed here can
be extended [24, 33, 34, 38–42] to carry out a systematic
analysis of the fluctuations induced by the random hop-
ping of particles in inhomogeneous media, and to connect
the DLEs derived here to generalized diffusion equations
with spatially-varying diffusion coefficients [16–21, 25].

The general mathematical results obtained in this arti-
cle are of relevance to diffusion in inhomogeneous media
in a variety of different experimental systems [4–15]. An
important point here is that in complex, heterogeneous
systems it is often not clear from the outset whether a
simple random walk model with spatially varying hop-
ping rates can capture the basic features of the parti-
cle dynamics. Our results show that the steady-state
distributions of particles in inhomogeneous media may
be used to deduce key features of the particle dynam-
ics even if detailed system properties, such as the shape
and arrangement of distinct domains in the system, are
not known. For instance, synaptic receptors diffuse ran-
domly through cell membranes with hopping rates that
are reduced inside synaptic membrane domains [5]. In
addition to diffusion, however, synaptic receptors may
show complex interactions with other molecules in the
cell membrane, and undergo recycling via endo- and ex-
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ocytosis [5]. For a given set of experimental conditions,
our results could be used, for instance, to formulate tests
of whether such additional processes substantially affect
the measured steady-state receptor distribution in the
membrane, or whether the measured steady-state recep-
tor distribution is primarily set by the observed inhomo-
geneity in the receptor hopping rates. For general exper-
imental realizations of diffusion in inhomogeneous me-
dia [4–15], the DLEs and corresponding analytic results
obtained here may similarly be employed to ascertain
whether spatially inhomogeneous particle hopping rates
are already sufficient to explain a particular, spatially
inhomogeneous particle distribution observed in experi-
ments, or whether more complicated microscopic mecha-

nisms and interactions must be invoked in order to under-
stand experimental data on the distribution of randomly
diffusing particles in inhomogeneous media.
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