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When subjected to flow, the structures of many soft matter systems become anisotropic due
to the symmetry breaking of the spatial arrangements of constituent particles at the microscopic
level. While it has now been a common practice to use various small angle scattering techniques to
explore the flow-induced microstructural distortion, how the three-dimensional anisotropic structure
can be faithfully reconstructed from the two-dimensional small-angle scattering spectra has not
been thoroughly discussed in the literature. In this work, we rigorously address this issue from a
mathematical perspective by using real spherical harmonic expansion analysis. We first show that,
except for the cases where the mechanical perturbation is sufficiently small, the existing small-angle
scattering techniques in general do not provide the complete information of structural distortion.
This limitation is caused by the linear dependence of certain spherical harmonic basis vectors on
the flow-vorticity and flow-velocity gradient planes in the Couette shear cell. To circumvent the
constraint imposed by this geometry, an alternative approach by using a parallel sliding plate shear
cell with a central rotary axis along the flow direction is proposed. From the calculation of rotation
of reference frame, we demonstrate the feasibility of this experimental implementation for fully
resolving three-dimensional anisotropic structure via a case study of sheared polymers.

PACS numbers: 61.05.fg, 83.85.Cg, 83.85.Hf

I. INTRODUCTION

The spatial arrangement of the constituent particles
of a soft matter system is driven out of the equilibrium
configurations under flow and deformation. There has
been much scientific as well as technological interest in
understanding how the structural distortion at the par-
ticle level is connected to the macroscopic rheological
properties [1, 2]. Two-point correlation functions, such
as the pair distribution function g(r) in real space or
the inter-particle structure factor S (Q) in reciprocal Q
space, are of particular interest for rheology of complex
fluids, because these quantities can be probed experimen-
tally. They have been extensively used in the theoretical
and computational investigations in the past as a vehi-
cle for exploring the microscopic origin of the viscoelastic
behavior in non-equilibrium liquids. Recent studies of ex-
periments and theory, on colloidal dispersions, were also
able to investigate the 3D structural deformation, using
confocal microscopy experiments, Brownian and molecu-
lar dynamic simulations, and the mode-coupling theory
[3–7].
In order to quantify the structural distortion under dif-

ferent flow conditions, the anisotropic pair distribution
function g(r) has been expressed in terms of real spheri-
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cal harmonics (RSH) in a series of computational studies
in the past [1, 8–12]. The coefficients associated with
different basis vectors, which are related to a number of
flow properties such as shear stress and normal stress dif-
ference contributed by the inter-particle interaction, can
be straightforwardly computed due to the orthogonality
of RSH functions in the three-dimensional (3D) space.
Parallel to these computational studies, there has been

a considerable amount of experimental effort, mainly
from small-angle scattering (SAS) measurements, to in-
vestigate the structural evolution of various soft mat-
ter systems under various flow conditions in the non-
Newtonian regime [13–20]. Unlike computer simulations,
the 3D structural information has to be reconstructed
from two-dimensional (2D) spectra in small-angle scat-
tering experiments. In the case of uniaxial stretching, we
have recently demonstrated that the reconstruction can
be accomplished by SAS measurement on a single plane
parallel to the stretching direction, due to the cylindrical
symmetry of the deformation [21]. However, the recon-
struction problem for the shear geometry has not been
completely solved. Because of the low symmetry of shear
deformation, it is still unclear whether SAS experiments
on the conventional flow-vorticity (xz) and flow-velocity
gradient (xy) planes can always provide the full informa-
tion about micro-structural changes.
In this work, we address the aforementioned challenge

from a mathematical perspective. We demonstrate that
SAS experiments on the xz and xy planes of a Couette
cell in general only yield partial information on the 3D
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anisotropic structure. The linear dependence among cer-
tain RSH basis vectors on these two planes inherently
prohibits the full reconstruction when the structural per-
turbation is large. To bypass this intrinsic constraint of
the Couette geometry, we propose an alternative parallel-
plate shear cell with a central rotary axis along the flow
direction. We show that additional information among
the coefficients of the relevant RSH functions can be ob-
tained by tilting the parallel plates, which makes up the
underdetermined linear equations originating from the
linear dependence of the basis vectors and thus permits
full restoration of the 3D distorted structure.
The paper is organized as follows: In Sec. II, we

present a detailed analysis of the anisotropic structure
obtained from the scattering measurements with the
Couette cell and demonstrate the validity and limita-
tion of this geometry for the structural reconstruction
via the RSH analysis. We then proceed to introduce the
RSH analysis on the non-equilibrium structure factor ob-
tained from the scattering measurements with parallel
plates with a rotary axis and demonstrate its capability
of extracting the complete information of structural dis-
tortion for sheared polymers in Sec. III. Discussions and
conclusions are presented in Sec. IV.

II. REAL SPHERICAL HARMONICS

EXPANSION OF STRUCTURE FACTOR

First, let us briefly review some of the basics of the real
spherical harmonic expansion technique. To investigate
the anisotropic properties, in ref. [11] the structure factor
of the sample in a rheo-SAS experiment is expanded as
a linear combination of RSH:

S(Q) =

∞
∑

l=0

l
∑

m=−l

Sm
l (Q)Y m

l (θ, φ), (1)

where S(Q) is the structure factor of molecules, Q is the
momentum transfer between the beam and molecules, l
andm are both integers, Q is the magnitude ofQ, Sm

l (Q)
are coefficients as a function of Q, θ is the angle with
respect to the z-axis, φ is the polar angle with respect to
x-axis on the xy-plane, and Y m

l (θ, φ) are RSH defined as

Y m
l (θ, φ) =







√
2Am

l P
|m|
l (cos θ) sin(|m|φ) ,m < 0
Am

l Pm
l (cos θ) ,m = 0√

2Am
l Pm

l (cos θ) cos(mφ) ,m > 0

,(2)

where Am
l =

√

(2l + 1)(l − |m|)!/(l + |m|)! and Pm
l is

the associated Legendre polynomials.
Considering the case of shear flow (Fig. 1), where x, y,

and z are the direction of flow velocity, velocity gradient,
and vorticity, respectively, the S(Q) has the symmetrical
conditions: S(Q, θ, φ) = S(Q, π − θ, φ) and S(Q, θ, φ) =
S(Q, θ, φ + π). This puts restrictions on the values of l
and m: the l and m must both be even, since the Pm

l

Figure 1. Schematic representation of the Couette cell with
the reference frame, where v is velocity, ∇v is velocity gradi-
ent, ω is vorticity, and the height L is much larger than the
gap r.

and trigonometric functions satisfy the identities

Pm
l [cos (π − θ)] = (−1)l+mPm

l (cos θ),

sin [m(φ+ π)] = (−1)m sin(mφ),

cos [m(φ+ π)] = (−1)m cos(mφ). (3)

Therefore, the structure factor is simplified as

S(Q) =
∑

l,m:even

Sm
l (Q)Y m

l (θ, φ). (4)

In rheo-SAS experiments, one does not have full ac-
cess to the 3D structure factor, but the cross sections of
S(Q) on 2D planes. In other words, one now has to deal
with 2D basis that are linear dependent on each other.
Therefore, the information on different planes is gener-
ally needed to determine the spherical harmonic expan-
sion coefficients. To further demonstrate this point, in
the following sections we will consider the truncation of
real spherical harmonic expansion (RSHE) at l = 2 and
l = 4, respectively. For the sake of simplicity, the follow-
ing shorthand notations will be used in our discussion:

Sm
l ≡ Sm

l (Q), Y m
l ≡ Y m

l (θ, φ), ξ ≡ cos θ,

Y l,m
xy ≡ Y m

l (π/2, φ), Y l,m
xz ≡ Y m

l (θ, φ = 0, π/2),

Y l,m
yz ≡ Y m

l (θ, φ = π/2, 3π/2).

Coefficient Extraction for Real Spherical Harmonics

Expansion Truncated at l = 2

When the degree of microscopic deformation is small, it
suffices to truncate the real spherical harmonic expansion
at l = 2:

S(Q) = S0
0Y

0
0 + S−2

2 Y −2
2 + S0

2Y
0
2 + S2

2Y
2
2 . (5)

It is easy to see that the structure factor on the xy-plane
(θ = π/2) is

S(Q, θ = π/2, φ) ≡ Sxy(Q,φ) =
∑

l,m Sm
l Y l,m

xy

= S0
0 −

√
5
2 S0

2 +
√
15
2 S2

2 cos(2φ) +
√
15
2 S−2

2 sin(2φ), (6)
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where the four unknown coefficients require four linear
independent equations (LIEs) to be solved. These equa-
tions can be found by carrying out the weighting integral
of Sxy(Q,φ) and Y l,m

xy with respect to φ

Sl,m
xy ≡ 1

2π

∫ 2π

0

Sxy(Q,φ)Y m
l (φ)dφ. (7)

As a consequence,

S0,0
xy = S0

0 −
√
5
2 S0

2 ,

S2,2
xy = 15

8 S2
2 ,

S2,−2
xy = 15

8 S
−2
2 . (8)

Since Y 0,0
xy and Y 2,0

xy basis are coupled together on xy-

plane, carrying out S2,0
xy will yield no more information.

To get more information of structure factor, we should
seek to the 2D signal on other planes. On the xz-plane,
the structure factor truncated at l = 2 is

S(Q, θ, φ = 0) ≡ Sxz(Q, θ) =
∑

l,m Sm
l Y l,m

xz

= S0
0 +

√
5
2 S0

2(3 cos
2 θ − 1) +

√
15
2 S2

2 sin
2 θ (9)

Similarly, we have the following weighting integral(s) of
Sxz(Q, θ) and Y l,m

xz with respect to θ

Sl,m
xz ≡ 1

2

∫ π

0
Sxz(Q, θ)Y l,m

xz sin θdθ

= 1
2

∫ 1

−1 Sxz(Q, ξ)Y l,m
xz dξ. (10)

Therefore,

S0,0
xz = S0

0 +
√

5
3S

2
2 . (11)

We emphasize that the left-hand sides of Eqs. (8) and
(11) are quantities that could be accessed experimentally.
After some straightforward algebraic calculations, we can
explicitly express Sm

l in terms of the weighting integrals:

S0
0 = S0,0

xz − 8
3
√
15
S2,2
xy ,

S0
2 = 2√

5
S0,0
xz − 16

15
√
3
S2,2
xy − 2√

5
S0,0
xy ,

S2
2 = 8

15S
2,2
xy ,

S−2
2 = 8

15S
2,−2
xy . (12)

Equation (11) is valid for the systems with small struc-
tural perturbation. It should be noted that S0

2 and S−2
2

can be measured on xy-plane alone without additional
information from the xz-plane. Together, the SAS mea-
surements on the xz- and xy-planes are sufficient for the
extraction of all the Sm

l , provided S(Q) can be truncated
at l = 2. Experimentally, however, it is generally diffi-
cult to measure the structure on the xy-plane, due to
technical challenges such as multiple scattering.

Coefficient Extraction for Real Spherical Harmonics

Expansion Truncated at l = 4

As the microscopic deformation becomes larger, the
RSHE truncated at l = 2 can no longer precisely describe

the scattering spectrum. For example, the l = 4 term of
cubic symmetry can be significant for soft-sphere systems
[11]. In such a case, we should consider the RSHE of
S(Q) up to l = 4:

S(Q) = S0
0Y

0
0 + S−2

2 Y −2
2 + S0

2Y
0
2 + S2

2Y
2
2 + S−4

4 Y −4
4

+ S−2
4 Y −2

4 + S0
4Y

0
4 + S2

4Y
2
4 + S4

4Y
4
4 , (13)

with 9 undetermined expansion coefficients. As we shall
show below, it is not feasible to extract all Sm

l coefficients
on the convectional planes, namely the xy, xz, and yz
planes, where only 8 LIEs can be established.
The structure factor on xy-plane is

Sxy(Q,φ) = S0
0 −

√
5
2 S0

2 + 9
8S

0
4 + (

√
15
2 S2

2 − 3
√
5

4 S2
4) cos(2φ)

+ (
√
15
2 S−2

2 − 3
√
5

4 S−2
4 ) sin(2φ) + 3

√
35
8 S−4

4 sin(4φ)

+ 3
√
35
8 S4

4 cos(4φ), (14)

which is a Fourier series with the five linear indepen-
dent basis: [1, cos(2φ), cos(4φ), sin(2φ), sin(4φ)]. In other
words, no matter what weighting function we use, the re-
sulting weighting integrals can yield at most 5 LIEs, due
to the coupling of RSH on the xy-plane. Similar to the
situation of l = 2, from the weighting integrals, we have

S0,0
xy = S0

0 −
√
5
2 S0

2 + 9
8S

0
4 ,

S2,2
xy = 15

8 S
2
2 − 15

√
3

16 S2
4 ,

S2,−2
xy = 15

8 S
−2
2 − 15

√
3

16 S−2
4 ,

S4,4
xy = 315

128S
4
4 ,

S4,−4
xy = 315

128S
−4
4 . (15)

On the other hand, the structure factor on the xz-plane
is

Sxz(Q, θ) = S0
0 +

√
5S0

2P
0
2 (ξ) +

√

5
12S

2
2P

2
2 (ξ)

+ 3S0
4P

0
4 (ξ) +

√
5

10 S
2
4P

2
4 (ξ) +

√
35

280 S
4
4P

4
4 (ξ). (16)

On the xz-plane, [Y 0,0
xz , Y 2,0

xz , Y 2,2
xz , Y 4,0

xz , Y 4,2
xz , Y 4,4

xz ] form
a linear dependent set that can be expressed in terms of
three proper basis of them. For example,

Y 2,2
xz =

√
15
3 Y 0,0

xz − 1√
3
Y 2,0
xz ,

Y 4,2
xz = 1√

5
Y 0,0
xz + Y 2,0

xz − 2√
5
Y 4,0
xz ,

Y 4,4
xz = 7√

35
Y 0,0
xz − 2√

7
Y 2,0
xz + 1√

35
Y 4,0
xz . (17)

Alternatively, this can be verified by computing the rank
of the matrix whose elements are the coefficients of ξ
power in Y l,m

xz (ξ). Since the rank of the matrix rank is 3,
we confirm that this set contains three linear independent
basis. Therefore, measurements on the xz-plane provide
the following three equations from the weighting integrals
with respect to ξ

S0,0
xz = S0

0 +
√

5
3S

2
2 +

√

1
5S

2
4 +

√

7
5S

4
4 ,

S2,0
xz = S0

2 −
√

1
3S

2
2 + S2

4 −
√

4
7S

4
4 ,

S4,0
xz = S0

4 − 2√
5
S2
4 + 1√

35
S4
4 . (18)
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However, the equation of S4,0
xz is linear dependent to

the other seven LIEs and should be removed. To get
a complete set of nine LIEs, one might want to examine
the structure factor on the yz-plane to gain the remaining
two. In particular, an additional equation is needed to
decouple S−2

2 and S−2
4 . However, this turns out to be

impossible because the structure factor on yz-plane (φ =
π/2, 3π/2) is

Syz(Q, θ) = S0
0 +

√
5S0

2P
0
2 (ξ)−

√

5
12S

2
2P

2
2 (ξ)

+ 3S0
4P

0
4 (ξ)−

√
5

10 S
2
4P

2
4 (ξ) +

√
35

280 S
4
4P

4
4 (ξ), (19)

which will produce the LIEs, from the weighting inte-
grals, with the same Sm

l terms as those of Sl,m
xz . Since

neither Eq. (16) nor Eq. (19) contains S−2
2 and S−2

4 ,
these coefficients cannot be determined. In other words,
S−2
2 and S−4

4 are coupled together on the xy-plane and
disappear on the xz- and yz- planes. From the yz-plane,
we obtain an additional LIE for the other coefficients:

S4,0
yz =

1

2

∫ 1

−1

Syz(Q, ξ)Y 4,0
yz dξ

= S0
4 +

2√
5
S2
4 +

1√
35

S4
4 . (20)

Combining Eqs. (15), (18), and (20), we arrive at the
following solutions for Sm

l :

S0
0 = 7

9S
0,0
xy + 4

√
15

135 S2,2
xy + 2

9A1 +
7
√
5

18 A2 − 7
8A3,

S0
2 =

√
5
9 S0,0

xy + 44
√
3

135 S2,2
xy −

√
5
9 A1 +

23
18A2 −

√
5
8 A3,

S2
2 = −

√
15
9 S0,0

xy + 4
45S

2,2
xy +

√
15
9 A1 − 5

√
3

18 A2 +
√
15
8 A3,

S−4
4 = 128

315S
4,−4
xy

S0
4 = 4

9S
0,0
xy + 16

√
15

135 S2,2
xy − 4

9A1 +
2
√
5

9 A2 +
1
2A3,

S2
4 = −

√
5(29S

0,0
xy + 8

√
15

135 S2,2
xy − 2

9A1 +
√
5
9 A2 − 1

4A3),

S4
4 = 128

315S
4,4
xy ,

2S−2
2 −

√
3S−2

4 = 16
15S

2,−2
xy , (21)

where A1 = S0,0
xz − 128

√
35

1575 S4,4
xy , A2 = S2,0

xz +
256

√
7

2205 S4,4
xy , and

A3 = S4,0
yz − 128

√
35

11025 S4,4
xy . For the experimental measure-

ments on these three planes, the explicit formula of Eq.
(21) can act as a convenient tool for experimetalists to
extract the available information. We see that for RSHE
truncated at l = 4, S−4

4 and S4
4 can be determined by

SAS measurement on the xy-plane alone. All the three
planes, xy, xz, and yz are needed for S0

0 , S
0
2 , S

2
2 , S

0
4 , and

S2
4 , while S−2

2 and S−2
4 clearly cannot be separated.

We note that in Ref. [19], 12 linear equations are im-
plicitly used to numerically extract all the 9 coefficients
Sm
l of RSHE truncated at l = 4. However, as we have

demonstrated mathematically, this cannot possibly be
done without invoking additional assumptions. Eq. (21)
tells us that S−2

2 can be drawn out of the xy-plane only
when S−2

4 is much smaller than S−2
2 , which is actually

valid for the system with small perturbation. However,

Figure 2. Schematic representation of the coordinate system
set-up. (a) Reference frames for plate cell [x′, y′, z′] and sam-
ple [x, y, z]. (b) The rotation of plate cell about x-axis at an
angle α. (c) The rotation of plate about z-axis at an angle α.

once higher order terms are needed for a full description
of the structural changes, e.g. for high shear rates and
shear strains, measurements on the conventional planes
become inadequate. Moreover, the long path length (> 5
mm) for the xy-plane measurement often leads to multi-
ple scattering, and the cross section of Sm

l with m < 0 on
yz-plane is nearly zero, making it difficult to carry out
experiments on these two planes. To overcome these dif-
ficulties, we propose to use the parallel-plate sliding cell
tilted at different angles to obtain information on uncon-
ventional planes as shown in Fig. 2. Consequently, a
new data analysis method for this cell geometry need to
developed. In the next section, the rotation of reference
frame is introduced to resolve all the Sm

l coefficients up
to l = 4, providing a useful tool for investigating the mi-
croscopic mechanism of soft matter systems under flow
and deformation.

III. ROTATION TRANSFORMATION OF REAL

SPHERICAL HARMONICS

Considering the case, the incident beam is along the
y-axis, and the parallel-plate cell lies on the xz-plane
as shown in Fig. 2(a). The direction of flow velocity,
velocity gradient, and vorticity are x, y, and z, respec-
tively. Due to the constraint of the cell and data analysis
in rheo-SAS experiments, measurements on the xy-plane
and yz-plane are intrinsically complicated due to prob-
lems such as multiple scattering arising from the long
path length. Therefore, it is highly desired to extract
structural information from other unconventional planes,
by rotating xz-plane about x-axis or z-axis by an angle
α or γ (Fig. 2(b) and (c)). In experiments, this oper-
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ation corresponds to the rotation of the shear cell. As
we shall see below, this cell rotation approach is not only
feasible but also beneficial for rheo-SAS experiments and
subsequent data analysis. For the sake of simplicity, we
introduce the following vector notations for Sm

l and Y m
l :

~Sl=2 = [S−2
2 , S0

2 , S
2
2 ],

~Yl=2 = [Y −2
2 , Y 0

2 , Y
2
2 ],

~Sl=4 = [S−4
4 , S−2

4 , S0
4 , S

2
4 , S

4
4 ],

~Yl=4 = [Y −4
4 , Y −2

4 , Y 0
4 , Y

2
4 , Y

4
4 ]. (22)

Hence, the structure factor truncated at l = 4 can be
re-written as

S(Q) = S0
0Y

0
0 + ~Sl=2

~Y t
l=2 + ~Sl=4

~Y t
l=4, (23)

where t is the symbol of matrix transpose. We note that
in this expression the l ≥ 2 coefficients are the anisotropic
terms whereas the isotropic S0

0 is invariant under rotation
transformation.

Rotation of Reference Frame

First, let us consider the passive rotation in Fig. 2(b),
about z-axis by an angle γ, which transforms original
coordinates [x, y, z] into new coordinates [x′, y′, z′]. The
transformation, which does not alter the molecular sym-
metry of soft matter systems under steady shear flow,
can be expressed by matrix multiplication





x′

y′

z′



 =





cos γ sin γ 0
− sin γ cos γ 0

0 0 1









x
y
z



 (24)

Correspondingly, the original Y m
l in [x, y, z] frame are

transformed into a new set of RSH, Ŷ m
l , in [x′, y′, z′]

frame. For a given l, Ŷ m′

l and Y m
l are related through

the following matrix multiplication [22, 23]:

~̂
Y t
l = ~Rl

z(γ)~Y
t
l = ~Cl ~Dt

l (0, 0, γ)(~C
l)†~Y t

l , (25)

where ~Dt
l (0, 0, γ) is the Wigner D function in the zyz con-

vection of Euler angles [24], † is the symbol of conjugate
transpose, and

~Cl = 1√
2

























i 0 · · · 0 · · · 0 (−i)2l+1

0 i · · · 0 · · · (−i)2l−1 0
...

...
. . .

... . .
. ...

...

0 0 · · ·
√
2 · · · 0 0

...
... . .

. ...
. . .

...
...

0 1 · · · 0 · · · (−1)l−1 0
1 0 · · · 0 · · · 0 (−1)l

























.(26)

Since the z-rotation preserves the molecular symme-
tries, i.e., S(Q, θ, φ) = S(Q, π − θ, φ) and S(Q, θ, φ) =
S(Q, θ, φ + π), in the [x′, y′, z′] coordinates the [l,m]
must still be positive even or zero. The dimensions of

~Rl
z(γ) can be narrowed down from (2l + 1) × (2l + 1)

to (l + 1) × (l + 1) in our calculation. Therefore, the
transformation can be written as

Ŷ 0
0 = Y 0

0 ,

~̂
Yl=2 = ~Rl=2

z (γ)~Yl=2,

~̂
Yl=4 = ~Rl=4

z (γ)~Yl=4, (27)

where ~Rl=2
z (γ) and ~Rl=4

z (γ) are 3× 3 and 5× 5 matrices,
respectively:

~Rl=2
z (γ) =





cos 2γ 0 − sin 2γ
0 1 0

sin 2γ 0 cos 2γ



 ,

~Rl=4
z (γ) =











cos 4γ 0 0 0 − sin 4γ
0 cos 2γ 0 − sin 2γ 0
0 0 1 0 0
0 sin 2γ 0 cos 2γ 0

sin 4γ 0 0 0 cos 4γ











.(28)

Next, we consider the rotation in Fig. 2(c), about x-
axis by an angle α, which is much more complicated than
the z-rotation since the molecular symmetries are broken
under x-rotation. The passive transformation between
[x′, y′, z′] and [x, y, z] is





x′

y′

z′



 =





1 0 0
0 cosα sinα
0 − sinα cosα









x
y
z



 . (29)

The corresponding x-rotation transformation of RSH is

~Rl
x(α) = ~Cl ~Dt

l (−π/2, α, π/2)(~Cl)†, (30)

since a series of zyz rotation, at the angles: π/2, α,
and −π/2, respectively, yields the rotation about x-axis
at an angle α. For the sake of simplicity, cos(nα) and
sin(nα) are denoted as cn and sn, respectively, where
n = 1, 2, 3, 4. The corresponding x-rotation matrices for
l = 2 and l = 4 are

~Rl=2
x (α) =















c1 0 0 s1 0

0 c2
√
3
2 s2 0 s2

2

0 −
√
3
2 s2

3c2
1
−1
2 0 −

√
3
2 s21

−s1 0 0 c1 0

0 − s2
2 −

√
3
2 s21 0

c2
1
+1
2















,

~Rl=4
x (α) =

[

~Rl=4
x1

~Rl=4
x2

~Rl=4
x3

]

,

~Rl=4
x1 =





































c1(c
2

1
+1)

2 0
√
7c1(c

2

1
−1)

2

0
3c2

1
+4c4

1
−3

4 0

−
√
7
2 c1s

2
1 0

c1(7c
2

1
−5)

2

0
√
7(2c2

2
−c2−1)
8 0

0
√
70s3

1
c1

4 0
√
14
4 s31 0

√
2s1(7s

2

1
−6)

4

0 −
√
14

2 s1c
3
1 0√

2
4 s3 0

√
14(s3−2s1)

4

0 −
√
2(14s2+s4)

32 0





































,
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~Rl=4
x2 =





































0 0
−
√
14s3

1

4√
7(2c2

2
−c2−1)
8

−
√
70s3

1
c1

4 0

0 0
√
2s1(6−7s2

1
)

4
28c4

1
−27c2

1
+3

4

√
10s2(7c

2

1
−3)

8 0√
10s2(3−7c2

1
)

8
35c4

1
−30c2

1
+3

8 0

0 0
c1(7c

2

1
−3)

4√
2(2s2−7s4)

16

√
5s2

1
(7s2

1
−6)

4 0

0 0
3
√
7c1(c

2

1
−1)

4√
14(2s2−s4)

32

√
35s4

1

8 0





































,

~Rl=4
x3 =







































0 −
√
2s3
4 0√

14s1c
3

1

2 0 14s2+s4
16

√
2

0
√
14s1(2−3s2

1
)

4 0√
2(7s4−2s2)

16 0 7(s4−2s2)

16
√
14√

5s2
1
(7s2

1
−6)

4 0
√
35s4

1

8

0
3
√
7c1(c

2

1
−1)

4 0
7c4

1
−6c2

1
+1

2 0
√
7(c4

1
−1)

4

0
c1(9c

2

1
−5)

4 0√
7(c4

1
−1)

4 0
c4
1
+6c2

1
+1

8







































. (31)

Coefficient Extraction by Rotation Transformation

Having established the basic language for describing
the rotation of the reference frame, let us now turn our
attention to the determination of expansion coefficients.
In the lab frame of Fig. 2, the beam direction is along the
y-direction, collecting the structural information of the
sample on the xz-plane. Considering a parallel sliding
plate cell tilted at an angle with respect to z-axis or x-
axis, one can rotate [x, y, z] coordinates about z-axis or x-
axis into [x′, y′, z′] coordinates to place the shear cell right
on the x′z′-plane. In the [x′, y′, z′] frame, the structure
factor is

S(Q) = S0
0 Ŷ

0
0 + ~Sl=2

~̂
Y t
l=2 +

~Sl=4
~̂
Y t
l=4

= S0
0Y

0
0 + ~Sl=2

~Rl=2~Y t
l=2 +

~Sl=4
~Rl=4~Y t

l=4. (32)

For α = 0 or γ = 0,
~̂
Yl=2 = ~Yl=2 and

~̂
Yl=4 = ~Yl=4.

The structure factor is invariant under rotation trans-
formation, which involves the transformation between
basis in different coordinates. For convenience, we can

introduce the following notations, ~S = [S0
0 , ~Sl=2, ~Sl=4],

~R = [1, ~Rl=2, ~Rl=4], and ~Y = [Y 0
0 ,

~Yl=2, ~Yl=4]. The S(Q)

can thus be written as S(Q) = ~S ~R~Y t. LIEs on the xz-
plane can be established by taking weighting integral of
S(Q) and Y l,m

xz (ξ) with respect to ξ

Sl,m
xz = 1

2

∫ 1

−1 Sxz(Q, ξ)Y l,m
xz (ξ)dξ. (33)

Rotation method for l=2

For RSHE up to l = 2, we have the following LIEs on
the xz-plane

S0,0
xz = S0

0 +
√

5
3S

2
2 ,

S2,0
xz = S0

2 . (34)

There are different ways to rotate the shear cell in order
to obtain the remaining LIEs for solving all the expansion
coefficients.
Rotating the parallel sliding plate cell about x-axis by

π/4 leads to the following structure factor

S(Q) = S0
0 Ŷ

0
0 + ~Sl=2

~̂
Y t
l=2

= S0
0Y

0
0 + ~Sl=2

~Rl=2
x (α = π

4 )
~Y t
l=2

= S0
0Y

0,0
xz +

(S0

2
−
√
3S2

2
)

4 Y 2,0
xz

+
√
2
2 S−2

2 Y 2,1
xz +

(3S2

2
−
√
3S0

2
)

4 Y 2,2
xz , (35)

and hence the corresponding LIEs

Ŝ2,0
xz (

π
4 ) =

1
2 (S

0
2 −

√
3S2

2),

Ŝ2,1
xz (

π
4 ) =

√
2S−2

2 , (36)

where Ŝl,m
xz (α) is the weighting integral of S(Q) and Y l,m

xz

with respect to ξ on xz-plane for rotating the shear cell
about x-axis by an angle α. Therefore, the coefficients of
RSHE can be extracted as

S0
0 = S0,0

xz +
√
15
9 [2Ŝ2,0

xz (
π
4 )− S2,0

xz ],

S−2
2 =

√
2
2 Ŝ2,1

xz (
π
4 ),

S0
2 = S2,0

xz ,

S2
2 = 1

3 [S
2,0
xz − 2Ŝ20

xz(
π
4 )]. (37)

Rotating the sliding plate cell about the z-axis by π/4
leads to the following structure factor

S(Q) = S0
0 Ŷ

0
0 + ~Sl=2

~̂
Y t
l=2

= S0
0Y

0
0 + ~Sl=2

~Rl=2
z (γ = π

4 )
~Y t
l=2

= S0
0Y

0
0 + S0

2Y
2,0
xz − S−2

2 Y 2,2
xz , (38)

and hence the corresponding LIE

S̃0,0
xz (

π

4
) = S0

0 −
√

5

3
S−2
2 , (39)

where S̃l,m
xz (γ) is the weighting integral of S(Q) and Y l,m

xz

with respect to ξ on the xz-plane for rotating the cell
about z-axis by an angle γ.

Rotation method for l=4

For the sake of simplicity, ~Rz(γ) and ~Rx(α) are denoted
as the z-rotation at an angle γ and the x-rotation at an
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angle α, respectively. Similarly, take the integrals with
respect to ξ

S̃l,m
xz (γ) = 1

2
~S ~Rz(γ)

∫ 1

−1
~Y tY l,m

xz dξ,

Ŝl,m
xz (α) = 1

2
~S ~Rx(α)

∫ 1

−1
~Y tY l,m

xz dξ. (40)

Here we only consider the rotation method about the x-
axis. An alternative approach involving rotations about
both the x-axis and z-axis will be given in the appendix.

By measuring the SAS spectrum on the xz-plane and
subsequently rotating the cell about the x-axis by π/6
and π/4, we find the following nine LIEs through the
weighting integrals, after removing the linear dependent
ones:

S0,0
xz = [1, 0, 0,

√

5

3
, 0, 0, 0,

√

1

5
,

√

7

5
]~St,

S2,0
xz = [0, 0, 1,−

√

1

3
, 0, 0, 0, 1,

−2√
7
]~St,

S4,0
xz = [0, 0, 0, 0, 0, 0, 1,

−2√
5
,

1√
35

]~St,

Ŝ2,0
xz (

π
4 )= [0, 0,

1

2
,
−
√
3

2
, 0, 0,

−3
√
5

8
,
1

4
,
−19

√
7

56
]~St,

Ŝ2,1
xz (

π
4 )= [0,

√
2, 0, 0,

5

2

√

3

14
,

√
6

4
, 0, 0, 0]~St,

Ŝ4,0
xz (

π
4 )= [0, 0, 0, 0, 0, 0,

1

4
,
−3

√
5

10
,
17

√
35

140
]~St,

Ŝ4,1
xz (

π
4 )= [0, 0, 0, 0,

−3√
7
, 1, 0, 0, 0]~St,

Ŝ2,1
xz (

π
6 )= [0, 1, 0, 0,

13
√
21

56
,
5
√
3

8
, 0, 0, 0]~St,

Ŝ4,0
xz (

π
6 )= [0, 0, 0, 0, 0, 0, 0,

9

16
,
−3

√
5

8
,
41

√
35

560
]~St. (41)

Solving this set of LIEs yields the final solutions to ~S

S0
0 = S0,0

xz −
√
5

2
S2,0
xz +

65

8
S4,0
xz

+
√
5Ŝ2,0

xz (
π

4
) +

13

2
Ŝ4,0
xz (

π

4
) + 14Ŝ4,0

xz (
π

6
),

S−2
2 =

7
√
2

6
Ŝ2,1
xz (

π

4
) +

√
3

4
Ŝ4,1
xz (

π

4
)− 4

3
Ŝ2,1
xz (

π

6
),

S0
2 =

3

2
S2,0
xz − 7

√
5

2
S4,0
xz − Ŝ2,0

xz (
π

4
)

− 13
√
5

4
Ŝ4,0
xz (

π

4
) + 7

√
5Ŝ4,0

xz (
π

6
),

(42)

S2
2 =

√
3

2
S2,0
xz − 5

√
15

2
S4,0
xz −

√
3Ŝ2,0

xz (
π

4
)

− 11
√
15

4
Ŝ4,0
xz (

π

4
) + 5

√
15Ŝ4,0

xz (
π

6
),

S−4
4 = −

√
42

9
Ŝ2,1
xz (

π

4
)−

√
7

4
Ŝ4,1
xz (

π

4
) +

2
√
21

9
Ŝ2,1
xz (

π

6
),

S−2
4 = −

√
6

3
Ŝ2,1
xz (

π

4
) +

1

4
Ŝ4,1
xz (

π

4
) +

2√
3
Ŝ2,1
xz (

π

6
),

S0
4 =

33

8
S4,0
xz +

13

4
Ŝ4,0
xz (

π

4
)− 7Ŝ4,0

xz (
π

6
),

S2
4 =

7
√
5

4
S4,0
xz + 2

√
5Ŝ4,0

xz (
π

4
)− 4

√
5Ŝ4,0

xz (
π

6
),

S4
4 =

3
√
35

8
S4,0
xz +

3
√
35

4
Ŝ4,0
xz (

π

4
)−

√
35Ŝ4,0

xz (
π

6
).

To summarize, when the real spherical harmonic ex-
pansion is truncated at l = 2, we can measure the SAS
spectrum from the xz plane, rotate the shear cell about
the x-axis by π/4, and carry out additional SAS mea-
surements on the tilted sample. Eq. (37) is the working
equation for extracting all the four expansion coefficients
from these two planes. In the case of truncation at l = 4,
our new method is to perform SAS measurement on the
xz-plane and subsequently rotate the cell about the x-
axis by π/6 and π/4, respectively. Eq. (42) can be used
to fully resolve the nine coefficients.

Tests with Affine Deformation Model of Polymer

The affine deformation model of polymer can serve as
an ideal tool for testing the validity of our cell rotation
approach. When the segments of a Gaussian chain de-
forms affinely on all length scales, the single-chain struc-
ture factor (form factor) S(Q) under shear deformation
is:

S(Q) = 2
η2 [exp (−η) + η − 1],

η = R2
g,0[(1 + g2)Q2

x +Q2
y +Q2

z + 2gQxQy], (43)

where Rg,0 is the radius of gyration in equilibrium, g is
the strain since γ has denoted as the rotation angle about
z-axis, and [Qx, Qy, Qz] = Q[sin θ cosφ, sin θ sinφ, cos θ].
Since we are dealing with an analytical model, each
Sm
l (Q) term can be directly computed by the integral

Sm
l =

1

4π

∫ 2π

0

∫ π

0

S(Q)Y m
l sin θdθdφ. (44)

The RSHE spectrum of the affine deformation model
predicted by Eq. (44), with g = 0.3 and up to l = 4
order, is plotted in Fig. 3, where the contribution of each
Sm
l term can be evaluated. Under this condition, the

ratio of Sm
l+2 to Sm

l is on the order of 0.1, supporting the
truncation at l = 4. Next we examine the 2D SAS spectra
(Fig. 4) after rotating the sample cell about the x-axis by
π/4 and π/6, respectively. From the 2D spectra, we can
apply Eq. (42) to determine the expansion coefficients
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Figure 3. The profile of Sm
l versus Rg,0Q in the affine defom-

ration model of polymer. (a) S0

0 and (b) Sm
l with l 6= 0.

Figure 4. The 2D SAS spectra of rotating sample with g = 0.5
on the xz-plane of lab frame: (a) Ŝxz(

π

4
) and (b) Ŝxz(

π

6
).

Here, the spectra are computed using Eq. (43) with Qy = 0.

Sm
l . Fig. 5 compares these extracted coefficients from

l = 4 and l = 2 RSHE, with those obtained directly from
the 3D integral (Eq. (44)). It can be seen that the l ≥ 4
terms come to play in RSHE spectrum at high strains,
and RSHE truncated at l = 4 is sufficient to reconstruct
the spectrum of S−2

2 .

IV. CONCLUDING REMARKS AND

SUMMARY

In this work, we have restricted our discussions to the
shear geometry. For uniaxial extension, we have previ-
ously shown that the spherical harmonic expansion of
the single-chain structure factor of a polymer chain has
a much simpler form [21]:

S(Q) =
∑

l:even

S0
l (Q)Y 0

l (θ). (45)

Figure 5. Comparison with between the affine deformation
model of polymer and the (a) l = 2 and (b) l = 4 RSHE of
Eq. (37) and Eq. (42).

Because of the high symmetry of the uniaxial extension,
the spherical harmonic expansion coefficient S0

l of any
order l can be in principle obtained from SANS measure-
ment on a single plane parallel to the stretching direction
(e.g. the xz plane).
In contrast, as we show here the spherical harmonic

expansion coefficients are much more difficult to obtain
in the case of shear, even for small ls (2 and 4). Gener-
ally speaking, when the microscopic deformation is large,
reconstruction of the 3D distorted structures from 2D
SAS measurement becomes practically impossible for the
shear geometry.
This sharp contrast between shear and extension un-

derscores the fundamental role of the symmetry of flow in
the rheo-SANS experiments. On the philosophical level,
we generally cannot fully restore the 3D information by
examining a finite number of planes. This becomes possi-
ble, only when there are further restrictions on the molec-
ular symmetry. For uniaxial extension, the cylindrical
symmetry of the deformation significantly simplifies the
matter, making the determination of expansion coeffi-
cients straightforward. For shear, when the perturbation
is sufficiently small, we only need to truncate the expan-
sion at l = 2 or l = 4. Such a truncation can be equiva-
lently understood as additional symmetry requirement.
The analysis presented in this work has important im-

plications for rheo-SAS experiments. While the shear
geometry has been widely used, the pros and cons of dif-
ferent cell designs have not been thoroughly discussed
and considered in the context of experimentally accessi-
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ble information. For example, we have shown that in the
case of truncation at l = 4, SAS experiments on the xy-,
xz-, and yz-planes yield 5, 2, and 1 LIEs, respectively.
While the relative importance of these planes have been
intuitively understood previously, this issue has not been
addressed rigorously from a mathematical point of view.
For the sample rotation method proposed herein, only
certain cells are suitable for this approach. On the other
hand, although the current discussion has only touched
upon simple shear and uniaxial extension, our spherical
harmonic expansion approach is certainly applicable to
other types of deformation, such as planar and biaxial
extensions. Without question the consideration of the
deformation symmetry is also critical for the proper de-
sign of rheo-SAS experiments in these cases.
To conclude, we discuss the reconstruction of three-

dimensional anisotropic structure from small-angle scat-
tering experiments by using spherical harmonic expan-
sion analysis. Because of the low symmetry of the simple
shear geometry, the determination of expansion coeffi-
cients requires measurements on different planes. When
the structural distortion is large, a reconstruction of the
3D S(Q) becomes impossible in practice.
To address this challenge, we propose a new approach

to rheo-SAS by using a parallel sliding plate shear cell
with a central rotary axis along the flow direction. By ro-
tating the shear cell, all the spherical harmonic expansion
coefficients can be determined from measurements on two
and three special planes, respectively, for l = 2 and l = 4.
For l = 4, our proposal is to perform SAS measurement
on the xz-plane and subsequently rotate the cell about
the x-axis by π/6 and π/4, respectively. This design has
the potential to bypass the issue of multiple scattering
in the traditional Couette flow cell, as it does not re-
quire direct measurement on the xy-plane. Lastly, we
demonstrate this cell rotation method by using the affine
deformation model for polymers. Our approach produces
excellent results up to (microscopic) shear strain of 1.0,
for RSHE truncated at l = 4. We confirm that the higher
order terms cannot be neglected, when the mechanical
perturbation rises to a certain value.
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Appendix A: Rotation about x-axis and z-axis for

l = 4

In the main text of this paper, we describe a method
for l = 4 involving cell rotation about the x-axis by two
different angles. Alternatively, the extraction of Sm

l for
l = 4 RSHE can be achieved by rotating plate cell about
both the x-axis and z-axis. Similarly, one can find the
following nine LIEs:

S0,0
xz = [1, 0, 0,

√

5

3
, 0, 0, 0,

√

1

5
,

√

7

5
]~St,

S2,0
xz = [0, 0, 1,−

√

1

3
, 0, 0, 0, 1,

−2√
7
]~St,

S4,0
xz = [0, 0, 0, 0, 0, 0, 1,

−2√
5
,

1√
35

]~St,

Ŝ2,0
xz (

π
4 )= [0, 0,

1

2
,
−
√
3

2
, 0, 0,

−3
√
5

8
,
1

4
,
−19

√
7

56
]~St,

Ŝ2,1
xz (

π
4 )= [0,

√
2, 0, 0,

5

2

√

3

14
,

√
6

4
, 0, 0, 0]~St,

Ŝ4,0
xz (

π
4 )= [0, 0, 0, 0, 0, 0,

1

4
,
−3

√
5

10
,
17

√
35

140
]~St,

Ŝ4,1
xz (

π
4 )= [0, 0, 0, 0,

−3√
7
, 1, 0, 0, 0]~St,

S̃0,0
xz (

π
4 )= [1,−

√

5

3
, 0, 0, 0,−

√

1

5
, 0, 0,−

√

7

5
]~St,

S̃2,0
xz (

π
6 )= [0,

1

2
, 1,−

√
3

6
,

√

3

7
,
−
√
3

2
, 0,

1

2
,

√

1

7
]~St. (A1)

Here, we emphasize that S̃l,m
xz and Ŝl,m

xz correspond to the
rotation along the z- and x-axis, respectively. The set of

LIEs are solvable and give the solutions to ~S

S0
0 = −3.732S0,0

xz − 2.955S2,0
xz − 5.152S4,0

xz

− 5.494Ŝ2,0
xz (

π

4
) + 2.304Ŝ2,1

xz (
π

4
) + 2.179Ŝ4,0

xz (
π

4
)

+ 5.643Ŝ4,1
xz (

π

4
) + 4.732S̃0,0

xz (
π

4
) + 5.702S̃2,0

xz (
π

6
),

S−2
2 = −1.512S0,0

xz − 2.253S2,0
xz − 1.260S4,0

xz

− 1.803Ŝ2,0
xz (

π

4
) + 0.9717Ŝ2,1

xz (
π

4
)− 1.009Ŝ4,0

xz (
π

4
)

+ 2.813Ŝ4,1
xz (

π

4
) + 1.513S̃0,0

xz (
π

4
) + 3.155S̃2,0

xz (
π

6
),

S0
2 = 5.291S0,0

xz + 3.553S2,0
xz + 7.018S4,0

xz

+ 7.643Ŝ2,0
xz (

π

4
)− 2.576Ŝ2,1

xz (
π

4
)− 2.436Ŝ4,0

xz (
π

4
)

− 6.309Ŝ4,1
xz (

π

4
)− 5.291S̃0,0

xz (
π

4
)− 6.375S̃2,0

xz (
π

6
),
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S2
2 = 6.545S0,0

xz + 3.407S2,0
xz + 8.682S4,0

xz

+ 8.964Ŝ2,0
xz (

π

4
)− 3.187Ŝ2,1

xz (
π

4
)− 4.673Ŝ4,0

xz (
π

4
)

− 7.806Ŝ4,1
xz (

π

4
)− 6.545S̃0,0

xz (
π

4
)− 7.887S̃2,0

xz (
π

6
)

S−4
4 = 1.155S0,0

xz + 1.721S2,0
xz + 0.9621S4,0

xz

+ 1.377Ŝ2,0
xz (

π

4
)− 0.2020Ŝ2,1

xz (
π

4
) + 0.7697Ŝ4,0

xz (
π

4
)

− 2.479Ŝ4,1
xz (

π

4
)− 1.155S̃0,0

xz (
π

4
)− 2.409S̃2,0

xz (
π

6
),

S−2
4 = 1.309S0,0

xz + 1.952S2,0
xz + 1.091S4,0

xz

+ 1.561Ŝ2,0
xz (

π

4
)− 0.229Ŝ2,1

xz (
π

4
) + 0.8727Ŝ4,0

xz (
π

4
)

− 1.811Ŝ4,1
xz (

π

4
)− 1.309S̃0,0

xz (
π

4
)− 2.732S̃2,0

xz (
π

6
),

S0
4 = −2.366S0,0

xz − 0.9183S2,0
xz − 2.513S4,0

xz

− 3.865Ŝ2,0
xz (

π

4
) + 1.152Ŝ2,1

xz (
π

4
) + 1.089Ŝ4,0

xz (
π

4
)

+ 2.822Ŝ4,1
xz (

π

4
) + 2.366S̃0,0

xz (
π

4
) + 2.851S̃2,0

xz (
π

6
),

S2
4 = −3.023S0,0

xz − 1.173S2,0
xz − 4.569S4,0

xz

− 4.939Ŝ2,0
xz (

π

4
) + 1.472Ŝ2,1

xz (
π

4
) + 1.711Ŝ4,0

xz (
π

4
)

+ 3.605Ŝ4,1
xz (

π

4
) + 3.023S̃0,0

xz (
π

4
) + 3.643S̃2,0

xz (
π

6
),

S4
4 = −2.000S0,0

xz − 0.7761S2,0
xz − 3.392S4,0

xz

− 3.267Ŝ2,0
xz (

π

4
) + 0.9736Ŝ2,1

xz (
π

4
) + 2.611Ŝ4,0

xz (
π

4
)

+ 2.385Ŝ4,1
xz (

π

4
) + 2.000S̃0,0

xz (
π

4
) + 2.409S̃2,0

xz (
π

6
).

(A2)

The solutions for Sm
l are much more complicated than

the formula presented in the main text, since the z-
rotation contains less information than that of x-rotation.
Lastly, without tilting many angles about a single axis, it
should be feasible to rotate parallel-plate cell about dif-
ferent axes to gain additional information for extracting
high order terms, for example, the l = 6 terms.
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