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We introduce an algorithm to generate (not solve) spin-glass instances with planted solutions of arbitrary size
and structure. First, a set of small problem patches with open boundaries is solved either exactly or with a
heuristic, and then the individual patches are stitched together to create a large problem with a known planted
solution. Because in these problems frustration is typically smaller than in random problems, we first assess
the typical computational complexity of the individual patches using population annealing Monte Carlo, and
introduce an approach that allows one to fine-tune the typical computational complexity of the patch-planted
system. The scaling of the typical computational complexity of these planted instances with various numbers of
patches and patch sizes is investigated and compared to random instances.
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Many optimization problems belong to the NP-hard com-
plexity class, for which it is believed that no algorithms exist
to solve them in polynomial time. Spin-glass problems with-
out biases and on nonplanar topologies, such as the Edward-
Anderson (EA) model [1], represent a sub-class of the NP-
hard class. Because spin glasses are the simplest models with
both disorder and frustration that fall into the NP-hard class,
they represent the ideal model systems to benchmark algo-
rithms, as well as novel computing architectures. A num-
ber of heuristics, as well as exhaustive search methods, have
been designed and developed to minimize spin-glass Hamil-
tonians as efficiently as possible. These method also include
simulated annealing [2], parallel tempering Monte Carlo [3—
6], population annealing Monte Carlo [7-10], genetic algo-
rithms [11, 12], as well as branch-and-cut [13] algorithms,
to name a few. Many of these optimization algorithms only
use local updates during the minimization procedure. How-
ever, in many cases, the use of cluster algorithms with non-
local updates can greatly enhance the searching process when
the energy landscape has many metastable states with small
overlap [14—16]. In the last two decades, quantum heuristics
have been proposed as an alternative to classical heuristics,
due to their potential to exploit quantum superposition and
quantum tunneling effects. Among quantum approaches, adi-
abatic quantum optimization (AQO) is widely used [17-30]
and likely the method most amenable to hardware implemen-
tations [31]. Current state-of-the-art AQO hardware is man-
ufactured by D-Wave System Inc., whose latest chip allows
for the quantum optimization of problems of approximately
up to 2000 variables. However, whether AQO can be more
efficient than classical algorithms for certain problems is still
controversial [32-34].

Given the importance of comparing optimization tech-
niques across disciplines, it is necessary to have benchmark
problems that are (i) representative of the hardness of a typi-
cal NP-hard problem, (ii) scalable for large systems, and for
which (iii) the ground state is known a priori. While it is easy
to fulfill criteria (i) and (ii), it is challenging to have large
problems with known solutions.
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FIG. 1: Schematic diagram of the patch planting method for a two-
dimensional lattice. First, the ground state for each (easily solvable)
patch (A — D) are computed using free boundary conditions. Then, a
ground state configuration of each patch is selected. Edge spins be-
tween the patches are represented by empty and full circles. Couplers
between the edge spins between adjacent patches are added under the
condition that all interactions are satisfied, i.e., if two spins have the
same value (i.e., both full or both empty circles), a ferromagnetic
coupler (straight blue line) is added. If, however, two adjacent spins
are different, then an antiferromagnetic coupler (red wiggly line) is
added. The direct product of the ground state of the patches A — D is
then the ground state of the large planted system.

There have been previous approaches to plant solutions for
benchmarking purposes. For example, Ref. [35] used an ap-
proach based on constraint satisfaction problems. Although
these problems are tunable in hardness, there is little control
when selecting the coupler values between the individual vari-
ables. For analog machines with finite precision, such as the
D-Wave quantum annealers, this could be an unnecessary re-
striction. Other approaches [36] start from a random coupler
configuration and then stochastically update the values of the
couplers with a penalty that directly correlates to the time-to-



solution of a given solver. However, this approach has two
shortcomings: Fist, it assumes that the typical computational
hardness [37] of a problem for a given algorithm will carry
over to other optimization techniques. Second, for extremely
large problems, the stochastic approach will take sizable re-
sources to thermalize and thus will not be practical.

The method we propose here and which we call “patch
planting” (see Fig. 1), where we solve small problems
(patches) with open boundaries and then stitch these together
to plant an arbitrarily large solution to an instance, does not
suffer from these shortcomings: First, arbitrarily large prob-
lems can be generated. Second, by assessing the typical com-
plexity using the entropic family size of population anneal-
ing Monte Carlo — a metric that characterizes the landscape
of the problem and not the algorithmic complexity — we do
not depend on the behavior of a particular algorithm when as-
sessing the typical time to solution for a particular instance.
Finally, the method poses no restrictions to coupler values,
biases (field terms), or lattice topologies.

The paper is structured as follows. In Sec. I we introduce
the benchmark problem, as well the patch planting algorithm.
In Sec. II we use simulated annealing, population anneal-
ing Monte Carlo, as well as experiments on the D-Wave 2X
quantum annealer to illustrate how patch planting can produce
computationally problems that are typically hard. Concluding
remarks are presented in Sec. IIL.

I. PATCH PLANTING

The patch planting heuristic can be described via the fol-
lowing steps:

(1) Find the ground state of patches using free boundary
conditions.

(i1) For each patch, choose an arbitrary ground-state config-
uration.

(iii) Connect the patches with couplers between the free
boundary spins ensuring that all couplings are satisfied.

Note that the patches can be chosen arbitrarily, as long as they
can be glued together to form the desired problem/topology
with the edges to be stitched together having free boundaries.
In addition, the individual patches can be solved with any
available optimization technique. As demonstrated below, it
is important to solve as large patches as possible, because
this will results in problems of comparable computational
complexity to purely random problems. In some cases, the
breakup of a problem might result in a patch that can be solved
exactly, i.e., in polynomial time. Finally, when stitching the
patches together, as shown in Fig. 1, it important to “satisfy”
the interaction between two spins of different patches. This
means that the coupler has to be chosen as to minimize the
dimer’s energy. Knowing the minimizing configuration of the
individual patches and assigning the stitching couplers as to
satisfy the interactions between spins of neighboring patches
then results in a larger planted solution [38].

As described in Sec. II in more detail, the typical compu-
tational complexity of the patched problem can be tuned by
either changing the patch size (the larger, the harder) or using
hard patches (the harder the patch, the harder the compound
problem) e.g., by measuring the entropic family size via pop-
ulation annealing Monte Carlo. This metric can be measured
with little numerical effort and gives a good representation of
the typical computational complexity of a problem. There-
fore, by post-selecting individual patches, problems of differ-
ent typical computational complexity can be generated.

Note that in the description of the patch planting procedure
no details of the problem to be studied have been mentioned.
This is because the approach is agnostic to the choice of cou-
plers and topologies. We thus emphasize that the patch plant-
ing approach can be used for problems of arbitrary topology
for an arbitrary set of coupler values and biases. As such,
solutions for arbitrary problems can be planted. This is of
much importance when attempting to generate problem sets
with particular features, such as synthetic application prob-
lems that are known to have a specific nonrandom structure, or
problems where the minimum energy gap is fixed (and large)
to mitigate the effects of noise on analog optimization ma-
chines [39, 40].

II. EXPERIMENTS
A. Benchmark problem

To test the properties of patch planting, we use the Edward-
Anderson (EA) Ising spin-glass model [1], initially in three
space dimensions. Later, we perform experiments on the D-
Wave 2X quantum annealer using the native topology of the
machine [41]. The EA spin glass is defined by the following
Hamiltonian
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where S; € {£1} are Ising spins and the first sum is over spin-
spin interactions. For a three-dimensional lattice, the sum is
over nearest neighbors on a cubic lattice. For simplicity, all
the local magnetic fields are set to zero, i.e., h; = 0. We do
emphasize, however, that patch planting also works with ex-
ternal biases. The spin-spin interactions .J;; are chosen from
a normal distribution with zero mean and unit variance. A set
of the couplings defines an “instance.”

Given the hardware limitations of the D-Wave quan-
tum chips, instances for the D-Wave 2X have been cre-
ated by planting and patching together K44 unit cells fol-
lowing the two-dimensional logical structure of the Chimera
graph. The couplers are randomly drawn from the Sidon set
{5, £6, £7} [40]. In both cases, we use free boundary con-
ditions (FBC) for the patches to plant larger instances. We
also compare our patched instances with free boundary condi-
tions to random instances with periodic boundary conditions
(PBC).



TABLE I: Simulation parameters for the three-dimensional EA
model experiments using population annealing Monte Carlo. Here,
Ly is the patch size, L is the linear system size, R is the number of
replicas used in the simulation, To = 1/ is the lowest temperature
simulated, Nt is the number of temperature steps (evenly spaced in
() in the annealing schedule, BC is the type of boundary condition
[either periodic boundary conditions (PBC) or free boundary condi-
tions (FBC)], and Ny, is the number of disorder realizations studied.
For each replica, Ns = 10 Monte Carlo sweeps are performed at
each temperature during the anneal. Data for PBC with L. = 8 are
taken from Ref. [9].

Lo L R To Nt BC Nsa
4 4 4 x 10 0.2 101 FBC 345600
4 8 104 0.2 101 FBC 5000
4 12 5 x 10% 0.2 201 FBC 5120
4 16 2 x 10° 0.2 301 FBC 1877
4 20 10° 0.2 401 FBC 194
5 5 10* 0.2 101 FBC 345600
5 10 10° 0.2 201 FBC 5000
6 6 2 x 10% 0.2 101 FBC 41472
6 12 10° 0.2 201 FBC 1752
8 8 5 x 10% 0.2 201 FBC 23358
8 16 10° 0.2 301 FBC 624
10 10 106 0.2 301 FBC 8000
10 20 2 x 10° 0.2 401 FBC 260
8 8 10° 0.2 101 PBC 5099
12 12 10° 0.2 201 PBC 3812

B. Simulation details

We use the entropic family size of population annealing
Monte Carlo p, [10] to characterize the hardness of the in-
stances. All simulation parameters for the three-dimensional
Edwards-Anderson model are listed in Table I. For the
Chimera graph studies on the D-Wave 2X machine, we find
the ground state of the patches using R = 2 x 10° popula-
tion members, N7 = 301 temperature steps, Ng = 10 Monte
Carlo sweeps, and Ty = 0.1 the lowest temperature of the an-
neal. The simulation for random problems are done with the
same parameters, except R = 105,

Experiments on the D-Wave 2X quantum annealer have
been performed using a chip with N = 1097 working qubits.
For the Chimera graph, we used all available qubits and
patched the system using either two, three or four patches,
respectively. For example, if the system has 12 x 12 Ky4 cells
of 8 qubits each, we divide the whole lattice into 2 patches of
6 x 12 Ky4 cells, 3 patches of 4 x 12 Ky4 cells, or 4 patches of
3 x 12 Kyy cells. For the experiments, we used an annealing
time of 20 us, 100 gauges and 1000 readouts for each gauge.

C. Correlation between typical hardness and the entropic
family size

The first crucial step in investigating the hardness of in-
stances is to find a good metric that reliably characterizes the
typical problem complexity, yet is easy to measure with lit-
tle computational cost. One approach would be to use the

success probability of simulated annealing as a proxy. How-
ever, even for medium-size systems, this metric becomes un-
reliable and computationally expensive. Another possibility
consists in using specialized classical algorithms [36], such
as the Hamze—de Freitas—Selby heuristic [42, 43]. However,
in this case the typical computational complexity depends on
a chosen algorithm and not on the intrinsic properties of the
problem’s energy landscape. The latter can be mapped out
well for random problems using parallel tempering Monte
Carlo [39], however, at sizable computational cost for large
patches. Therefore, in this work we infer the typical hardness
of instances through the entropic family size p, of population
annealing Monte Carlo.

log,o[(N ()]

FIG. 2: Distribution of 41 [see Eq. (3) for various system sizes [L =
4 (a), 8 (b), 12 (c), 16 (d), and 20(d)] in three space dimensions. For
increasing system size, the typical complexity of the problems grows,
which is mirrored by the distributions of 4 shifting to the right.

Population annealing (PA) Monte Carlo [7, 44] is closely
related to simulated annealing (SA), except that it uses a pop-
ulation of R replicas and the population is resampled at each
temperature anneal step to maintain thermal equilibrium. At
each simulation step, replicas are duplicated accordingly to
the ratio between the Boltzmann factors computed after and
before updating the temperature. This means that replicas
with lower (higher) energy tend to be duplicated (eliminated),
ensuring the correct representation of the Boltzmann distribu-
tion. Therefore, PA improves the probability to find the low-
est energy state over SA by more efficiently sampling phase
space. We choose to normalize our replicas so that the pop-
ulation size stays approximately the same. Similar to SA,
Metropolis sweeps are applied to each replica at the new tem-
perature. At low temperatures, most of the original population
is eliminated in the resampling steps and the final population
is a descendant from a small subset of the initial population.
Let n; be the fraction of the population from family ¢ in the



initial population, then

S~ n;logn;
ps = lim Rxe: = 2

R—o0

Here, p, represents the characteristic survival family size.
The larger ps is, the less surviving families, i.e., the more
rugged the energy landscape. Moreover, ps correlates strongly
with the integrated autocorrelation time of parallel tempering,
which is also a proxy towards the roughness of the energy
landscape [10]. Note that ps converges quickly in population
size and is easily estimated with simulations. See Ref. [10] for
more details on population annealing. Because p; is approx-
imately log-normal distributed, let us define the logarithm of

ps as
A = logyg(ps) - 3)

Figure 3 shows the correlation between the probability to find
the ground state for SA, psa at inverse temperature 5 =
1/T = 5 and 4 (data taken from Refs. [9, 45]). As expected,
the probability of success decreases by increasing f1. Indeed,
SA struggles more to find the ground state when the energy
landscape is more rugged. Therefore, S represents a good
metric to estimate the typical hardness of optimization prob-
lems. In this work, because we study large patched system
sizes in three dimensions, we have used 5 at 5 = 3, which
is still a low temperature compared to the spin-glass transi-
tion temperature for this model [46]. For the Chimera graph,
where there is no phase transition, we have used 4 at a con-
siderably lower temperature 5 = 10.

4

FIG. 3: Correlation of the probability to find the ground state of
simulated annealing psa and the log of entropic family size of pop-
ulation annealing S for three-dimensional systems with L = 4 and
L = 6 at 8 = 5 (data taken from Refs. [45] and [9]). When I is
larger, it is also more difficult to find the ground state, i.e., psa is
smaller. Note that psa drops very rapidly as L increases, while it is
easier to measure 1.

D. Results in three space dimensions

We first focus on the scaling properties of A for patch-
planted instances by either varying the patch sizes Ly or the
system size L. In addition, we also demonstrate that harder
patches can be used to patch harder instances.
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FIG. 4: Scaling of the logarithm of the entropic family size I =
log,, ps by varying the number of patches M (triangles, labeled
with “PP”). The line is a power-law fit of the form (Lo )M <, where
SI(Lo) is 4 of a single patch. From the fit, we obtain o = 0.31(3).
We also compare to random problems on a three-dimensional lattice
(circles). In this case a power-law fit results in o/ = 0.37(4), i.e.,
the two classes scale similarly, yet with two different exponents.
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FIG. 5: Scaling exponent o (SI ~ M®, see Fig. 4), by varying
the patch size Lo but keeping fixed the number of patches fixed to
M = 8.

Let M = (L/Lo)? the number of patches of size Ly. For
random instances, ps grows exponentially with L [10]. Be-
cause one would expect that pg for a problem of size L by
patching M patches of size Ly cannot be larger than the prod-
uct of p, of the individual patches, the patched instance com-



plexity is bounded, i.e.,
(M, Lo) < MA(Ly), €]

where S(M, L) is 4 of the patched instance of M patches of
size Lo and 5I(1, Ly) = 5I(Lo) is 51 of a patch. In Fig. 4, we
show the scaling of f by varying the number of patches M
and a power-law fit of the form

SI(M, Lo) = SA(Lo)M<, (5)

where 0 < o < 1. 4 scales sub-linearly with M with an expo-
nent & = 0.31(3). This proves that the patch planted instances
become harder by increasing the system size via the number
of patches. Therefore, it is guaranteed that, for a sufficiently
large number of patches, patch planted instances can become
arbitrarily hard in the thermodynamic limit. Fig. 5 shows the
scaling of the exponent « by increasing the size of the patches
Lo, while keeping the number of patches fixed to M = 8.
As one can see from the figure, o remains roughly constant
for a wide range of Ly values implying that « is a charac-
teristic constant for patch planted problems. It is interesting
to compare the scaling with random instances by defining an
effective number of blocks as M = (L/Lg)?3, also shown in
Fig. 4. We find that both random and patch planted instances
have a similar scaling form, although the random class has
a larger exponent o/ = 0.37(4), as expected. Therefore, ps
for patched instances also approximately scales exponentially
with system size L, as is the case for random instances. Note
that o and o' likely depend on the characteristics of the prob-
lem to be studied.
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FIG. 6: Comparison of the distribution of 5 for L = 16 in three
space dimensions, but with different patch sizes Lo = 4 (a) and 8
(b), respectively. There is a noticeable shift in the distributions of 5.
Therefore, to patch harder instances, one should use as large patch
sizes as possible.

One may also expect to have some benefit by using either
larger or harder patches. Indeed, in both cases, this results
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FIG. 7: Distributions of 5 for M = 8 (L = 12) patches of size
Lo = 6 using either easy patches [panel (a)] or hard patches [panel
(b)]. As expected, the distribution shifts to the right when harder
patches are used.
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FIG. 8: Comparison of the typical complexity of the patched in-
stances with random instances. The patched instances shown in pan-
els (b), (d), and (e) are generally computationally easier than their
random counterparts shown in panels (a) and (c), for a given system
size. Note the overlap between the distributions, i.e., by mining the
data one can obtain very hard patched problems.

in having a larger value of 5. In Fig. 6 we show the effects
of having larger patches by analyzing the distribution of 4 at
fixed size of the system, L = 16, using two different patch
sizes, Ly = 4 [panel (a)] and Ly = 8 [panel (b)]. As one
can see, patched instances are consistently harder by using
larger patches for a fixed system size. Similarly, in Fig. 7 we
show the distribution of I by patching instances with M = 8
patches of size Ly = 6 by either using easy [panel (a)] or



hard [panel (b)] patches. We defined easy patches as the
8000 patches with the smallest 5 and hard patches as the 8000
patches with the largest 4 from the 41472 patches randomly
generated. From these, 1000 easy and 1000 hard instances are
then generated.
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FIG. 9: Sketch of the different patch geometries used on the D-
Wave 2X quantum annealer chip. Each grey block represents a Kag
call with 8 sites. Panel (a) shows a zoom of such cell. From (a) — (d):
he shading represents the different patches used from M = 1 (a) to
M =4 ().

Patch planted instances generated using hard patches are
consistently harder than patch planted instances assembled
from easy patches with the mean value of 4 for both cases
being 3.214(5) and 2.957(4), respectively. We note that the
approach pioneered in Ref. [36] applied to the production of
patches could be combined with patch planting to generate
unusually hard planted problems. It is also interesting to com-
pare the complexity of the patched instances with random in-
stances. The distribution of 4 for L = 8 [panels (a) and (b)]
and L = 12 [panels (c) — (e)] with different patch sizes and
random instances are shown in Fig. 8. One can see that while
the patched instances are generally easier than the random in-
stances, they are not necessarily trivial. There is clear overlap
between the distributions, i.e., by mining the data one can ob-
tain problems of comparable typical complexity. Note also,
that the typical complexity grows with increasing patch size
for a fixed system size.

Finally, we comment on the performance of parallel tem-
pering (PT) on patched instances. Because population an-
nealing and parallel tempering have a similar performance in
both thermal sampling and optimization, and given that the

entropic family size correlates strongly with the integrated
autocorrelation time (characteristic measure of hardness of
parallel tempering) [10], it is natural to expect the proposed
patch-planted instances to be hard also for PT. To this end, it
is noteworthy to mention recent results that analyze the per-
formance of PT with isoenergetic cluster moves (ICM), see
Ref. [16], in solving patch-planted instances [47]. PT com-
bined with ICM has been found to be one of the best classical
heuristics in solving hard optimization problems [48]. How-
ever, Ref. [47] clearly show that PT is not able to efficiently
solve patch-planted instances (see Figs. 8 — 10).

E. Experiments on the D-Wave quantum annealer

We complement the numerical studies on three-
dimensional spin glasses by experiments on the D-Wave
2X quantum annealer. For this purpose, we patch plant
problems on the native topology of the machine and measure
the probabilities to find the ground state pg,c. over multiple
runs. In addition, we compare to random problems and show
correlation plots between the success probabilities and 4.
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FIG. 10: Distributions of 4 on a chimera graph with N = 1097
for random instances and patched instances with different number of
patches M. There are 1000 instances each, and the patched instances
were chosen from the hardest ones out of 10% instances in each class.
Note that the patched problems with M/ = 2 [panel (b)] and random
[panel (a)] are comparable. Panels (c) and (d) show that problems
become easier for smaller patches, i.e., a larger number of patches.

The topology of the machine with N = 1097 working
qubits is cut into 2, 3, and 4 patches, see Fig. 9 for a graph-
ical representation. For each experiment, we study 10% in-
stances. For the patch planted instances, we first generate 10*
patch planted problems from random patches and then use
A to select the 103 hardest ones. The distributions of 51 for
the problems studied is shown in Fig. 10. One can see that
for an increasing number of patches M the problems become
computationally easier. However, again by mining the data
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FIG. 11: Sorted probabilities to find the ground state psuycc from

experiments with the D-Wave 2X quantum annealer for N = 1097
sites and different number of patches M. As in Fig. 10, random
instances and instances with M = 2 are comparable.

TABLE II: Statistics of the D-Wave 2X quantum annealer success
probability peucc in Fig. 11 for random instances and patched in-
stances with different number of patches M. There are 10° instances
each, and the patched instances were chosen from the hardest ones
out of 10* instances in each class. Pmin, Pmax, and Pave are the min-
imum, maximum and average values of psucc, respectively and f is
the fraction of instances with psycc = 0.

Random M =2 M =3 M =4
Pmin 0 0 0 0
Pmax 0.00240(32) 0.00137(59) 0.0326(32) 0.173(9)
Pave 0.0000204(46) 0.0000129(24) 0.00115(10) 0.0127(7)
f 0.831(12) 0.775(13) 0.185(12) 0.011(3)

as done above results in hard problems. Figure 11 shows the
sorted success probabilities for the 1000 problems studied for
different number of patches. One can see that problems with
M = 4 are computationally much easier. It remains to be
tested if changing the shape of the patch could make the prob-
lems harder. For example, the 4 patches could be chosen to
be comprised of 6 x 6 Ky4 cells. Finally, Fig. 12 shows a cor-
relation plot between success probabilities and 5. As can be
seen, there is a good correlation between these two quantities,
especially for larger patches. Experiments (not shown) sug-
gest that the correlation becomes more pronounced for larger
system sizes. With some data mining and only a ten-fold over-
head, instances with two patches M = 2 have approximately
the same complexity as the random ones, which are harder
than instances with three patches and four patches. Statistics
of the success probabilities are shown in Table II.

III. SUMMARY

We have introduced the concept of patch planting to cre-
ate planted solutions to Ising-type optimization problems for

arbitrarily large systems. The method does not restrict the
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FIG. 12: Correlation of 5 and psycc for experiments on the D-Wave
machine with N = 1097. Data for random instances, as well as
instances with different numbers of patches M.

values of the couplers and works for any topology that can be
decomposed into patches. We studied in detail the scaling of
the typical complexity of the patched instances, and compared
to random instances using population annealing Monte Carlo
and the D-Wave 2X machine. From our results it is clear that
one should use as large patches as possible to more faithfully
reproduce the hardness of random problems. Patch planting is
easy to implement and could be used to generate benchmark
instances for future generations of quantum devices, as well
as classical algorithms and any other novel hardware. The ap-
proach is generic in that solutions could also be planted for
other paradigmatic optimization problems (e.g., the traveling
salesman problem) with only minor modifications.
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