
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Negative extensibility metamaterials: Occurrence and
design-space topology

Eduard G. Karpov, Larry A. Danso, and John T. Klein
Phys. Rev. E 96, 023002 — Published  7 August 2017

DOI: 10.1103/PhysRevE.96.023002

http://dx.doi.org/10.1103/PhysRevE.96.023002


 1  

Negative Extensibility Metamaterials – Occurrence and                            
Design Space Topology  

Eduard G. Karpov*, Larry A. Danso, John T. Klein 

Civil & Materials Engineering, University of Illinois at Chicago, 

842 W Taylor St, Chicago, IL 60612 

 

Abstract  

A negative extensibility material structure pulls back and contracts when the 
external tensile load reaches certain critical level. In this paper, we reveal basic 
mathematical features of the nonlinear strain energy function responsible for this 
unusual mechanical property. A systematic discussion leads to a comprehensive 
phase diagram in terms of design parameters for a simple unit cell structure that 
provides a panoramic view of all possible nonlinear mechanical behaviors. A 
negative extensibility region is clearly identified on the diagram. The sought 
property is seen to be rare, occurring only for a very narrow range of the design 
parameters. Nonetheless, due to simplicity of the studied structure we suggest that 
the negative extensibility should be a more common phenomenon than previously 
thought. It can appear in simple bistable cells made of only several linearly elastic 
links, although at some peculiar combinations of their properties. These bistable 
unit cells can be used to design periodic mechanical metamaterials whose 
examples are shown, as well as innovative architectural metastructures. 

Keywords: mechanical metamaterial, bistability, negative extensibility  

  

1. Introduction 

Mechanical and structural metamaterials [1-18] are associated with reversal of basic mechanical 
properties in quasistatic loading cycles. In particular, auxetic metamaterials [6-9] demonstrate 
negative Poisson ratio, while for origami-based metamaterials [10-12], negative Poisson ratio 
and negative bending and twisting stiffnesses can be analytically expressed or numerically 
observed. Motter and Nicolaou [15-16] also showed a possibility for engineered materials with a 
longitudinal negative compressibility/extensibility property that would contract in the direction 
of applied tensile load, Fig.1. The same authors suggested that such a contraction may only occur 
in an abrupt manner because of destabilization of the materials internal structure at the unit cell 
level when the external load exceeds some threshold value. Chen and Karpov [17] discussed an 
essential bistable nature of negative extensibility structures and metamaterials, whose forward 
and reverse transitions can be viewed as a polymorphic phase transformation at the microscopic 
scale. Such a solid-to-solid condensation process is reminiscent of a superelastic phase transition 
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and it is accompanied by abrupt energy release in the structure. Two microstructural polymorphs 
exhibit different stiffnesses, and therefore two different stable states of equilibrium are possible 
for a same external load. This behavior implies a hysteretic response of the material to periodic 
loads [15-17].  

 

Fig.1: Concept of the longitudinal negative extensibility. Elastically deformed 
material contracts abruptly in the direction opposite to the force load, when the 
load reaches a critical value inducing a polymorphic phase transition. Effective 
elastic modulus and mechanical extensibility (െΔݑ/Δܨ) at a constant temperature 
are negative around the transition point.  

A representative potential or strain energy function written for a repetitive unit cell structure of a 
negative extensibility metamaterial must possess rather exotic mathematical properties, which 
have not been understood clearly yet. In this paper, we discuss a path toward practical negative 
extensibility metamaterials via the study of macroscopic structural composites – periodical 
arrangements of unit cells featuring bistable mechanical hysteresis. These cells are made of 
linearly elastic springs and bars only and they can have their own interesting applications as 
mechanical actuators, earthquake and explosion impact superdampers, or reconfigurable civil 
infrastructure components. Furthermore, once important mathematical criteria are understood 
and many practical examples of these structural metamaterials are demonstrated in the first place, 
the knowledge gained will facilitate design of negative extensibility in materials at the atomic 
scale. 

From the known cases [15-17] it is clear that a representative (unit) cell of a periodic negative 
extensibility metastructure may have several degrees of freedom, including at least one internal 
degree of freedom, even for the case of chain-like models. A systematic stability analysis of such 
unit cells featuring an essential material or/and geometrical nonlinearity, leading to a bistable 
hysteretic response, is highly challenging.  

In this paper, we rely on geometrical nonlinearity only and discuss an approach to elucidate 
many necessary features of the potential energy function and to provide practical guidelines 
toward negative extensibility phenomenon in a macroscopic metastructure made of linearly 
elastic elements only. A practical mechanical metamaterial would employ this metastructure as a 
main phase, as well as damping elements, since the negative extensibility transitions are known 
to be accompanied by release of large amounts of kinetic energy [17]. Thus, we focus on simple 
bistable unit cells that can potentially be arranged in periodic arrays, and that can be made using 
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only the following non-buckling element types: (a) linear springs or strings allowing for large 
deformation described by the engineering strain, 

ߝ  ൌ ௟ି௟బ௟బ             (1) 

(b) linear elastic bars at moderate deformation measured with the Green’s strain, ீߝ ൌ ௟మି௟బమଶ௟బమ           (2)   

and (c) rigid pivoted links with no strain. Potential energy of deformation of the spring and bar 
elements gives, respectively,   ߨୱ ൌ ௞౩ଶ ݈଴ଶߝଶ ൌ ௞౩ଶ ሺ݈ െ ݈଴ሻଶ        (3) ߨୠ ൌ ௞ౘଶ ݈଴ଶߝଶ ൎ ௞ౘଶ ݈଴ଶߝଶீ  ൌ ௞ౘ଼௟బమ ሺ݈ଶ െ ݈଴ଶሻଶ      (4) 

where k, l0 and l are the stiffness, relaxed and deformed lengths of the elements. The bar’s 
stiffness is ݇ୠ ൌ  .଴, in terms of its Young’s modulus E and cross section area A݈/ܣܧ
Equation (4) represents the only approximation adopted in the analysis, and it is good at 
moderate strains in the bars (൏ 0.05), because ீߝ ൌ ߝ ൅   .ଶ/2ߝ

 

 

Fig.2: Examples of bistable structures with one independent degree of freedom. 
Parameters ݇ are linear stiffnesses of the spring or bar elements.  

 

The strain energies (3-4) will lead to quartic (bistable) potentials for the structure’s 
representative unit cells, whose mathematical stability analysis is tractable. In the simplest case 
of Fig.2a structure with one independent degree of freedom, we may write the total potential 
energy as  

Πൌ ௞ౘସሺ௅మାுమሻ ሺݑଶ െ ሻଶݑܪ2 ൅ ଵଶ ݇ୱݑଶ െ  (5)      ݑܨ
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where ݇௕ and ݇௦ are the bar and spring stiffnesses respectively. This expression can be written in 
a dimensionless form,  ܷ ൌ ସݔ െ ଷݔܽ ൅ ଶݔܾ െ        (6)        ݔ݂

 ݂ ൌ ସሺ௅మାுమሻுయ ி௞ౘ ,    ܷ ൌ ௙ு ݔ    , ൌ ௨ு ,    ܽ ൌ 4,    ܾ ൌ 4 ൅ ଶ൫௅మାுమ൯௞౩௞ౘுమ   (7) 

 

Fig.3: (a) Phase diagram of the generic system governed by the quartic potential ܷ ൌ ସݔ െ ଷݔܽ ൅ ଶݔܾ െ  :Three possible types of the mechanical response (b) .ݔ݂
structural monostability (MS) or usual geometrical nonlinearity, bistable 
superelasticity (SE), and bistable superplasticity (SP) when recovery of structural 
deformation requires load reversal. Switching between the states A and B occurs 
at a critical load ݂ ൌ ஼݂. Superelastic strain due to the transition ߝSE is 
proportional to ∆ݔ. (c-d) Stability diagrams showing values of the critical forces ஼݂ at specific values of the system parameters a and b.  

A similar potential energy expression (6) can also be written for Fig.2b structure, although using 
its own dimensionless parameters,  ݂ ൌ ௅మାுమమுభయሺଵାఊሻ ி௞మ ,    ܷ ൌ ௙ுభ ݔ    , ൌ ௨ுభ ,    ܽ ൌ ுమାఊுభுభሺଵାఊሻ ,    ܾ ൌ ுమమାఊுభమுభమሺଵାఊሻ  (8) 

where ߛ ൌ ௅మାுమమ௅మାுభమ ௞భ௞మ. In equations (6-8), the dimensionless load f is an external control parameter, 

the dimensionless displacement x is a state parameter describing the state of deformation, and the 
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coefficients a and b are the system or design parameters. This terminology is typical for 
catastrophe theory [20-22], where design parameters of this type, though, may serve the role of 
control parameters since they define a desired system behavior. Note that Fig.2a structure has 
only one independent design parameter, since the value a cannot vary in (7). Discussion of 
Fig.2c structure and other examples leading to the potential energy form (6) can be found in [19]. 
A phase diagram of the generic system governed by (6) can be constructed for the system 
parameters a and b, and it is shown in Fig.3a. Here, three basic types of the mechanical response 
are possible. One of them is monostable and two are bistable – when two stable equilibrium 
configurations are possible for a same load. The bistable (hysteretic) response can be either 
structural superelasticity or structural superplasticity [19] depending on whether the initial 
configuration is recovered upon load removal. The term superplasticity implies that a full 
recovery of the overall (structural) plastic deformation is still possible upon load reversal, see 
Fig.3b.    

The bottom line in the phase diagram, Fig.3a, represents the onset of bistability because all 
designs above this line are bistable and all those below are monostable. This line is a locus of 
points ሼܽ, ܾሽ that represent simultaneously a mechanical equilibrium, destabilization (zero 
stiffness) and an undulation point or cusp singularity [19-22] of the potential:  

 ܷ௫ᇱ ൌ ܷ௫௫ᇱᇱ ൌ ܷ௫௫௫ᇱᇱᇱ ൌ 0:        3ܽଶ െ 8ܾ ൌ 0          (8) 

The upper curve in Fig.3a diagram represents designs where the reverse destabilization and 
transition ܤ ՜  :occurs at a zero load. These design points must satisfy the condition ܣ

 ܷ௫ᇱ ൌ ܷ௫௫ᇱᇱ ൌ ר 0  ݂ ൌ 0:        9ܽଶ െ 32ܾ ൌ 0     (9)  

The stability diagrams of Fig.2c and Fig.2d show the critical loads, ݂ ൌ ஼݂, at which structural 
destabilization will occur at given system parameters. The curves shown were plotted 
parametrically by fixing either b or a and using x as a running variable, 

 ܷ௫ᇱ ൌ ܷ௫௫ᇱᇱ ൌ 0:        ൜ ஼݂ ൌ ሺܾݔ െ ,ଶሻݔ2 ܽ ൌ ݔ3/ܾ ൅ ஼݂ݔ2 ൌ ଶሺ3ܽݔ െ ,ሻݔ8 ܾ ൌ ሺܽݔ3 െ  ሻ     (10)ݔ2

As can be seen, Fig.3 diagrams provide a panoramic view of all possible basic types of 
mechanical behavior in the bistable systems of Fig.2 type. These diagrams also enable design of 
a specific desired behavior, as well as magnitudes of the critical loads associated with the 
forward and reverse transitions of the system. We note that negative extensibility is not observed 
yet in the simplest bistable cells, as in Fig.2, which can be described by the potential (6) and 
Fig.3a phase diagram. Apparently, negative compressibility requires a more complex form of 
bistability involving a greater number of independent degrees of freedom per unit cell.   

Motter and Nicolaou [15] and also Chen and Karpov [17] provided a good reasoning that the 
sought negative extensibility behavior must arise from at least one or more additional 
independent internal degrees of freedom in a representative unit cell of the metamaterial. In this 
paper, we suggest that systematic studies of such bistable unit cells could employ analytical 
reasoning similar to equations (1-7), strengthened by numerical solution of nonlinear algebraic 
equations of the type (8-10). We will derive a generic potential energy form for a class of 



 6  

bistable structures with two independent degrees of freedom, including one internal degree of 
freedom, followed by a phase diagram derivation and demonstration of the negative extensibility 
property at a certain combination of the system parameters.  

 

Fig.4: Negative extensibility phenomenon in a five-element bistable structure 
(unit cell) with linearly elastic members and two independent degrees of freedom, 
the vertical displacements u and v. L, H and h are dimensions of the unloaded 
structure at F = 0, and ki are linear stiffnesses of the bar and spring elements. The 
structure contracts in the direction of applied load when the latter reaches a 
critical value that destabilizes the structure and induces the transition. This 
transition is associated with the intermittent rotation of the middle bar “pulling 
back” on the top and bottom bars of the structure. The negative superelastic strain 
due to the ܣ ՜ SEߝ transition is ܤ ൌ െ2∆ݑ/ሺܪ ൅ ݄ሻ.  
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More importantly, using this semi-analytical approach we will show that the negative 
extensibility is probably a more common phenomenon than previously thought. It may occur for 
rather simple structures made of several linear elastic links, although at some rare combinations 
of their physical parameters.  

 

2. Negative Extensibility Phenomenon 

Consider a five-element structural unit cell of Fig.4 type, comprised of three inclined bars at 
moderate deformation and two vertical springs allowing for large elongations. Possible periodic 
arrangements of such a unit cell in mechanical metamaterials are shown further below in Fig.10.  

Using the engineering strain (1) for the springs ݇ଷ and the Green’s strain (2) for the bars ݇ଵ and ݇ଶ, we can write their strain energies:  ߨଵ ൌ ଶ௞భ௅మାሺுି௛ሻమ ݒଶሺݒ െ ܪ ൅ ݄ሻଶ        (11) ߨଶ ൌ ௞మ଼ሺ௅మା௛మሻ ሺݑ ൅ ݑሻଶሺݒ ൅ ݒ ൅ 2݄ሻଶ       (12)  ߨଷ ൌ ௞యଶ ሺݑ െ  ሻଶ         (13)ݒ

The total potential energy of the Fig.4 structure is  Π ൌ ଵߨ ൅ 2ሺߨଶ ൅ ଷߨ െ  ሻ        (14)ݑܨ

In order to minimize the number of independent system parameters, we may rewrite the 
potential (14) in terms of the dimensionless quantities: ܷ ൌ ܽሺݔ ൅ ݔሻଶሺݕ ൅ ݕ ൅ ሻଶݏ2 ൅ ݕଶሺݕܾ െ 1 ൅ ሻଶݏ ൅ ሺݔ െ ሻଶݕ െ  (15)  ݔ2݂

      ܷ ൌ ஈ௞యுమ ,   ݂ ൌ ி௞యு , ݔ    ൌ ௨ு , ݕ    ൌ ௩௅ ;    ܽ ൌ ௞మସ௞య ுమ௅మା௛మ ,    ܾ ൌ ଶ௞భ௞య ுమ௅మାሺுି௛ሻమ , ݏ    ൌ ௛ு (16) 

By analogy with the equation (6), the dimensionless force f is the control parameter, x and y are 
two independent state parameters, and a, b and s are the system (design) parameters.  

Interestingly, numerical minimization of the potential (15) at certain combinations of the system 
parameters can provide a pinched hysteresis response with a sought negative extensibility 
transition. A particularly large contraction at an increasing tensile load was seen at a = 0.0665, 
b = 5.21 and s = 0, when the ܣ ՜ state switching occurred at the critical load ஼݂ ܤ ൌ 1.33, see 
Fig.5. The figure shows a numerical solution of the equation (15) using a gradient method, where 
the force parameter f was varied from 0.0 to 1.7 and backward with a step േ0.001, and the trial 
solution ݔ଴ ൌ ଴ݕ ൌ 0.001 was set initially. Solutions from previous steps were used as trial 
solutions at further iterations of the force parameter.  
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We explored Fig.4 type structures of different skewness ݏ ൌ  using the analysis to follow ܪ/݄
and found that the maximal magnitude of the negative extensibility effect has a weak dependence 
on ݏ in the range from –0.5 to 0.5, and it is better pronounced in rectangle-shaped cells. For a 
concise discussion, we therefore set ݏ ൌ ݄ ൌ 0 in (15) and (16), and write the final form of the 
potential in question: ܷ ൌ ܽሺݔ ൅ ሻସݕ ൅ ܾሺݕଶ െ ሻଶݕ ൅ ሺݔ െ ሻଶݕ െ ܽ    ,ݔ2݂ ൌ ௞మସ௞య ுమ௅మ ,    ܾ ൌ ଶ௞భ௞య ுమ௅మାுమ (17)  

The Fig.5 behavior is qualitatively similar to the negative extensibility observed in some 
hypothetical atomic systems governed by much more complex potentials [15-17]. We point out, 
though, on the existence of a secondary (superelastic type) hysteresis at higher loads not 
mentioned in the earlier publications. We will see below that it should be characteristic to all 
bistable structures with a negative extensibility transition, and therefore their overall path along 
the switching equilibrium states could be  ܣ ՜ ܤ ՜ ܣ ՜ ܤ ՜  .in larger amplitude load cycles ܣ
Also, simplicity of the potential (17) will enable us to determine an entire range of the system 
parameters a and b leading to this remarkable mechanical behavior.  

 

Fig.5: Load-unload cycle of Fig.4 bistable structure governed by the potential 
(15) or (17) showing a pinched hysteresis and a negative extensibility transition at 
the critical force ஼݂ ൌ 1.33 or critical strain ߝC ൌ 2.385.  The negative 
superelastic strain solely due to the transition, ߝSE ൌ െ0.063. A secondary 
hysteresis also exists at the higher loads. States A and B are two structural 
polymorphs with different stiffnesses. The overall path of load-induced switching 
between the states is ܣ ՜ ܤ ՜ ܣ ՜ ܤ ՜   .ܣ

  

3. Structural destabilization and bifurcation points  

Stationary points of the scalar potential (17) are defined by the simultaneous conditions 
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ܷ௫ᇱ ൌ 0:      ݃ଵሺݔ, ,ݕ ݂, ܽ, ܾሻ ൌ ݔ െ ݕ ൅ 2ܽሺݔ ൅ ሻଷݕ െ ݂ ൌ 0    (18) ܷ௬ᇱ ൌ 0:      ݃ଶሺݔ, ,ݕ ܽ, ܾሻ ൌ ݕ െ ݔ ൅ 2ܽሺݔ ൅ ሻଷݕ ൅ ݕሺݕܾ െ 1ሻሺ2ݕ െ 1ሻ ൌ 0 (19) 

which correspond to a mechanical equilibrium of the structure. We will refer to these conditions 
as to the equilibrium set conditions. Specific equilibrium states ሼݔ,  ሽ will depend on theݕ
combinations of the control and system parameters ሼ݂, ܽ, ܾሽ. The equilibrium set is an 
intersection of the hypersurfaces ݃ଵ and ݃ଶ.     

Structural destabilization and switching to a new stable equilibrium configuration occurs in a 
snap-through action, when the external load reaches some critical value ஼݂. Mathematically, this 
corresponds to an inflection point singularity on the potential (17), or a saddle node bifurcation 
in the solution space. A necessary mathematical condition for an inflection point can be written 
in terms of the determinant of the Hessian matrix of second-order derivatives of the 
potential (17) [20-22],  det ܪ ൌ ቤܷ௫௫ᇱᇱ ܷ௫௬ᇱᇱܷ௬௫ᇱᇱ ܷ௬௬ᇱᇱ ቤ ൌ ܷ௫௫ᇱᇱ ܷ௬௬ᇱᇱ െ ܷ௫௬ᇱᇱ ܷ௬௫ᇱᇱ ൌ 0:           (20) ݃ଷሺݔ, ,ݕ ܽ, ܾሻ ൌ 24ܽሺݔ ൅ ሻଶݕ ൅ ܾሺ6ݕଶ െ ݕ6 ൅ 1ሻሺ1 ൅ 6ܽሺݔ ൅ ሻଶሻݕ ൌ 0 

The condition (19) replaces ܷ௫௫ᇱᇱ ൌ 0 used in (10) for the analysis of structures with one 
independent degree of freedom. In an immediate vicinity of a limit point, the structure is in 
equilibrium, and therefore the criterion for an inflection point (structural destabilization) is the 
following: 

 ଵ݃ሺݔ, ,ݕ ஼݂, ܽ, ܾሻ ൌ ݃ଶሺݔ, ,ݕ ܽ, ܾሻ ൌ ݃ଷሺݔ, ,ݕ ܽ, ܾሻ ൌ 0    (21) 

The locus of all the limit points ሼ ஼݂, ܽ, ܾሽ satisfying (21) is a 3D surface  ߔ௅ሺ ஼݂, ܽ, ܾሻ ൌ 0 that we 
may call the limit set. Also, the term bifurcation set from the catastrophe theory [20-22] could be 
used, since  ߔ௅ሺ ஼݂, ܽ, ܾሻ ൌ 0  contains absolutely all bifurcation points of the potential (17) 
including the higher order pitchfork bifurcations discussed below. Using the term bifurcation set, 
one should be aware of a possible confusion; indeed, a bifurcation point in structural analysis is 
where an equilibrium solution splits rather than jumps.  

In a practical sense, the criterion (21) can provide values of the critical (destabilizing) loads ஼݂ 
for any specific system parameters a and b. Thus, geometry of the limit set ߔ௅ሺ ஼݂, ܽ, ܾሻ ൌ 0  is 
interesting, although difficult to realize for 2DoF systems, and we will discuss it in more detail in 
Section 2.2. Note that the limit set geometry for the 1DoF potential (6) was well-represented by 
the stability diagrams in Fig.3c and Fig.3d showing its two plane cross-sections at some fixed 
values a and b. 

When the system parameters a and b are varied in a design process, a stable equilibrium solution 
{x,y} of the equilibrium equations (17) may lose uniqueness at a point of supercritical pitchfork 
bifurcation [23] and split into two stable and one unstable solutions. For the systems with one 
degree of freedom, this occurred at the cusp points (8) within limit set (10) of the potential (6), 
and these points satisfied the additional condition: ܷ௫௫௫ᇱᇱᇱ ൌ 0, see [19] for more details. We 
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suggest that such a condition should generally apply to an internal degree of freedom responsible 
for the destabilization. For the Fig.4 structure, this degree of freedom is the rotation of the 
middle bar ݇ଵ in the plane of the structure, and therefore, we will require  ܷ௬௬௬ᇱᇱᇱ ൌ 0:      ݃ସሺݔ, ,ݕ ܽ, ܾሻ ൌ 24ܽሺݔ ൅ ሻݕ ൅ 12ܾሺ2ݕ െ 1ሻ ൌ 0    (22) 

Thus, the criterion for a cusp point (solution splitting) can be written as the following:  

ଵ݃ሺݔ, ,ݕ ݂, ܽ, ܾሻ ൌ ݃ଶሺݔ, ,ݕ ܽ, ܾሻ ൌ ݃ଷሺݔ, ,ݕ ܽ, ܾሻ ൌ ݃ସሺݔ, ,ݕ ܽ, ܾሻ ൌ 0  (23) 

 

Fig.6: Stability diagrams of Fig.4 bistable structure governed by the potential 
(17). Up to four critical forces ஼݂ are possible for some selections of the system 
parameters a and b. The bistable response can be either superelastic (SE) when 
the original configuration is fully restored upon load removal, or superplastic (SP) 
when the recovery requires load reversal, by analogy with Fig.3. 

The locus of all the cusp points {a,b} satisfying (23) is a plane curve ߁ௌሺܽ, ܾሻ ൌ 0, and we will 
call it the cusp set. Individual points {a,b} of the cusp set are independent of the load f, because a 
supercritical pitchfork bifurcation is an outcome of design modification, rather loading change as 
it was for the saddle-node bifurcations (21). Availability of a non-trivial solution to the equation 
set (23) in the form of an actual plane curve ߁ௌሺܽ, ܾሻ ൌ 0 will indicate that the structure can be 
bistable, as in principle. One may further assume that the curve ߁ௌ itself should represent a 
boundary of the bistability region in the ab-parameter design space, similar to the 1DoF systems, 
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see equation (8) and Fig.3a. However, using Fig.4 structure as an example, we will later see that 
the true onset of bistability in 2DoF systems may correspond to a condition weaker than (23).  

 

 

Fig.7: Principal regions of mono- and bistability in the space of design parameters 
of the potential (17), and a graphical explanation of the second stable solution’s 
nucleation and accessibility change with a decrease of parameter a along the line 
1-2-3-4. The second stable solution becomes accessible when the new stable-
unstable solution loop in the fy-plane coalesces with the old solution forming an 
access channel. The lines ߁ௌ, ߁ே and ߁ை represent the locus of the cusp, nucleation 
and coalescence points of the potential (17), accordingly.  

 

3.1 Limit set geometry  
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For the potential (17), it was possible to derive a unique analytical solution for the limit set 
equations (21) in terms of ஼݂ ൌ ஼݂ሺݕ, ܾሻ, ܽ ൌ ܽሺݕ, ܾሻ and also ݔ ൌ ,ݕሺݔ ܾሻ via algebraic 
substitution, see equations (A1-2) in Appendix. Therefore, using y as a varying parameter, we 
may draw a parametric plane curve ߁௕ሺ ஼݂, ܽሻ ൌ 0 to represent the ሺ݂, ܽሻ-stability diagram for a 
given fixed value b. Two examples of it are shown in Fig.6a and Fig.6b. Such a diagram shows a 
relationship between the system parameter a and the critical loads ஼݂ upon which the switching 
between two stable equilibrium configurations would occur. It also represents a planar cross-
section of the limit set ߔ௅ሺ ஼݂, ܽ, ܾሻ ൌ 0 at the fixed value b.   

It is also interesting to see a cross-section of the set ߔ௅ሺ ஼݂, ܽ, ܾሻ ൌ 0 for a fixed value a, leading 
to the ሺ݂, ܾሻ-stability diagram. However, for the potential (17), it is not possible to derive an 
exact algebraic solution for (21) in terms of ஼݂ ൌ ஼݂ሺݕ, ܽሻ and ܾ ൌ ܾሺݕ, ܽሻ, and we employed a 
numerical Newton-Raphson iterative procedure for the nonlinear equations set (21) at various 
instances of y. It was possible to obtain smooth curves, when y varied from 0.22 to 0.78 with a 
step 0.002. Solutions from previous steps were used as trial solutions for each next iteration of y. 
Two examples of the curve ߁௔ሺ݂, ܾሻ ൌ 0 are shown in Fig.6c and Fig.6d for ܽ ൌ 0.04 and 0.0665. Noteworthy, each of these curves contains two cusp points and a local maximum. 
Therefore, a range of the system parameters a and b exists, at which we can observe switching 
between the states A and B four times (in the manner ܣ ՜ ܤ ՜ ܣ ՜ ܤ ՜  at four different (ܣ
values of the critical force ஼݂ during a single load-unload cycle. An example of such a 
mechanical response was shown earlier in Fig.5.  

 

3.2 Negative extensibility behavior  

The most important consequence of the double cusp points mentioned in the previous section is 
the possibility for a pinch hysteresis required for the negative extensibility behavior. Indeed, 
values a and b can be selected so that the first transition ܣ ՜  leads to a contraction of the ܤ
structure in the direction of the applied load, see Fig.5. Availability of the four-step transition 
during a load-unload cycle for an elastic structure seems to be a common feature to accompany 
the negative extensibility behavior.     

 

3.3 Bistability region clarified 

As was mentioned earlier in Section 2.1, a single stable solution to the equilibrium equations 
may split into two stable and one unstable solutions at a cusp point in the ab-parameter space. 
For such a special point, four simultaneous conditions (23) must be satisfied. The locus of all the 
cusp points is the cusp set, a plane curve ߁ௌሺܽ, ܾሻ ൌ 0. It was possible to get a smooth numerical 
solution of the equations (23) for the potential (17) in terms of a, f, x and y, depending on the 
parameter b with the Newton-Raphson method applied to (23) for each specific value of b. The 
resultant dependence  ߁ௌሺܽ, ܾሻ ൌ 0 is shown in Fig.7, where b was varied from 0 to 6.5 with a 
step 0.02.   
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Some important disclaimers have to be made prior to adopting the curve ߁ௌ ൌ 0 in Fig.7 as the 
onset of bistability. From the bifurcation set geometry discussed in the previous section, we may 
see that for some values b, the bifurcation curve is bent down in a “beak” shape, see Fig.6b. This 
indicates that the structure may start to demonstrate a bistable behavior (with a decrease of a) 
earlier than the cusp point. Indeed, it is sufficient that the value a is found lower than the local 
maximum on the upper branch of the ߁௕ሺ ஼݂, ܽሻ ൌ 0 curve in Fig.6b. At this point, another 
pitchfork bifurcation occurs leading to solution splitting into two stable and one unstable 
configurations. However, the second stable solution nucleates, as shown in Fig.7, to coexist 
independently in a neighbor region of the solution space inaccessible by the loading of Fig.4 
type. It can only be accessed by applying certain coordinated loads to all four nodes of the 
structure, which is not practical. The points of nucleation of the inaccessible second stable 
solutions can be determined as those corresponding to the local maximum on the upper branch of 
the curve ߁௕ሺ ஼݂, ܽሻ ൌ 0 in Fig.6b, and they are plotted on Fig.7 diagram as the dashed line ߁ே. 

As can be seen from Fig.7 plots, this second solution, in a pair with an unstable solution, forms a 
loop in the fy-plane section of the solution space. This loop grows with a decrease of a, until it 
coalesces with the first stable solution, followed by formation of an access channel between 
them. This channel makes the State B accessible in a usual load-unload cycle. The locus of the 
coalescence points in the ba-plane can be determined from the local maximum on the lower 
branch of the curve ߁௕ሺ ஼݂, ܽሻ ൌ 0, and they are plotted in Fig.7 diagram as the dashed line ߁ை. 

The line of coalescence points, ߁ை, merges with the cusp curve, ߁ௌ, at ܾ ൌ 4 forming a single 
continuous boundary of the region of the true physical bistability, observable in load-unload 
cycles of Fig.4 structure. This boundary is shown as the continuous solid line in Fig.7 diagram. 
In accordance with the stability diagrams of Fig.6, the dotted section of the cusp curve ߁ௌ below 
the line ߁ை separates the region of the four-fold switching cycles ܣ ՜ ܤ ՜ ܣ ՜ ܤ ՜  We will .ܣ
narrow it to a region of the negative extensibility behavior in the section to follow. 

 

4. Structural Phase Diagram  

The plot of Fig.7 is a prototypical phase diagram of the structure showing a boundary between 
two principal types of structural behavior, bistability and monostability, in the design space. We 
may now further clarify the behavior subtypes within the bistability region. Since the negative 
critical forces exist on Fig.6 stability diagrams, the superelastic (reversible on load removal) and 
superplastic responses should be distinguished, and we also saw a negative extensibility response 
of the structure in Fig.5 plot. Thus, two more boundary lines should be added to Fig.7 diagram in 
the region of bistability to complete a structural phase diagram. A region of the Negative 
Extensibility behavior of SuperElastic type (NESE) will be our primary interest, as leading to the 
most interesting mechanical metamaterial applications. Continuation of negative extensibility 
into the superplastic zone   

The elasticity boundary showing the onset of superelastic behavior, when the structure recovers 
its original configuration upon load removal, can be determined from the condition that the 
critical force ஼݂ at the corresponding destabilization point (21) is equal to zero: 
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ଵ݃ሺݔ, ,ݕ 0, ܽ, ܾሻ ൌ ݃ଶሺݔ, ,ݕ ܽ, ܾሻ ൌ ݃ଷሺݔ, ,ݕ ܽ, ܾሻ ൌ 0    (24) 

A Newton-Raphson procedure was used to solve these equations for a, x and y at each particular 
value b, which was varied from 0 to 5.21 with a step 0.01. Solutions from the preceding values b 
were used as trial solutions for the successive values b. The result is a relationship between the 
parameters a and b given by the curve ߁ாሺܽ, ܾሻ ൌ 0 in Fig.8. 

 

 

Fig.8: Phase diagram of Fig.4 structure and all mechanical systems governed by 
the potential ܷ ൌ ܽሺݔ ൅ ሻସݕ ൅ ܾሺݕଶ െ ሻଶݕ ൅ ሺݔ െ ሻଶݕ െ  The most .ݔ2݂
interesting behavior is the negative extensibility of superelastic type (NESE) in a 
small region of the design space bounded with the curves ߁ை, ߁ெ and ߁ா. The 
region of negative extensibility of superplastic type (NESP) is somewhat larger.  

 

We may now determine the negative extensibility boundary, or metastructure behavior boundary 
showing the onset of the most interesting bistable behavior, when the structure contracts upon 
tensile load increase as a result of the first transition in the cycle ܣ ՜ ܤ ՜ ܣ ՜ ܤ ՜  The .ܣ
formal condition to determine this boundary is the following: the transition ܣ ՜  can give a ܤ
large rotation to the middle bar k1 of the structure, see Fig.4, while the overall height of the 
structure must not change. We can write this condition as the following,  
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 ଵ݃ሺݔ஺, ,஺ݕ ݂, ܽ, ܾሻ ൌ ݃ଶሺݔ஺, ,஺ݕ ܽ, ܾሻ ൌ ݃ଷሺݔ஺, ,஺ݕ ܽ, ܾሻ ൌ   ר 0
ଵ݃ሺݔ஻ ൌ ,஺ݔ ,஻ݕ ݂, ܽ, ܾሻ ൌ ݃ଶሺݔ஻ ൌ ,஺ݔ ,஻ݕ ܽ, ܾሻ ൌ 0    (25) 

where ݔ஺ and ݕ஺ are the values of the state parameters x and y in the configuration ܣ right before 
the switching, and ݔ஻ and ݕ஻ are their values right after the switching. These five simultaneous 
equations can be solved numerically with the Newton-Raphson method for a, f, ݔ஺, ݕ஺, and ݕ஻ at 
a fixed value b. Varying b from 4.5 to 7.5 with a step 0.01 gives a relationship between a and b 
shown as the curve ߁ெሺܽ, ܾሻ ൌ 0 in Fig.8. As can be seen, the interesting region of NESE 
(negative extensibility of superelastic type) is bound with the lines ߁ை, ߁ா and ߁ெ. The 
continuation of this region into superplasticity is denoted on phase diagram as NESP (negative 
extensibility of superplastic type). NESP behavior may also find interesting applications in 
mechanical shape-memory systems, thermomechanical actuators and impact dampers, alongside 
with NESE.   

 

Fig.9: (a) The vicinity of the negative extensibility region of superelastic type 
(NESE), a zoom of Fig.8 phase diagram. Shown are contour lines of the NESE 
effect intensity defined in (26). The maximal intensity of –2.64% is observed for 
the triple point (a = 0.0665, b = 5.21) at the intersection of lines ߁ா and ߁ை. The 
dotted line marked r shows drift of this point for a structure, governed by the 
accurate potential (27), with an increase of the structural aspect ratio ݎ ൌ        .ܮ/ܪ
(b-c) Strain-to-load curves of actual structures designed near the triple point at ݎ ൌ 0.1 and 0.2, compared to the theoretical prediction discussed in the paper that 
uses the approximation (4) and corresponds to the limit ݎ ՜ 0.   

Finally, we look more closely onto the negative extensibility region and draw the contour lines to 
represent a relative intensity of the NESE effect, 

NESEܫ  ൌ  C         (26)ߝ/SEߝ
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where, where ߝC is the critical elastic strain and ߝSE is the negative superelastic strain at the 
NESE transition ܣ ՜  see Fig.5 inset. This parameter describes relative contraction of the ,ܤ
structure due to the transition. Noting that the effect intensity is zero along the curve ߁ெሺܽ, ܾሻ ൌ0, we can relate the dimensionless displacements right before (ݔ஺) and right after (ݔ஻ሻ the 
transition as the following:  ݔ஻ ൌ ஺ሺ1ݔ ൅  NESEሻ         (27)ܫ

This condition can be used in (25), instead of ݔ஻ ൌ  ஺, to obtain the contour lines correspondingݔ
to various fixed values ܫNESE with the similar Newton-Raphson iterative procedures. The results 
are presented in Fig.9, and we may conclude that the maximal effect should be expected in the 
vicinity of the triple point formed by the superelasticity (߁ா) and bistability (߁ை) boundaries. 

Figs.7-8 represent together the final phase diagram of Fig.4 structure made of five linearly elastic 
members, in terms of the dimensionless system (design) parameters a and b defined in (17). As 
can be seen, the negative extensibility is a rare behavior occurring only for a small and narrow 
region in the design space. On the other hand, simplicity of this structure suggests that the 
negative extensibility is a more ubiquitous property, achievable for a greater range of material 
systems than previously thought.   

 

5. Error Analysis and Other Parameters   

In order to understand the error introduced in the analysis with the Green’s strain 
approximation (4), we define an “accurate” Fig.4 structure potential using only the engineering 
strain measure (1),  

  Π ൌ ଵߨ ൅ 2ሺߨଶ ൅ ଷߨ െ ଵߨ     ,ሻݑܨ ൌ ௞భଶ ቀඥܮଶ ൅ ሺܪ െ ሻଶݒ2 െ ଶܮ√ ൅ ଶቁଶܪ
   

ଶߨ  ൌ ௞మଶ ሺඥܮଶ ൅ ሺݑ ൅ ሻଶݒ െ ଷߨ     ,ሻଶܮ ൌ ௞యଶ ሺݑ െ  ሻଶ    (28)ݒ

It is more challenging to perform a systematic analysis of this system, because a dimensionless 
form of the potential (28) will require three independent system parameters. Indeed, the 
mechanical behavior will depend also on the aspect ratio of Fig.4 structure, ݎ ൌ ு௅            (29)  

and the Fig.8 diagram will only represent a cross-section of the 3D design space of the actual 
structure at ݎ ՜ 0. Thus, the approximation (4) is good at small aspect ratios, when the maximal 
strain in the bar elements remains low in the hysteretic (bistable) load-unload cycles.  

Location of the triple point on the phase diagram representing the maximal NESE effect will 
drift with r in the hypothetical 3D design space as shown in Fig.9 with the dash line. We also 
found that the greatest discrepancy in the behavior at various r > 0 is seen for the critical 
(switching) force values, see Fig.9b and Fig.9c. All other features of the structural response, 
including the maximal effect intensity are well reproduced for values r up to 0.30. It is safe to 
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conclude that the approximation (4) and the proposed analysis can provide a starting points for a 
quick search for the negative extensibility or negative compressibility property in the design 
space of bistable material systems.  

The present methodology is also applicable to other accurate potentials of the type (28), without 
using the approximation (4), when only two variable system parameters can be identified as 
interesting ones and other parameters are maintained constant. Several successive procedures of 
this kind could provide useful planar cross-sections of the corresponding multidimensional 
design spaces to identify regions of the negative extensibility behavior. For example, several 
non-zero values of the skewness parameter  

ݏ  ൌ ௛ு          (30)  

of the potential (15) were also considered in range from –0.5 to 0.5. This parameter was found to 
have a week influence on the maximal achievable NESE effect magnitude, although it was 
slightly better pronounced in rectangular unit cells. 

 

 

Fig.10: Possible periodic arrangements of NESE cells of Fig.4 type in a periodic 
mechanical metamaterial or metastructure. Examples of responses observed in 
imperfect metastructures of the first type (top-left) with random member 
stiffnesses at relative stdev 0.3%; a = 0.0708, b = 5.15, r = 0.2; periodic boundary 
conditions are used on the vertical edges, and the loaded nodes are constrained to 
move synchronically in the vertical direction only; the dash line is the 
corresponding single-cell response.  
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6. Conclusions and Outlooks 

We discussed the negative extensibility phenomenon in a simple unit cell structure made of 5 
non-buckling linearly elastic members, which can be used to fabricate periodic mechanical 
metamaterials with similar properties. This interesting phenomenon is associated with a special 
type of bistability transition in the equilibrium solution space of these structures of a more 
complex type compared to the usual superelastic or superplastic transitions. Simplicity of the unit 
cell structure studied here suggests that the negative extensibility of superelastic type (NESE), as 
a highly interesting property of material systems is probably more ubiquitous than earlier 
thought. It may exist in simple bistable structures with linear material properties, although a 
thorough analysis would typically be required to identify the relevant suitable ranges of the 
design parameters for each system type. Furthermore, caution should be taken to avoid losing 
this property entirely when attempting to increase the effect intensity by approaching (on the 
phase diagram) the region of apparent monostability, where the bistability is inaccessible in usual 
load-unload cycles, see Figs.7-8. The reason is the directional nature of negative extensibility 
property as defined originally in Fig.1. By mental extension of the contour lines in Fig.9 
diagram, that region should contain “hidden” negative extensibilities of greater intensities. These 
behaviors could be unleashed with small additional forces acting on the internal degrees of 
freedom, and making an interesting mechanical device reminiscent of an electronic switch.  

Finally, Fig.10 shows possible arrangements of multiple NESE cells in a periodic metamaterial 
structure. The collective NESE response of a perfect periodic structure with no randomness in 
element properties should be equivalent to the unit cell response. However, inevitable small 
imperfections of elastic member properties in different unit cells may introduce significant 
deviations from the basic unit cell response. Some of our pilot studies suggest that the critical 
force value at the NESE transition may shift in both directions, while the reverse transition 
typically shifts toward the center of the hysteresis, and a step-like character of the transitions can 
be expected also, see Fig.10. Collective behavior of the bistable periodic NESE medium will 
certainly have many interesting properties of its own and should be studied more systematically 
in a separate effort using nonlinear dynamics methods [23-24]. Among these properties are the 
switching wave propagation speed [24], self-synchronization capabilities, influence of damping 
components, relaxation transients, effect boundary conditions and loading constrains, and other 
interesting features. Other simple types of the NESE unit cells should also be sought in the 
future.   
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Appendix 

 

Analytical solution of the equations (21) for the potential (17): ݂ሺݕ, ܾሻ ൌ ௕௬ሺସି଺௬ା௕௉మሻଶ௉భ ,     ܽሺݕ, ܾሻ ൌ െ ଼௕൫ଵି଺௬ା଺௬మ൯௉భమଶ଻௬మሺଶା௕ିଷ௕௬ାଶ௕௬మሻమሺଵା௉భሻయ, ݔሺݕ, ܾሻ ൌ ௬ሺଵଶାଶ௕൫଻ିଶସ௬ାଵ଼௬మ൯ାଷ௕మ௉మሻସ௉భ        (A1) 

Here, the following notations are used:   

ଵܲ ൌ 3 ൅ ܾ െ ݕ6ܾ ൅ ଶ,    ଶܲݕ6ܾ ൌ 1 െ ݕ9 ൅ ଶݕ26 െ ଷݕ30 ൅  ସ    (A2)ݕ12


