
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Random matrices and the New York City subway system
Aukosh Jagannath and Thomas Trogdon

Phys. Rev. E 96, 030101 — Published  5 September 2017
DOI: 10.1103/PhysRevE.96.030101

http://dx.doi.org/10.1103/PhysRevE.96.030101


Random matrices and the New York City subway system∗

Aukosh Jagannath† and Thomas Trogdon‡
†Department of Mathematics, University of Toronto

‡Department of Mathematics, University of California, Irvine
(Dated: August 1, 2017)

We analyze subway arrival times in the New York City subway system. We find regimes where the
gaps between trains are well modeled by (unitarily invariant) random matrix statistics and Poisson
statistics. The departure from random matrix statistics is captured by the value of the Coulomb
potential along the subway route. This departure becomes more pronounced as trains make more
stops.

Random matrix statistics are expected to occur in a
wide variety of interacting particle systems (see [1], for a
review) and 1+1 dimensional transportation models [2–6]
are an important class of such systems. In [6], following
the classical experimental result of [7, 8], the authors pro-
posed a mechanism for random matrix statistics in bus
systems. In this paper, we examine whether or not the
New York City subway system (MTA) is well-modeled by
these statistics.

The bus system in Cuernavaca, Mexico in the late
1990s has become a canonical example of a system that
is well-modeled by random matrix theory (RMT) [7–10].
This bus system has a built-in, yet naturally arising,
mechanism to prevent buses from arriving in rapid suc-
cession. This mechanism that arises due to mutual com-
petition from the drivers. Without this interaction, and
mutual competition, one should expect that bus arrivals
would be Poissonian [11]. Unlike these settings, the MTA
has a globally controlled mechanism to space trains and
eliminate collisions [12], which would suggest the signif-
icance of long-range effects. Nevertheless the system is
largely run manually [12] and it is thus natural to expect
that the dynamics of the system is locally governed by
inter-particle interactions.

A natural signature of random matrix statistics is
whether or not the spacing between particles at a given
site obeys a Wigner surmise-type law. Consider the times
T between successive train arrivals at a given station, and
consider the normalized spacing τ = T/〈T 〉. Assuming
that the system is well-modeled by RMT statistics, one
expects the spacing to satisfy

#{s ∈ τ : s ≤ t}
#τ

≈
∫ t

0

ρ(s)ds, ρ(s) =
32

π2
s2e−

4
π s

2

, (1)

where 〈·〉 represents the sample mean, the function ρ(s) is
known as the (β = 2) Wigner surmise (WS) [13] and #S
gives the cardinality of the set S. This is the approxima-
tion of Eugene Wigner for the asymptotic (N →∞) gap
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distribution for successive eigenvalues in the bulk of an
N × N GUE (Gaussian Unitary Ensemble) matrix [14].
This is computed by considering the 2× 2 case. This ap-
proximation of Wigner agrees surprisingly well with the
true limiting distribution as N →∞ [15].

Another natural statistic to consider is the number
variance. Fix a time T0 and consider the time inter-
val, [T0, T ], for T0 ≤ T ≤ T1. Let n(T ) be the num-
ber of trains that arrive in this time interval. Once one
has made many statistically independent observations of
n(T ), the number variance is computed by

N(t) = 〈(n(T )− 〈n(T )〉)2〉, T = T1〈n(T1)〉−1t. (2)

This normalization is made so that 〈n(T )〉 ≈ t. The
asymptotic prediction from RMT is

N(t) ≈ 1

π2
(log 2πt+ γ + 1) (3)

where γ is the Euler constant [13].
In this letter, we observe that (1) and (3) hold on a

subset of the MTA system. We also find Poisson statis-
tics within the MTA (which are also found in Puebla,
Mexico [9]). For example, the southbound No. 1 train in
northern Manhattan is well modeled by RMT statistics
but the northbound No. 6 train is well modeled by Pois-
son statistics in the middle of its route. We also show
that the train gap statistics tend to deviate more from
RMT statistics as more stops are made. To quantita-
tively determine Poisson statistics versus RMT statistics
we make the following ansatz for the (normalized to mean
one) gap density function for u ∈ [0, 1]

p(s;u) :=

∫ s

0

ρ(x/(1− u))

1− u
e(x−s)/u

u
dx.

This is the density for the convex combination of an inde-
pendent exponential and a WS random variable. A sim-
ilar ansatz was used in [16] for an analysis of car spacing
statistics. Using the Kolmogorov–Smirnov (KS) statis-
tic we choose u to fit this distribution to the data. A
small value of u, combined with a small KS value indi-
cates RMT statistics. A value of u near unity, and a
small KS value indicates Poisson statistics. We note that
this transition (from RMT to Poisson) is also seen within
RMT as the bandwidth of a Hermitian random matrix
shrinks [17].
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a. Data collection. Our data is obtained from the
MTA Real-Time Data Feeds [18] that allow the user to
obtain real-time train arrival times for many stations in
the MTA system. Thus, our analysis has an advantage
over that in [7] because the statistics of every station in
the data feed can be analyzed. The stations can then
be classified into those close to RMT statistics, Poisson
statistics or neither. Using the latitude and longitude
coordinates of each station, which the MTA also provides,
we can estimate the arc length of the subway track and
analyze spatial distances. This is a component in our
Coulombic analysis below.

We analyze the arrival times for the No. 1 and No. 6
trains. These trains operate on separate lines. The No. 1
train runs both northbound and southbound between
Manhattan and the Bronx on the westside. The No. 6
train runs both northbound and southbound, also be-
tween Manhattan and the Bronx except on the eastside.
The stations at which the No. 1 train stops are labeled
with integers between 101 and 140 [19], increasing from
north to south. The same is true of the stations for the
No. 6 train with integers ranging between 601 to 640.

We chose the No. 1 and No. 6 train for the following
reason. The MTA data feed provides data only for the
lines No. 1-No. 6 and the midtown shuttle line. The
shuttle line only has two stops, so we ignore it. The
No. 1, No. 2 and No. 3 train service the a similar
corridor in Manhattan. The first train is the “local” line
in Manhattan and the second two are “express” lines and
extend to Brooklyn. Similarly the No. 4,No. 5, and No. 6
trains service a similar corridor in Manhattan, with the
No. 6 train being the “local” line No. 4 and No. 5 being
the “express” lines, which also run through to Brooklyn.
Thus we choose the No. 1 and No. 6 as they are
both “local” trains and run, to some extent, parallel to
each other. It would be interesting to perform a similar
analysis for the express trains, though we do not pursue
this direction here.

Our data set consists of No. 1 and No. 6 train ar-
rival times in seconds at all stations obtained on 48 days
(39 weekdays) during the summer and fall of 2016. As
we imagine that the working day hours, including “rush
hours”, are most relevant to most subway users, we only
consider arrivals that occur between 8am and 6pm on
weekdays. For each station we have approximately 3500
arrivals. The MTA system keeps a minimum spacing be-
tween trains. To account for this, we subtract 90 seconds
from every train gap. This number could be treated as a
fitting parameter, but we keep it fixed. This leads to a
small number of negative gaps. Then if T is the collection
of observed gaps (in seconds) define τ = (T−90)/〈T−90〉
to be the normalized train gaps.

b. The Kolmogorov–Smirnov test. Define the KS
statistic [20]

KS(u, τ) := sup
t∈R

∣∣∣∣#{s ∈ τ : s ≤ t}
#τ

−
∫ t

0

p(s;u)ds

∣∣∣∣ .

For u = 0, the null hypothesis is that the normalized
gaps are distributed according the WS and for u = 1,
the null hypothesis is that the gaps are exponentially
distributed. The KS test supposes that the samples are
independent. From our data we obtain successive gaps
which contain repeated data from the same train and are
clearly not independent. To approximate independence,
we only retain every fifth gap (approximately 30 minutes
between samples) and we perform the KS test with ap-
proximately 700 samples. We consider the significance
levels α = 0.01, 0.05, 0.1 (low, moderate and high sig-
nificance, resp.). It follows from [21, 22] that the null
hypothesis cannot be rejected if (u = 0, 1)√

#τKS(u, τ) < 1.62 when α = 0.01,√
#τKS(u, τ) < 1.35 when α = 0.05,√
#τKS(u, τ) < 1.22 when α = 0.10.

In Fig. 1, we plot this scaled KS test statistic for every
station on the northbound and southbound No. 1 and
No. 6 trains. In particular, we find with high statistical
significance (α = 0.10) that six stations (107, 108, 109,
110, 111, 112) for the southbound No. 1 train pass the
u = 0 KS test. If α is reduced, more stations pass the
test. Similary, for the northbound No. 6 train, one station
passes the u = 1 KS test with high significance (619) and
a total of three (615, 616, 619) stations pass the same
test with moderate significance.

We emphasize that these test are only suggestive of the
underlying statistics. To illustrate this consider the fol-
lowing experiment. Generate 2,000 samples directly from
the WS distribution. Then fit a (mean one) beta distri-
bution (density proportional to xα−1(1−x)β−1, then nor-
malized to mean one) to the data by tuning the parame-
ters α, β to minimize the KS statistic. Our experiments
reveal that the data, with 2,000 samples, is fit better by
this tuned distribution than the WS distribution. So, one
can never rule out such a beta distribution. Nonetheless,
the KS statistic can be used to rule out Gamma distri-
butions and the β = 1, 4 Wigner surmises.

c. A Kolmogorov–Smirnov fit. The value of u∗ of u
that fits the data best is given by

u∗ := argmin
0≤u≤1

KS(u, τ).

For every collection of normalized gaps τ this gives an
optimal value u∗. Recalling that our sample sizes are ap-
proximately 700, we find that for u < 0.43 the KS test
with moderate significance (comparing with u = 0) is
passed. For u > 0.94 we find that the KS test with mod-
erate significance is passed when comparing with u = 1.
Stations with u∗ < 0.43 are considered to exhibit RMT-
like statistics and stations with u∗ > 0.94 are considered
to exhibit Poissonian statistics. The values of u∗ for each
station and train is given in Fig. 2. These results should
be compared with Fig. 1 to ensure significance. This
presents further evidence that train gaps on the No. 1
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FIG. 1. The KS test for the No. 1 train ((a), u = 0) and
the No. 6 train ((b), u = 1). Circles and triangles represent
southbound and northbound trains, respectively. The dashed
lines in order of decreasing height represent the significance
levels α = 0.01, 0.05, 0.1. Stations that lie below a line pass
the associated KS test.

train are RMT-like and those on the No. 6 train are Pois-
sonian.

We choose station 112 and station 619 to examine in
more detail. We display the normalized train gap his-
togram for both northbound and southbound trains at
station 112 in Fig. 3. It is clear (and indeed highly statis-
tically significant) that the southbound train gaps exhibit
RMT-like statistics. But, in contrast, the northbound
train appears to exhibits neither type of statistics. In
Fig. 4, we display the normalized train gap histogram
northbound trains at station 619 which exhibits (with
high statistical significance) Poissonian statistics.

d. Number variance. In order to compare with pre-
vious work, we also consider the number variance. As we
are most interested in the RMT regime, we focus on the
No. 1 train in stations that exhibit RMT statistics. To
compute the number variance (2), we must obtain inde-
pendent samples of the number of trains that arrive in a
given time window. We record the arrivals of southbound
No. 1 trains at stations 116 and 117 between 9:00am and
9:20am on weekdays. Our data limits us to 39 samples of
n(T ). We plot the number variance against the theoret-
ical prediction (3) in Fig. 5. While our agreement is not
as good as that in [7], station 117 has good agreement
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FIG. 2. The KS fit for the No. 1 train ((a), u = 0) and
the No. 6 train ((b), u = 1). Circles and triangles represent
southbound and northbound trains, respectively. The dashed
lines give the u∗ = 0.43 and the u∗ = 0.94 thresholds. Values
of u∗ above 0.94 indicate Poisson statistics and values of u∗

below 0.43 indicate RMT-like statistics.

for small values of t.

e. The Coulomb potential. The stationary distribu-
tion for an appropriately-scaled (β = 2) Dyson Brown-
ian motion is the distribution on the eigenvalues λ1 <
λ2 < · · · < λN of a GUE matrix [23]. The Hamiltonian
H(λ) := 1

2

∑
k λ

2
k− 1

N

∑
j<k log |λk−λj | is approximately

conserved by the Dyson Brownian motion dynamics —
the particle system λ fluctuates near the minimum of
this functional. The first term is referred to as the con-
fining potential. Given the comprehensive information
our data set gives us about the MTA system we can plot
many train trajectores simultaneously. Each train is rep-
resented by a function, λj(`), of the distance, `, the train
has traveled down the track. The value of λj(`) is the
time at which the train is a distance ` from its starting
location. This is feasible using the latitude and longitude
coordinates provided by the MTA for each station. The
functional H, in a local sense, favors points that are reg-
ularly spaced. The minimizer of the functional is called
the equilibrium measure and it is well-studied in the lit-
erature [24]. It is natural to evaluate the functional to
detect regularly spaced trains and a departure from ran-
dom matrix statistics.

Each weekday, we monitor 10 successive southbound
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FIG. 3. The normalized train gap histograms for the north-
bound (bottom) and southbound (middle) No. 1 trains at sta-
tion 112. The solid curves give the exponential and WS den-
sity. The triangles represent the best-fit density p(s;u∗). The
southbound train exhibits (highly significant) RMT statistics
and our ansatz that determined p(s;u∗) is not sufficient to
capture the behavior of northbound trains.

No. 1 trains λj(`), j = 1, 2, . . . , 10, 0 ≤ ` ≤ L, starting
with the first train (j = 1) that arrives at station 103
after 8am. Each train is tracked until it reaches station
139. For each realization of these 10 trains define

µj(`) = λj(`)− 90j − 〈λ(L)− λ(0)〉j
`

L

where the sample average 〈·〉j is taken over j. This is
used to estimate the “velocity” of the trains. Define the
modified Coulomb potential

C(µ(`)) = −
∑
j<k

log |µk(`)− µj(`)|. (4)

Here we drop the confining potential. We assume we are
viewing the particle system on a microscopic scale and
this potential is effectively constant. In Fig. 6 we plot the
trajectories of µj(`) as a function of ` to demonstrate that
the trains undergo non-intersecting motion. In Fig. 7 we
plot the averaged Coulomb potential 〈C(µ(`)〉, averag-
ing over 29 weekdays [25]. The plot shows that the in-
crease in the Coulomb potential is highly correlated with
a larger scaled KS statistic. We can conjecture where
the train statistics might be given by RMT based on the
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FIG. 4. The normalized train gap histograms for the north-
bound No. 6 trains at station 619. The solid curves give the
exponential and WS density. The triangles represent the best-
fit density p(s;u∗). This station exhibits (highly significant)
Poissonian statistics.
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FIG. 5. The empirical number variance for southbound No. 1
trains at stations 116 (dots), 117 (triangles) and 112 (crosses)
plotted against the theoretical curve (3). Agreement appears
particularly good for station 117 for small values of t. Agree-
ment is not as good for station 112.

value of the Coulomb potential, presenting yet another
connection to RMT.

It is worth pointing out in Fig. 7 that stations at a
small distance fail the KS test but have a small Coulomb
potential. This is largely from the fact that the fluctua-
tions of the gaps are too concentrated about their means
to agree with the WS. The trains start out a regularly
spaced time intervals, nearly deterministic. As the trains
progress down the track, larger fluctuations are intro-
duced giving rise to random matrix statistics while main-
taining a small value of the averaged Coulomb potential.
At some point, the external effects on the subway (such
as passengers holding doors open) cause the system to de-
part from random matrix statistics, increasing the value
of the averaged Coulomb potential. Thus the Coulomb
potential, specifically its increase in value, is a mecha-
nism for detecting less regularly spaced trains.
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FIG. 6. Trajectories of the shifted southbound No. 1 trains
µj(`), j = 1, 2, . . . , 10. The horizontal axis represents the
distance the train has traveled (measured from stop 103).
Theses shifted trajectories are qualitatively similar to that of
non-intersecting Dyson Brownian motion, at least for short
distances.

f. Directions for further study. The foregoing anal-
ysis focused on the behavior of “local” routes, as op-
posed to “express” routes. It would be interesting to
explore if the statistical behavior of the trains exhibits
variability between these choices. Furthermore, given
the limited size of this dataset it would be of real in-
terest to perform an similar analysis after observing the
train systems on much longer timescales, such as for a
year or longer. And if RMT-like statistics are desirable,
the mechanism for their deterioration in the southbound
No. 1 train should be investigated. Additionally, the non-
appearance of RMT-like statistics in the No. 6 train is
curious.

g. Conclusion. In summary, we have provided sig-
nificant statistical evidence that the train gaps in the
NYC MTA system exhibit RMT-like statistics. In addi-
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FIG. 7. The averaged Coulomb potential (4) for southbound
No. 1 trains plotted as a function of distance from station 103.
The scaled KS distance from WS is also plotted to show that
when the Coulomb potential increases, so does the scaled KS
statistic, indicating increased deviation from RMT statistics.

tion, regimes exists where train arrivals are Poissonian.
In this sense the MTA is a concrete physical system that
exhibits both RMT and Poisson statistics. We have also
used detailed spatial information to gain increased in-
sight into the train correlations, treating their trajec-
tories as that of a particle system. While we make no
conjectures about the physical mechanisms behind the
transition from RMT-like statistics to Poissonian statis-
tics, RMT-like statistics do appear to be destroyed as
the train makes more and more stops. But if one takes
RMT-like statistics for train arrivals to be a hallmark of
efficiency, as could be argued from the Cuernavaca, Mex-
ico case study, this type of analysis may prove fruitful as
a guide to understand and improve the performance of
a subway system. The main conclusion of this paper is
that the “noise” of the subway system coming from train
traffic and passengers can deteriorate purportedly bene-
ficial statistical properties of the system. It is important
to ask if the introduction of global computer control to
the MTA will alleviate this issue.
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[10] M. Krbálek, J. Phys. A Math. Theor. 41, 205004 (2008).
[11] O. J. O’Loan, M. R. Evans, and M. E. Cates, Phys. Rev.

E 58, 1404 (1998).
[12] P. Dougherty, Tracks of the New York City Subway

(Dougherty, 2016).
[13] M. L. Mehta, Random Matrices (Academic Press, New

York, NY, 2004) p. 688.

[14] A GUE matrix is a Hermitian matrix with iid standard
complex Gaussian entries, up to the symmetry condition.

[15] A numerical calculation using Fredholm determinants re-
veals that the KS distance is less than 5 × 10−3.

[16] A. Y. Abul-Magd, Phys. Rev. E 76, 057101 (2007).
[17] T. Shcherbina, Commun. Math. Phys. 328, 45 (2014).
[18] “MTA Real-Time Data Feeds,” (2016).
[19] A table to convert from station number to station name

can be found the supplemental materials.
[20] #τ is the cardinality of the set τ .
[21] A. Kolmogorov, G. dell’Istituto Ital. degli Attuari , 83

(1933).
[22] N. Smirnov, Ann. Math. Stat. 19, 279 (1948).
[23] F. J. Dyson, J. Math. Phys. 3, 1191 (1962).
[24] E. B. Saff and V. Totik, Logarithmic Potentials with Ex-

ternal Fields (Springer, New York, NY, 1997) p. 509.
[25] Ten days were rejected because at least one of the chosen

trains did not complete its route.



7

Station # Station Name Station # Station Name
101 Van Cortlandt Park - 242 St 601 Pelham Bay Park
103 238 St 602 Buhre Av
104 231 St 603 Middletown Rd
106 Marble Hill - 225 St 604 Westchester Sq - E Tremont Av
107 215 St 606 Zerega Av
108 207 St 607 Castle Hill Av
109 Dyckman St 608 Parkchester
110 191 St 609 St Lawrence Av
111 181 St 610 Morrison Av- Sound View
112 168 St - Washington Hts 611 Elder Av
113 157 St 612 Whitlock Av
114 145 St 613 Hunts Point Av
115 137 St - City College 614 Longwood Av
116 125 St 615 E 149 St
117 116 St - Columbia University 616 E 143 St - St Mary’s St
118 Cathedral Pkwy 617 Cypress Av
119 103 St 618 Brook Av
120 96 St 619 3 Av - 138 St
121 86 St 621 125 St
122 79 St 622 116 St
123 72 St 623 110 St
124 66 St - Lincoln Center 624 103 St
125 59 St - Columbus Circle 625 96 St
126 50 St 626 86 St
127 Times Sq - 42 St 627 77 St
128 34 St - Penn Station 628 68 St - Hunter College
129 28 St 629 59 St
130 23 St 630 51 St
131 18 St 631 Grand Central - 42 St
132 14 St 632 33 St
133 Christopher St - Sheridan Sq 633 28 St
134 Houston St 634 23 St
135 Canal St 635 14 St - Union Sq
136 Franklin St 636 Astor Pl
137 Chambers St 637 Bleecker St
138 Cortlandt St 638 Spring St
139 Rector St 639 Canal St
140 South Ferry Loop 640 Brooklyn Bridge - City Hall


