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Abstract

Monte Carlo simulations and Wertheim’s thermodynamic perturbation theory (TPT) were used

to predict the phase diagram and percolation curve for the simple two-dimensional Mercedes–Benz

(MB) model of water. The MB model of water is quite popular for explaining water properties, but

the phase diagram was not reported till now. In the MB model, water molecules are modeled as two-

dimensional (2D) Lennard-Jones disks, with three orientation-dependent hydrogen-bonding arms,

arranged as in the MB logo. The liquid part of phase space was explored using grand canonical

Monte Carlo simulations and two different versions of Wertheim’s thermodynamic perturbation

theory for associative fluids which were used before to predict the properties of the simple MB

model. We found that the theory reproduced well the physical properties of hot water, but was

less successful at capturing the more structured hydrogen bonding that occurs in cold water. In

addition to reporting the phase diagram and percolation curve of the model, it is also shown that

improved TPT predicts the phase diagram rather well while the standard one predicts a phase

transition at lower temperatures. For the percolation line, both versions have problems predicting

the correct position of the line at high temperatures.
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I. INTRODUCTION

Water is the most important fluid in nature for life, [1, 2] as well as for technological

processesm being one of the most important liquids in industry. Water exhibits many

anomalous properties that affect life at a larger scale. Mammals benefit from the large

latent heat of water to cool them down through sweating. Waters large heat capacity

prevents local temperature fluctuations, facilitating thermal regulation of organisms. Water

has almost universal solvent action[3]. Nearly all known chemical substances will dissolve

in water at least to a small extent. Water is one of the most corrosive substances known

and yet is physiologically harmless. In comparison to other liquids, it has the most puzzling

behavior [3, 4]. The most known examples are its density maximum at 4 ◦C, lower density

of the solid phase compared to the liquid phase, high and nearly constant heat capacity

in the liquid phase negative expansion coefficient below the temperature of the density

maximum, as well as high surface tension and viscosity. The compressibility and specific

heat increase anomalously by cooling. Water also has unusually high boiling, freezing and

critical points. These properties are largely governed by the formation of hydrogen bonds

(HB). An understanding of the hydrogen bonding is therefore crucial to understand the

behavior and properties of water and aqueous solutions. A key goal of liquid–state statistical

thermodynamics is to develop a quantitative theories for water and aqueous solutions (for

reviews see[3–12]). A large number of models of varying complexity have been developed and

analyzed to model waters extraordinary properties (for reviews, see, e.g. [13–16]), but none of

the current models can correctly reproduce all physical properties of water. In principle, the

properties of water can be determined with quantum-mechanical calculations[17, 18]. While

they offer the highest degree of exactness, a high computational cost of these approaches

limits their use to small water systems, but these insights should allow for the development

and fine-tuning of simplified water models.[19–21] There have been two main approaches to

modeling liquids. One approach is to perform computer simulations of atomically detailed

models. These models aim for realistic detail and include variables describing van der Waals

and Coulomb interactions, hydrogen bonding, etc. (reviewed in [10]). Such approaches

can depend critically on the force–field used in the calculation[22, 23]. However, many

properties of water and aqueous solutions can also be captured by simpler models[24, 25].

One class of such simpler models has been developed by Nezbeda and coworkers[14, 26,
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27]. One the simplest models for water is the so-called Mercedes–Benz (MB) model,[28–

32] which was originally proposed by Ben–Naim in 1971 [33, 34]. This is a 2-dimensional

model. Each water molecule is modeled as a disk that interacts with other such waters

through: (1) a Lennard–Jones (LJ) interaction and (2) an orientation–dependent hydrogen

bonding interaction through three radial arms arranged as in the Mercedes–Benz (MB)

logo. Interest in simplified models is due to insights that are not obtainable from all-

atom computer simulations. Simpler models are more flexible in providing insights and

illuminating concepts, and they do not require big computer resources. Second, simple

models can explore a much broader range of conditions and external variables. Whereas

simulating a detailed model may predict the behavior at a single temperature and pressure,

a simpler model can be used to study a whole phase diagram of temperatures and pressures.

Third, analytical models can provide functional relationships for engineering applications

and lead to improved models of greater computational efficiency. Fourth, simple models can

be used as a polygon to develop and study theoretical methods. Our interest in using the

MB model is that it serves as one of the simplest models of an orientationally-dependent

liquid, so it can serve as a testbed for developing analytical theories that might ultimately

be useful for more realistic models. Another advantage of the MB model, compared to

more realistic water models, is that the underlying physical principles can be more readily

explored and visualized in two dimensions. For the MB model, NPTMonte Carlo simulations

have shown that the MB model predicts qualitatively the density anomaly, the minimum

in the isothermal compressibility as a function of temperature, the large heat capacity, as

well as the experimental trends for the thermodynamic properties of solvation of nonpolar

solutes[29, 31, 32, 35] and cold denaturation of proteins[36]. The 2D MB model was also

extended to 3D by Bizjak et al.[37, 38] and Dias et al.[35, 39] and studied using computer

simulations [35, 37–39]. The 2D model was also extensively studied with analytical methods

like integral equation and thermodynamic perturbation theory[40–45]. In spite of all the

Monte Carlo calculations, the phase diagram and percolation curve of the model was never

calculated and this is the aim of this work, determination of the percolation line and liquid-

gas coexistence line.

Even though computer simulations play an important role in understanding the properties

of liquids, they can be quite time consuming, even for simple two-dimensional 2D models.

So it is equally important to develop simplified, more analytical approaches. For MB water,
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theories that have been developed for fluids comprised of molecules that associate into dimers

and higher clusters can be applied. Wertheim[52–55] proposed his statistical–mechanical ap-

proach for strongly associating systems of molecules and a corresponding thermodynamic

perturbation theory. In previous work [40–47], we applied Wertheim’s theory for associating

fluids[52, 53] to the MB model and some other simple models through both a thermodynamic

perturbation theory (TPT) and orientationally averaged and angle-dependent integral equa-

tion theories (IET). We found that both TPT and IET approaches gave good quantitative

agreement with NPT Monte Carlo results for the molar volume, isothermal compressibil-

ity, and other thermodynamic properties as a function of temperature. It is also possible

to use even more analytical theories for MB-like models which are allowing the inclusion

of orientation-dependent hydrogen bonding within a framework that is simple and nearly

analytical. On such model is a statistical mechanical model, developed by Urbic and Dill’s

(UD) [48]. The model is directly descendant from a treatment of Truskett and Dill (TD),

who developed a nearly analytical version of the 2D MB model [49, 50]. In the model each

water molecule interacts with its neighboring waters through a van der Waals interaction

and an orientation-dependent interaction that models hydrogen bonds. In this work, we

applied standard [40] and improved [44] TPT for calculating the phase diagram and perco-

lation curve. Correctness of both methods was assessed by comparison with Monte Carlo

simulation results.

II. THE MODEL

In the MB model of water, water molecules are represented as a 2D disk with three arms

separated by a fixed angle of 120◦[29, 33], mimicking formation of hydrogen bonds. The

water-water interaction potential between particles i and j is the sum of a Lennard–Jones

term and a hydrogen–bonding (HB) term

U(
−→
Xi,

−→
Xj) = ULJ(rij) + UHB(

−→
Xi,

−→
Xj) (1)

where rij is the distance between centers of particles i and j,
−→
Xi is the vector representing

the coordinates and orientation of the ith particle. The Lennard–Jones part of the potential

is determined using the standard form

ULJ(rij) = 4εLJ

(

(
σLJ

rij
)12 − (

σLJ

rij
)6
)

, (2)
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where εLJ is the depth of the LJ part of potential and σLJ is the contact value. The

hydrogen bonding part of the potential is the sum of interactions Ukl
HB between arms of

different molecules

UHB( ~Xi, ~Xj) =
3
∑

k,l=1

Ukl
HB(rij , θ1, θ2). (3)

This interaction is a Gaussian function in distance and both angles

Ukl
HB(rij , θ1, θ2) = εHBG(rij − rHB)G(~ik ~uij − 1)G(~jl ~uij + 1) (4)

= εHBG(rij − rHB)G(cos(θi + 2π

3
(k − 1))− 1)G(cos(θj + 2π

3
(l − 1)) + 1).(5)

εHB = −1 is a HB energy parameter and rHB = 1 is a characteristic HB length. −→uij is the

unit vector along −→rij and
−→
ik is the unit vector representing the kth arm of the ith particle,

where θi is the orientation of the ith particle and G(x) is an unnormalized Gaussian function

G(x) = exp

(

−

x2

2σ2

)

. (6)

The strongest hydrogen bond occurs when an arm of one particle is co–linear with the arm

of another particle and the two arms point in opposing directions. The LJ well–depth εLJ is

0.1 times the HB interaction energy εHB and the Lennard–Jones contact parameter σLJ is

0.7rHB. The width of the Gaussian for distances and angles (σ = 0.085rHB) is small enough

that a direct hydrogen bond is more favorable than a bifurcated one.

III. MONTE CARLO COMPUTER SIMULATION

To calculate the phase diagram and study percolation properties, we performed Monte

Carlo simulations in the grand canonical ensemble (constant µ, V , and T )[56]. The periodic

boundary conditions and the minimum image convention were used to mimic an infinite

system of particles. Starting configurations were selected randomly. In each move, we

randomly tried to translate or rotate random particle, or insert or remove random particle.

Probabilities for translation, rotation and exchange of particles were the same. In one cycle,

we tried to translate and rotate each particle on average, and to make as many insertions and

removals as the average number of particles in the system. The simulations were allowed to

equilibrate for 50000 cycles and averages were taken for 20 series, each consisted for another

50000 cycles to obtain well-converged results. In the system we had from 50 to 500 particles

depending on the density of the system. Note that 100 molecules in 2D is equivalent to 1000
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particles in 3D. Thermodynamic quantities such as energy were calculated as statistical

averages over the course of the simulations [56]. The cut off of the potential was the half-

length of the simulation box. Increasing the number of particles had no significant effect on

the calculated quantities. In addition to the MB water simulations described above, we also

performed simulations in the canonical (NVT) ensemble [56]. One purpose of this calculation

was to calculate pressure by means of the virial equation [56] and to perform the cluster

analysis which is used to classified the overall bonding state of the system. The cluster and

bond analyses use an energy criteria wherein water molecules are considered bonded when

their hydrogen bonded energy is less than -0.05. Small variations of this energy cutoff did

not account for significant differences in the bonding state of the system. The percolation

line was determined as the density at which at least 50% of water particles were part of one

big cluster connected by hydrogen bonds.

IV. THERMODYNAMIC PERTURBATION THEORY

Here is a brief overview of Wertheim’s first order perturbation theory[52, 57], used

previously[40, 41, 44]. The Helmholtz free energy for MB molecules is a sum of an ideal

term, Aid, a reference term, ALJ , and a perturbation term, AHB. The latter takes into

account the association of MB molecules into hydrogen bonded networks

A

NkBT
=

Aid

NkBT
+

ALJ

NkBT
+

AHB

NkBT
(7)

where N is the number of particles, T is temperature, and kB is Boltzmann’s constant. The

term ALJ was determined using the Barker–Henderson (BH) perturbation theory [40, 51].

The use of other perturbation methods for the Lennard–Jones part did not improve the

results. In BH theory, the reference system was the hard disks system

ALJ

NkBT
=

AHD

NkBT
+

ρ

2kBT

∫ ∞

σLJ

gHD(r, η)uLJ(r)d−→r (8)

where AHD is the hard–disk part of the Helmholtz free energy, ρ is the number density of

water particles, η is the packing fraction of the hard disk reference system, and gHD(r, η)

is the pair distribution function of the hard disk reference fluid [40]. We calculated the

contribution of hydrogen bonding to the Helmholtz free energy using

AHB

NkBT
= 3(log x−

x

2
+

1

2
) (9)
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where x is the fraction of molecules not bonded at one particular arm. x is obtained from

the mass–action law [52] in the form

x =
1

1 + 3ρx∆
. (10)

Finally, ∆ is defined by [52, 57]

∆ = 2π
∫

gLJ(r, ρ)f̄HB(r)rdr (11)

where f̄HB(r) is an orientationally averaged Mayer function for the hydrogen–bonding po-

tential of one site. The pair distribution function gLJ(r) is obtained by solving the Percus–

Yevick equation for Lennard–Jones disks. Once the Helmholtz free energy is known, other

thermodynamic quantities may be calculated using standard thermodynamic relations [51].

In the improved TPT,[44] the difference to standard TPT is that, instead of the density

ρ, we use the effective density ρef in Eq. (7)–(11) as an effective density, which is calculated

as explained below. The logic for this is than the particles cannot access the whole space

in the system when they form bonds. When two water molecules form a hydrogen bond, it

sterically occludes space, which becomes inaccessible to any other molecule (see Figure 2).

The effective particle volume was calculated as

V ef =
1

ρ
−

n̄V ′

2
(12)

where V ′ is the volume not accessible to other molecules when two molecules form a hydrogen

bond and can be approximated by simple geometry. Two water molecules that form a

hydrogen bond are separated by a distance 1. If the LJ core is approximated by diameter d

of HD molecules from BH perturbation theory, V ′ can be approximated as

V ′ =

√

d2 −
1

2
−

πd2

4
(13)

In equation (12), n̄ is the average number of hydrogen bonds per molecule. Each molecule

has 3 arms. The probability that a hydrogen bond is formed at one arm is (1− x), where x

is the ratio of non-bonded molecules at one arm. We now get:

n̄ = 3(1− x). (14)

The effective particle density can now be calculated as

ρef =
1

V ef
. (15)
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Now, the set of equations (10)-(15) must be solved iteratively to get the effective density,

ρef , and the fraction of molecules x that are not hydrogen bonded. The effective packing

fraction is then calculated as ηef = ρefπd2/4. Once the effective density and packing fraction

are known, the Helmholtz free energy can be calculated with equations (7)-(9) and other

thermodynamic properties with standard thermodynamic relations [51].

V. RESULTS AND DISCUSSION

All our results reported below are shown in reduced units; the excess internal energy and

temperature are normalized to the HB energy parameter εHB (A∗ = A
|εHB|

, T ∗ = kB∗T
|εHB|

) and

the distances are scaled to the hydrogen bond characteristic length rHB (r∗ = r
rHB

). Errors

in the MC simulations are the size of the symbols used to present data points.

In first step, we determined the gas-liquid part of the phase diagram for the MB model of

water by computer simulation. We did this by performing Monte Carlo simulations in the

grand canonical ensemble. We calculated dependence of density as a function of chemical

potential at constant temperature. Results for selected temperatures are plotted in Figure

3a as points. For temperatures above the critical point the function is smooth, while for

temperatures below we observe a jump in density between the gas and liquid density, which

are in coexistence. In Figure 3a we also plotted results from the improved TPT. For the

high temperature T ∗ = 0.3 (green line and symbols) TPT reproduces the MC data very well

for densities up to 1. At the mid range temperature T ∗ = 0.2 (blue line and symbols) we can

observe similar agreement, while at cold temperature T ∗ = 0.15 (pink line and symbols) the

improved TPT shows phase transition behavior. At all temperatures there is disagreement

between TPT and MC results at high densities, where improved the TPT starts to fail. In

improved and standard TPT, we can determine gas and liquid phases which coexist by doing

a Maxwell construction for the chemical potential as a function of volume (inverse density).

Another way to determine this is by plotting the pressure as a function of density, which is

plotted in Figure 3b for different temperatures. In Monte Carlo simulations, the pressure

was calculated using a virial route in the NVT ensemble. Agreement between the improved

TPT and MC data is similar to those observed for the chemical potential. Also, here we can

do Maxwell construction for determining liquid-gas coexistence densities. To further test the

improved TPT, we checked how good TPT is in reproducing the internal energy U∗. The
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comparison is plotted in Figure 3c. We can see that agreement is quantitative, TPT can

predict correct trends, but cannot predict correct values exactly. An alternative to doing

Maxwell construction to determine the gas-liquid coexistence densities for both versions of

TPT is by plotting the chemical potential as a function of pressure. The curve in the region

below the critical point intersects at the coexistence pressure, as demonstrated in Figure

3d (temperature below critical temperature has intersection while curve above does not).

Doing these calculations for both versions of TPT and MC simulations, we were able to

determine the gas-liquid coexistence lines, which are plotted in Figure 4. This figure shows

a comparison of the gas-liquid equilibria curves calculated by MC and both TPT methods.

The critical point for the gas-liquid transition by MC is T ∗
c =0.18, p∗c=0.016 µ∗

c = −0.56

and ρ∗c=0.433, by standard TPT is T ∗
c =0.14, p∗c=0.0036, µ∗

c = −0.625 and ρ∗c=0.150 and

by improved TPT is T ∗
c =0.179, p∗c=0.017, µ∗

c = −0.533 and ρ∗c=0.370. We can see that

the improved TPT predict the correct critical point rather well, while the standard TPT

predicts it at a lower temperature, density and pressure. The reasons include the position of

the arms, which are not on the surface of LJ disk, but further away from the surface. Due

to this there is a part of space inaccessible for molecules which is corrected in the improved

TPT. We also checked the possibility for a liquid-liquid phase transition of the model, but

due to crystallization issues we cannot calculate this with the current version of the MC

method, both TPT methods fail to detect any liquid-liquid phase transition.

We continued our study toward determining the percolation line, first by calculating the

ratios of molecules with 0, 1, 2 and 3 hydrogen bonds. In the MC simulation, we analyze

the average number of water molecules forming 0, 1 2 and 3 hydrogen bonds during the MC

run. In TPT, we calculate this from the fraction of molecules not bonded at one particular

arm x as x0 = x3, x1 = 3x2(1− x), x2 = 3x(1− x)2 and x3 = (1− x)3. Results for different

temperatures are presented in Figure 5. TPT results are presented for the standard version

of TPT. Predictions for the fraction are semi-accurate. Surprisingly, the agreement for the

ratio of molecules with no hydrogen bonds is worst for higher temperatures. TPT is doing

quite well for one and two bonded molecules for all temperatures and densities. The worst

agreement is for molecules with three hydrogen bonds, where we have bad agreement for

all temperatures and densities. Next we checked how the system is connected by hydrogen

bonds. We performed cluster analysis and checked the fraction of water molecules belonging

to the biggest cluster in the system by MC computer simulations. Results for this are plotted
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in Figure 6. At constant temperature, the fraction of molecules belonging to the biggest

cluster connected by hydrogen bonds increases with density, reach a maximum and then,

due to high packing, starts to decrease. This happens at densities higher than the perfect

hexagonal crystal. In MC, the percolation line was determined as density at which at least

50% of water particles were part of one big cluster connected by hydrogen bonds. In TPT,

we followed Bianchi et al. [58] where the ratio of non-bonded particles at a particular arm

at percolation xp is equal to 0.5. Percolation curves determined with these methods are

presented in Figure 7 for MC simulations and both versions of TPT. We can see that since

the calculation in TPT is based on ratios of free particles, and since agreement with MC was

not good for high temperatures, the TPT curves deviate from MC results in that region.

The TPT is predicting a connected system at lower temperatures than MC.

VI. CONCLUSIONS

Monte Carlo simulations and Wertheim’s thermodynamic perturbation theory were used

to predict the phase diagram and percolation curve of the simple Mercedes–Benz (MB)

model of water. The MB model balances Lennard-Jones interactions with an orientation-

dependence that is intended to mimic hydrogen-bonding. The MB model has previously been

shown to have the volume anomalies of pure water and the thermal anomalies of nonpolar

solvation. The TPT method is orders of magnitude more efficient than the Monte Carlo

simulations. We have determined the liquid-gas part of the phase diagram and percolation

curve and pinpointed the area where we have gas-liquid coexistence and the phase space

where the system is connected by hydrogen bonds. For the MB model of water, we did

not observe any liquid-liquid phase transition in the area of observation by MC and TPT.

If it exists, it is present in the sopercooled region, but in MC this is difficult to study due

to crystalization. We found that the improved TPT method reproduced well the physical

properties of water in the area of the phase transition investigated while standard TPT

is predicting a coexistence at lower temperatures. Both theories are able to predict the

percolation line at lower temperatures, while failing to predict it at high temperatures. The

TPT methods have error in the prediction of ratio of non-bonded particles at one arm. This

error magnifies at higher temperatures when calculating percolation curve.
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CAPTIONS TO THE FIGURES.

Figure 1. The MB molecules. Particles form the strongest hydrogen bond when arms

are collinear and the distance between two particles is equal to rHB.

Figure 2. Definition of the excluded volume in the modified version of TPT.

Figure 3. (a) Density as a function of chemical potential for different temperatures. The

jump indicates a liquid-gas phase transition. (b) Pressure as a function of density for different

temperatures. Below the critical point, we can see nonmonotonic behavior of pressure and,

with Maxwell construction, the coexistence line can be calculated. (c) Internal energy as a

function of density for different temperatures. Results in (a)-(c) from computers simulations

are plotted by symbols and from the improved TPT by lines. (d) An alternative to Maxwell

construction is to plot the chemical potential as a function of pressure in the region of phase

transition. Results were calculated by the improved TPT method for different temperatures.

The intersection of curve is where there is coexistence of phases. Green color is for high

temperature T ∗ = 0.3, blue for T ∗ = 0.2 and pink for low temperature T ∗ = 0.15.

Figure 4. Vapour-liquid equilibria from MC and TPT. Results from computers simula-

tions are plotted as symbols, from TPT as a solid line and from improved TPT as a dashed

line. In (a) there is T ∗ −ρ∗ liquid-gas coexistence, in (b) T ∗ −p∗ coexistence and in (c)

T ∗ −µ∗ coexistence.

Figure 5. Density dependence of ratios of molecules with 0, 1, 2 and 3 hydrogen bonds.

Points are the results from Monte Carlo computer simulations and lines from standard TPT.

Results are plotted for different temperatures (a) T ∗ =0.18, (b) T ∗ =0.22, and (c) T ∗ =0.3.

Figure 6. Fraction of molecules belonging to the biggest cluster as a function of density

for different temperatures. Points are the results from Monte Carlo computer simulations.

Red color is for high temperature T ∗ = 0.4, green for T ∗ = 0.3, blue for T ∗ = 0.2, light blue

for low temperature T ∗ = 0.18, and pink for low temperature T ∗ = 0.15.

Figure 7. Percolation line from MC and TPT. Results from computers simulations are

plotted as symbols and from TPT as a solid line and from improved TPT as a dashed line.
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Figure 1 (Urbic et al.)
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