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A two-dimensional continuum model of epithelial tissue mechanics was formulated using cellular-
level mechanical ingredients and cell morphogenetic processes, including cellular shape changes and
cellular rearrangements. This model incorporates stress and deformation tensors, which can be
compared with experimental data. Focusing on the interplay between cell shape changes and cell
rearrangements, we elucidated dynamical behavior underlying passive relaxation, active contraction-
elongation, and tissue shear flow, including a novel mechanism for contraction-elongation whereby
tissue flows perpendicularly to the axis of cell elongation. This study provides an integrated scheme
for the understanding of the orchestration of morphogenetic processes in individual cells in order to
achieve epithelial tissue morphogenesis.

I. INTRODUCTION

During tissue morphogenesis, tissues acquire their
unique shape and size through a series of deformations.
Morphogenesis occurs at multiple levels, and molecu-
lar, cellular, and tissue level changes are interdependent.
At cellular level, tissue deformation is accounted for by
changes in cell shape, position, and number (Fig. 1(a);
hereafter named cell morphogenetic processes), which are
triggered by biochemical signaling and forces generated
by cells [1–3]. While the tissue stress can affect cell
morphogenetic processes through the changes in molec-
ular activity and localization, cell morphogenetic pro-
cesses generate stress [4–10]. However, the mechanisms
by which the shape of a tissue emerges from these multi-
scale feedback processes remain unclear.
In order to clarify this, a coarse-grained description

and modeling of cellular and tissue dynamics at an ap-
propriate length scale is required: while the position and
timing of cell morphogenetic processes are stochastic at
single cell level, the averaging of values obtained over a
larger length scale yields a smooth spatial pattern that
is reproducible among different samples. We previously
determined the appropriate averaging length scale for de-
scribing epithelial tissue dynamics (several tens of cells in
a patch), and developed coarse-grained methods for mea-
suring stress and kinematics [11–14]. A force inference
method was used for the quantification of cell junction
tensions and cell pressures (Fig. 1(b), (c)), which can be
integrated to calculate a stress tensor [13–16]. A texture
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tensor method was used for the measuring of different cell
morphogenetic processes (e.g., cell division, cell shape
changes) in the same physical dimension, which can be
further integrated to obtain tissue scale, spatio-temporal
maps of tissue growth and cell morphogenetic processes
[12]. Together, these methods provide the information
on the amplitude, orientation, and anisotropy of tissue
stress, tissue growth, and cell morphogenetic processes,
and correlations between them [12].

A modeling scheme capable of accommodating the
quantitative data described above is still lacking [17].
Cell-based models, such as the cell vertex model (CVM)
[18], the cellular Potts model (CPM) [19], particle-based
models [20–22] and phase-field models [23–25], explicitly
consider a cellular shape. Among them, the CVM and
CPM are often employed for the simulation of epithe-
lial tissue morphogenesis (Fig. 1(d); [26–28]), and have
proven useful for including experimental data obtained
at cellular level, such as the laser ablation of cell junc-
tions or subcellular distribution of proteins. However,
the relationship between cell morphogenetic processes
and tissue scale deformation and rheology emerges from
numerical simulations without being directly tractable.
Continuum models allow the in-depth analysis of tis-
sue rheology [29, 30], yet in many cases do not include
the information of the cellular structure by construction,
and thus fail to discriminate between different cell mor-
phogenetic processes. A limited number of studies con-
sidered the degrees of freedom that represent cell mor-
phogenetic processes and cell polarity [30–33], but do
so in the context of macroscopic models, which do not
incorporate cell-level mechanical parameters explicitly.
The finite-element model introduced in [34] includes at
a coarse-grained level the contributions of cellular rhe-
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ology, shape changes, rearrangements and divisions. A
continuum model has been derived from the CVM pre-
viously but without considering cell rearrangements [35]
(see also [36, 37] in 1D).

The main aim of this study was to develop a two-
dimensional hydrodynamic model of the epithelial tissue.
This model included a field that represents coarse-grained
cell shape, which enabled us to treat different types of cell
morphogenetic processes distinctively. First, kinematics
was identified by decomposing tissue deformation into
cell shape changes and topological transitions. Follow-
ing this, by introducing an energy function deduced from
CVM/CPM, thermodynamic formalism was employed to
determine kinetics. The model we derived here describes
tissue deformation through stress and deformation ten-
sors, which can be compared with the data obtained ex-
perimentally [12–14], and can incorporate active terms
smoothly. We solved the model for several conditions
typical for deforming planar tissues during development,
and demonstrated that the model predicts the relaxation
of cellular shape following the tissue stretching, the rela-
tion of the direction of cell elongation and tissue flow
during active contraction-elongation (CE), and shear-
thinning in tissues. Our approach provides a theoreti-
cal framework that enables to assess how cellular level
mechanical parameters and cell morphogenetic processes
are integrated to realize tissue-scale deformation.

II. MODEL

A. Kinematics

1. Cellular shape tensor

To construct a continuum model, we characterized
each cell shape by using a 2 × 2 symmetric tensor M ,
with the unit of square length, which can be the texture
matrix [12], the gyration tensor of cellular mass, or can
simply be obtained by fitting the cell by an ellipse. With
appropriate scaling, each cell shape is quantified by the
expression (~r−~rc)

TM−1(~r−~rc) = 1 (Fig. 1(e)), where ~rc
represents the center of a cell and superscript T denotes
the transpose. Since the eigenvalues of M may be seen
as the square lengths of ellipse semi-axes, cell area can be
computed as A = π|M |1/2, where |M | is the determinant
ofM . By coarse-graining over a representative surface el-
ement comprising a sufficient number of cells [11, 12], we
obtained a spatially smooth tensor field M(~r). Similar to
the previously described texture tensor [12], the symmet-
ric tensor M(~r) represents measure of tissue scale defor-
mation in our model, which can be experimentally quan-
tified from segmented images of two-dimensional (2D)
epithelia. In the following, all fields that we introduce
are obtained by similar coarse-graining, see [11, 12] for
details of the practical implementation on experimental
data.

cell shape change
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FIG. 1. Schematic illustration of the model of epithelial me-
chanics. (a) Tissue deformation based on cellular shape de-
formation (left) and by cellular rearrangement (right). (b) In
epithelial tissues, cells adhere to each other via E-Cadherin
(green) at adherens junctions (AJ), and acto-myosin (red)
runs along the cell junctions. (c) Cell pressures (left) and
cell junction tensions (right) act in the AJ plane and deter-
mine epithelial cell shapes. (d) CVM schematic representa-
tion. Each cell is represented by a polygonal contour. (e,
f) Schematic illustration of the model presented here. (e) A
coarse-grained cellular shape tensor M represents the tissue-
scale cellular shape field in our model. (f) Kinematics of cel-
lular shape deformation. Cellular shape alterations through
tissue deformation ∇~v and topological changes in a network
of cellular junctions Dt, such as cell rearrangement, division,
and death.

2. Kinematic relationship

Total tissue deformation rate can be represented by
the tensor ∇~v, in which ~v is the velocity field. Here, we
used (∇~v)ij = ∂jvi, where indices i and j denote carte-
sian coordinates. The deformation rate ∇~v represents
the sum of its symmetric part D = (∇~v + [∇~v]T )/2 and
its antisymmetric part Ω =

(

∇~v − [∇~v]T
)

/2. We decom-
posed tissue deformation rate into the sum of contribu-
tions, due to the cellular shape alterations and other cell
morphogenetic processes, and here, we considered cell re-
arrangement, division, and death:

∇~v = Ω+Ds +Dt . (1)

The quantity Ω + Ds represents the tissue deformation
rate stemming from cellular shape alterations, while Dt

denotes the deformation rates that involve topological
changes in a network of cell junctions, i.e. cell rear-
rangement, division, and death. We assumed that these
processes are irrotational, so that Dt is symmetric. In
practice, these tensors can be experimentally determined
by cellular shape tracking. Using notations defined in
[12], Ds corresponds to the tensor S that quantifies the
rate of cell size and shape changes, and Dt corresponds
to the sum R +D + A of contributions due to cell rear-
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rangements R, cell divisions D, and apoptoses A.
Since cells adhere tightly to each other in an epithelial

tissue, cell shape changes are kinematically associated
with tissue deformation as [30]

dM

dt
− (∇~v −Dt)M −M(∇~v −Dt)

T = 0 , (2)

where dM/dt ≡ ∂tM + ~v · ∇M represents the Lagrange
derivative of M (Fig. 1(f)). When Dt = 0, the left-
hand side of Eq. (2) becomes the co-deformational upper-
convected derivative [38, 39]. The kinematic relationship
Eq. (2) was derived in the case of non-affine deforma-
tions in the rheology of polymer melts [40–42] where Dt

was interpreted as due to the slippage between polymer
molecules. An underlying assumption for Eq. (2) to hold
is that the velocity field be sufficiently smooth [43] (see
[30, 43–45] for derivations of (2) in the context of cellular
materials). As shown below, the kinematic relationship
Eq. (2) leads to a cell number balance equation (Eq. (4)
in Sec. II A 3) and an elastic stress tensor (Eq. (5) in Sec.
II B 1; see Appendix A1), which contrasts with another
type of a kinematic equation employed in earlier study
[33].

3. Cell number balance equation

The balance equation for cell number density is ob-
tained from the above kinematic relationship. From
Eq. (2), we calculate

d

dt
|M | = 2|M | (∇ · ~v − TrDt) , (3)

where Tr denotes the trace. The cell number density field
ρ is defined by ρ = 1/π|M |1/2, and its evolution equation
reads

∂ρ

∂t
+∇ · (ρ~v) = [TrDt]ρ . (4)

We identify TrDt as the variation rate of the cell number
density.
Although the effects of cell division and cell death

should be investigated in future studies, here we con-
sidered a situation in which individual cells only deform
elastically and/or intercalate. Hence, in this work, the
deformation rate involving topological change Dt is iden-
tical to that by cell rearrangement (intercalation) Dr.
Through cell rearrangement the tissue area is invariant
and the deformation rate is traceless (TrDr = 0), by
which Eq. (4) becomes the conservation equation for cell
number density.

B. Energy function and ground state

1. Energy function and elastic stress in an isotropic tissue

The energy functions introduced in cell-based models
depend on all cell configurations and include cell mechan-

ical properties, such as cell elasticity, cell adhesion and
cell-interface contractility. In our continuum model, we
introduce the tissue energy function F̃ =

∫

F d~r, where
F is the energy density per unit area. In the case of a
two-dimensional, isotropic tissue without any signal that
indicates orientational information, F is a function of the
invariants |M | and TrM .
For a given energy density F (M), the elastic stress is

obtained by

σe = FI +

(

∂F

∂M

)T

M +

(

∂F

∂M

)

MT , (5)

where I is the unit tensor (see Appendix A1). When the
tissue is isotropic and ∂F/∂M and M commute, Eq. (5)
further simplifies to

σe = FI + 2

(

∂F

∂M

)

M

=

(

F + 2
∂F

∂|M | |M |
)

I + 2

(

∂F

∂TrM

)

M , (6)

for which we used the relations ∂TrM/∂M = I and
∂|M |/∂M = |M |M−1. Since higher-order terms pro-
portional to Mn (n ≥ 2) can be eliminated by using the
Cayley-Hamilton formula in 2D, the elastic stress of an
isotropic tissue is expressed as

σe = −Π(|M |,TrM) I +Σ(|M |,TrM) M ′ , (7)

where Π(M) and Σ(M) are scalar functions of |M | and
TrM , and X ′ ≡ X− (TrX/2)I denotes the deviatoric
part of an arbitrary tensor X . The first and second
terms in Eq. (7) represent isotropic and deviatoric elastic
stresses, respectively.

2. Energy function deduced from the CVM/CPM

In the CVM and CPM, cell geometry can be deter-
mined by minimizing energy function [26, 46]

fc =
∑

i

K

2
(Ai −A0)

2
+
∑

[ij]

γ0ℓij +
∑

i

κ0

2
L2
i , (8)

where Ai and Li represent the area and perimeter, re-
spectively, of cell i, and ℓij is the length of the interface
between cells i and j. The first term represents cell-area
elasticity with elastic modulus K and reference cell area
A0. The second and third terms represent cell junction
tensions, where the tension is given by γ0 + κ0(Li +Lj).
Here, by using the cell shape tensor M(~r), we consid-

ered an energy function for the continuum model, which
is comparable with that of the CVM/CPM, Eq. (8). For
arbitrary semi-axes a, b, the perimeter of an ellipse can
be given by Euler’s formula (see Fig. S1 in Appendix)
[47]:

L(a, b) = π
√

2(a2 + b2)F
(

1

4
,−1

4
; 1;h2

)

, (9)
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where h = (a2 − b2)/(a2 + b2) and F is a hypergeo-
metric function. Using the Cayley-Hamilton equation,
we derived the identities a2 + b2 = TrM , (a2 − b2)2 =
TrM2−4|M |. Upon coarse-graining Eq. (8), we obtained
energy density per unit area

F =
1

π|M |1/2
[

K

2

(

π|M |1/2−A0

)2

+
γ0
2
L(M) +

κ0

2
L(M)2

]

,

(10)
where L(M) is defined for arbitrarily large cellular shape

anisotropy by

L(M) = π
√
2TrM F

(

1

4
,−1

4
; 1; 1− 4|M |

(TrM)2

)

. (11)

The total elastic energy F̃ was obtained by integration
F̃ =

∫

F (M(~r)) d~r.
We focused, for simplicity, on conditions close to the

isotropic case (see Appendix A2 for higher-order approx-
imations). Expanding F close to a = b, or (TrM)2 =
4|M |, the zero order energy can be written as

F =
1

π|M |1/2
[

K

2

(

π|M |1/2 −A0

)2

+
πγ0√
2

√
TrM + π2κ0TrM

]

, (12)

from which the elastic stress can be further derived as

σe = K(π|M |1/2−A0)I +

(

γ0√
2TrM

+ 2πκ0

)

M

|M |1/2 .

(13)
The first and second terms represent the isotropic pres-
sure −P ceI due to the area-elasticity of cells, and the
cellular shape-dependent stress σT due to cell junction
tensions, respectively. Eq. (13) is consistent with the ex-
pression of the Batchelor stress tensor [13, 14, 48] relat-
ing tissue-scale stress to cell pressures and cell junction
tensions. Note that σe and M commute, and therefore,
share the same eigendirections, which is consistent with
our previous observation showing that cells are elongated
along the inferred maximal stress direction in Drosophila
epithelia [6, 12, 13].
We performed numerical simulation of the CVM under

the isotropic and anisotropic stress environments, and
compared the coarse-grained stress with the true one (see
Appendix A2 for details). Coarse-grained cell shape M
was evaluated by averaging the second moment of cell
shape, and Euler expansion up to the second order was
considered. The results obtained here confirmed that the
coarse-grained stress values agree with those obtained for
the true one (Fig. 2(a,b) and Fig. S2 in Appendix).

3. Ground states of the system

Factorizing the tensor M as M = M0e
cΘ can be useful

[49], and here, M0 and c are scalar fields and Θ is a
symmetric, trace-less tensor field parameterized by the
angle θ as

Θ =

(

cos 2θ sin 2θ
sin 2θ − cos 2θ

)

. (14)

Since Θ2 = I, we deduced M = M0[cosh(c)I+sinh(c)Θ],
where M0 quantifies the coarse-grained cell area A =
π|M |1/2 = πM0, dimensionless parameter c characterizes

the coarse-grained cell shape anisotropy, and the angle
θ represents the direction of the major axis of ellipses.
Since TrM = 2M0 cosh(c), L(M) and F (M) depend only
on M0 and c.
For the energy function presented in Eq. (12), the en-

ergy per cell, AF (A, c = 0), is shown as a function of
A in Fig. 2(c) in the isotropic case c = 0. For large
values of γ0, the functional form becomes concave, indi-
cating thermodynamic instability of the state of homo-
geneous cell area. Fig. 2(d) shows F (A, c) as a function
of c at constant cell area. Circular cell shape (c = 0)
becomes unstable for sufficiently large negative values of
γ0, where cells no longer prefer a hexagonal configura-
tion, but adopt an elongated shape. We recovered two
instabilities described for the CVM [46, 50] (Fig. 2(e);
Appendix A3), showing that the tissue scale energy den-
sity F (M) retains the essential features of the original
cell-based models.

C. Thermodynamic formalism

1. Thermodynamic formalism and activities

Since existing cell-based models, including the CVM
and CPM, use ad hoc prescriptions for kinetics, we con-
sidered the thermodynamic formalism [51] in order to
derive generic hydrodynamic equations. We decompose
the total stress tensor σ into elastic stress σe and inelastic
stress σp as

σ = σe + σp , (15)

where σp is determined below. The entropy production
rate of an isothermal process was calculated as [41, 42]

T ṡ = σ :D − σe :Ds = σp :D + σe :Dr , (16)

where s is the entropy density, and T is the tempera-
ture. Here, a : b ≡ Tr [abT ] denotes the scalar product
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FIG. 2. Energy function and elastic stress. (a,b) Macro-
scopic stress expressions calculated from coarse-grained cel-
lular shape tensor M (symbols) are compared with the true
ones (solid lines) obtained using the CVM simulations (left
vertical axis), as a function of the non-dimensional parame-

ter γ0/KA
3/2
0 , with κ0/KA0 = 0.04. P ce and σT represent

the pressure stemming from cell elasticity and the stress gen-
erated by cell junction tensions, respectively. Blue triangles
denote the mean cellular shape aspect ratio (right vertical
axis), equal to e2c in terms of the cell shape anisotropy. The
external stress was set as σex

xy = σex
yy = 0, with (a) σex

xx = 0
(isotropic case) and (b) σex

xx 6= 0 (anisotropic case). A green
solid line overlaps with a red line in (a). (c) Energy per cell

as a function of the cell area A at γ0π
1/2 = −0.5, 0.0, 0.5, 1.0

and 1.5 with K = 1.0 and 2πκ0 = 0.4. (d) Energy density
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of A0.

of two arbitrary tensors a and b. Because Dr is trace-
less, we can replace σe by σe

′ in Eq. (16). By identifying
conjugate flux-force pairs as σp-D and Dr-σe

′, the fluxes
(σp, Dr) can be given by using the linear combinations of
the forces (D, σe

′):

σp = χssD − χsrσe
′ , (17)

Dr = χrsD + χrrσe
′ . (18)

The coefficients χss, χsr, χrs, and χrr are fourth-order
tensors that satisfy Onsager’s reciprocity (e.g., χsr

ijkl =

χrs
klij), and must be chosen to satisfy TrDr = 0 in

Eq. (18). Diagonal terms χssD and χrrσe
′ are dissipa-

tive terms, for which Maxwell’s model is obtained at

χss = χsr = 0 (σ = σe, σp = 0), and Kelvin-Voigt’s
model is obtained at χrs = χrr = 0 (D = Ds, Dr = 0)
[41, 42]. The term χssD characterizes dissipative stress
due to the tissue strain rate, and reduces to the usual
bulk and shear viscous terms for isotropic material. The
terms −χsrσe

′ and χsrD are reactive, representing slip-
page among cells (see below) and do not contribute to
the entropy production. According to Eq. (18), cell rear-
rangements may be driven both by the tissue strain rate
and by its elastic stress [5, 6, 52].
In the absence of external forces, the above equations

can predict the relaxation to the steady state, and are
not sufficient to address the active phenomena, such as
the sustained epithelial flow [53] or self-organized spatio-
temporal patterning [54]. Therefore, we included the for-
malism of active gels [55, 56], and added the term r∆µ
to the entropy production rate Eq. (16):

T ṡ = σp :D + σe
′ :Dr + r∆µ , (19)

where ∆µ represents the change in chemical potential
associated with a chemical reaction that supplies energy
to the system, and r is the reaction rate. By identifying
r-∆µ as an additional force-flux pair, additional terms σa

and Da, which we refer to as active stress and active cell
rearrangement, respectively, appeared in Eqs. (17) and
(18), both of which are proportional to ∆µ.

2. Constitutive relations

With the condition that Dr is traceless, the simplest
form of the force-flux relationships can be written as:

σp = η D′ + η′ (TrD)I − ν1σe
′ − ζ1∆µ I − ζ2∆µM ′ ,

(20)

Dr = ν1D
′ + η−1

1 σe
′ − β2∆µM ′ , (21)

where the coupling coefficients are scalar in an isotropic
system. In Eq. (20), η and η′ denote the tissue shear and
bulk viscosity, respectively. The term ν1D

′ of Eq. (21)
plays a role similar to that of the Gordon-Schowalter pro-
cess in the rheology of polymer melts [39]. Assuming ν1 >
0, it describes a process in which cells slip with respect to
each other at a rate proportional to the tissue deforma-
tion rate, whereas the term −ν1σe in Eq. (20)) indicates
a consequent stress reduction. In Eq. (20), we introduced
the active stress tensor as σa = − (ζ1I + ζ2M

′)∆µ. Us-
ing the terminology of active nematic liquid crystals, a
negative and positive ζ2 values correspond to a contrac-
tile and extensile, respectively, material [56]. These ac-
tivities are often attributed to myosin contractility, for
which ATP is consumed. More generally, all coupling
coefficients may depend on M ′, see Appendix B 1 for a
generalization of Eqs. (20-21) including lowest-order non-
linearities. The term coupling Dr and σe

′ in Eq. (21) un-
derlies the Maxwellian dynamics of the system, and in-
clude the positive coefficient η1 with the dimension of vis-
cosity. In Eq. (21), active cell rearrangements contribute
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to the constitutive equation for Dr as Da = −β2∆µM ′.
Both σa andDa are symmetric second-order tensors. Our
treatment of active stresses and active cell rearrange-
ments was similar to that suggested previously [33, 52],
since both approaches are inspired by the active gel mod-
els [55, 56].

Finally, the force balance equation was used to close
the system:

∇ · σ = −~fex, (22)

where ~fex represents the external force field, supple-
mented with the appropriate boundary conditions. Col-
lectively, the constitutive equations (Eqs. 13, 15, 20, 21)
with the kinematic relationships (Eqs. 1, 2) and the force
balance equation Eq. (22) determine hydrodynamic equa-
tions of a tissue.

III. APPLICATIONS

We investigated three simple examples of dynamical
behavior predicted by our model, including the passive
response following the axial stretch induced by an exter-
nal force, the deformation of a tissue due to the active
internal forces, and the generation of shear flow. Two as-
sumptions were used for simplicity to obtain the follow-
ing analytical solutions: 2D incompressibility of a tissue
(M0 is constant and TrD = div~v = 0; Appendix B 2)
and spatial homogeneity of all relevant fields.

A. Passive relaxation following the axial stretching

In Drosophila pupal wing, an external force from the
proximal part of the body is responsible for the stretch-
ing of the wing along the proximal-distal (PD) axis.
Upon the tissue stretching, wing cells elongate along the
PD axis, while the tissue relaxes during several hours
when cells intercalate and adopt a less elongated shape
[5, 6, 12, 52]. Below, we demonstrated that our model
can recapitulate this process, and determined the char-
acteristic relaxation time in terms of cell mechanical pa-
rameters.
We considered a tissue with an initial size lx × ly =

l0 × l0 and in an initial isotropic, uniform state where
the cell shape tensor is M = M0 I. From time t = 0,
the tissue elongates along the x-axis at the constant rate
l̇x/lx = ∂xvx = λ, and consequently, contracts along the

y-axis at the rate l̇y/ly = ∂yvy = −λ (Fig. 3(a)). When
the tissue size reaches αl0 × α−1l0, the stretching stops
(∂xvx = ∂yvy = 0). We attempted to identify a uniform
solution to the problem, so that Eq. (22) is automatically
verified when fex = 0. All tensor variables are diagonal
(M = M0e

cΘ with θ = 0 ). Since we consider a passive
process here and ignore active terms, we set ∆µ = 0.
Using Eq. (2), the time evolution of c can be written as:

ċ = 2(1− ν1)∂xvx − 2η−1
1 Γ(c) sinh(c) , (23)

where Γ(c) = γ0/2
√
M0 cosh c + 2πκ0 represents the

strength of cell junction tensions as a function of cell
mechanical parameters γ0 and κ0. The normal stress
components were

σxx = −p+ η ∂xvx + (1− ν1)Γ(c) sinh c , (24)

σyy = −p+ η ∂yvy − (1 − ν1)Γ(c) sinh c , (25)

where the pressure p was determined in order to satisfy
the incompressibility condition.
Setting α = 5, the time course of cell shape

anisotropy c(t) is presented for several values of λ in Fig-
ure 3(b). When |c| ≪ 1, the temporal evolution becomes
Maxwellian,

ċ+ 2η−1
1 Γ(0) c = 2(1− ν1)∂xvx. (26)

This equation explicitly relates the relaxation time for
cell rearrangements τr = η1/2Γ(0) to cell mechanical pa-
rameters. If the stretch rate is slower than this time
scale (τr < λ−1), the cells remain approximately circular
during cell rearrangement, which is in a sharp contrast
to transient cell elongation during the more rapid tissue
stretch.
Given cell junction tensions of the order of γ0 ≈

10−10N [57], and a cellular length scale of the order of
r ≈ 10−6 m, we expected Γ(0) ∼ γ0/r ≈ 10−4Nm−1.
Since the time scale for relaxation is of the order of a few
hours, τr ≈ 104 s [5, 6], we obtained the order of magni-
tude of the 2D viscosity coefficient η1 ∼ Γ(0)τr ≈ 1 Pa m
s. For comparison, we expected a 2D shear viscosity of
the order of η ≈ 1Pam s, provided by η = h η3D, where
h ≈ 10−5m represents the typical height of the epithe-
lium and η3D ≈ 105Pa s was determined in vitro in cell
aggregates [58, 59].

B. Active contraction-elongation (CE)

CE denotes the simultaneous shrinkage and expan-
sion of a tissue along two orthogonal axes [60], of-
ten controlled by the anisotropic localization/activity of
signaling/driving molecules, such as molecular motors
[1, 3, 11, 61, 62]. During the CE, cells are often elon-
gated along the axis perpendicular to the direction of
the tissue flow (Fig. 4(a)) [60–63] which may occur in or-
der to facilitate the force transmission along the axis of
tissue contraction, through the formation of multicellular
myosin cables through the mechanosensing of neighbor-
ing cells [62]. However, the mechanisms whereby tissue
deformation due to the cellular shape alterations counter-
act that due to the cell rearrangements remain unclear.
Here, we investigated the CE by extending our model

to include active stress and rearrangements provided by
signaling molecules oriented along a fixed direction, as
represented by a traceless tensorQ = ~n⊗~n−Tr (~n⊗ ~n)/2,
where ~n = (cosφ, sin φ)T represents a unit vector field
pointing to the direction φ. Possible feedbacks on the
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Schematics of CE in Xenopus embryo [60, 61]. Due to the
cell rearrangement, the tissue simultaneously shrinks along
the medio-lateral, y axis and elongates along the anterior-
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along the y-axis. (b) Phase diagram showing the dependence
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rate ∂xvx on the active parameters ζQ ∆µ and βQ ∆µ. Ellipses
illustrate cellular shape, and arrows point to the direction
of tissue flow. Parameter values are set as ν1 = 0.1 < 1,
η1 = 1.0 Pams, and η = 5.0 Pams.

signal activity were ignored. We considered the lowest-
order active contributions

σa = −ζ1 ∆µ I − ζQ ∆µQ , (27)

Da = −βQ ∆µQ , (28)

where the parameters ζQ and βQ, respectively, quantify
the strength of the active stress and of the active rear-
rangements. Negative and positive ζQ values correspond
to the contractile and extensile, respectively, stress along

the direction ~n. For positive βQ, Da drives cell rearrange-
ments where a cell junction parallel to ~n shrinks and is
remodeled to form a new cell junction perpendicular to
~n. As above, −ζ1 ∆µ I is absorbed into the pressure term
when the tissue is incompressible.
We considered a uniform and fixed signal ~n = (0, 1)T .

We set ζ2 = β2 = 0 to focus on the activity induced by
Q. Assuming as above that θ = 0, Eqs. (23-25) become

ċ = 2(1− ν1)∂xvx − 2η−1
1 Γ(c) sinh c− βQ∆µ (29)

σxx = −p+ η ∂xvx + (1− ν1)Γ(c) sinh c+
ζQ
2
∆µ (30)

σyy = −p+ η ∂yvy − (1− ν1)Γ(c) sinh c−
ζQ
2
∆µ . (31)

In isotropic stress conditions (σxx = σyy), both the cellu-
lar shape anisotropy at steady state (ċ = 0), determined
by:

Γ(c) sinh c = − (1− ν1)η1ζQ + ηη1βQ

η1(1− ν1)2 + η

∆µ

2
, (32)

and the tissue deformation rate ∂xvx

∂xvx =
−ζQ + (1− ν1)η1βQ

η1 (1− ν1)
2
+ η

∆µ

2
. (33)

remain non-zero, indicating that the tissue anisotropy
and flow are maintained through the active stresses and
cell rearrangements. In Eqs. (32) and (33), cellular shape
anisotropy c and velocity gradient ∂xvx may adopt either
an identical or an opposite sign depending on the numeri-
cal values of the active coefficients βQ and ζQ. Therefore,
cell elongation occurs either parallel or perpendicular to
the direction of flow, depending on the parameter values
(phase diagram in Fig. 4(b), with ν1 < 1). Considering
the contractile effect of myosin motors (upper right quad-
rant of Fig. 4(b), −ζQ > 0 and βQ > 0), cell elongation
occurs mostly perpendicular to the tissue flow, except
below the green line of the slope (1 − ν1)/η. An earlier
study using the CPM suggested that the differential cell
adhesion accounts for CE with cell elongation orthogonal
to tissue flow, in which only the outer tissue boundary
contributes to the driving of tissue deformation [64, 65].
Our model provides an alternative mechanism in which
activities play an essential role, in agreement with recent
observations of elevated myosin activity in the elongated
cell junctions orthogonal to the tissue flow [61, 62].

C. Shear flow

A fundamental geometry for investigating rheology
[66], shear flow is commonly found in many developmen-
tal tissues [12, 53, 62]. Here, we considered the simple
geometry given in Fig. 5(a), inspired by the plane Cou-
ette flow [66]. The flow, with shear rate γ̇ = ∂yvx, is
driven by an external shear stress σb acting in the op-
posite directions on the boundaries. The effective shear
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viscosity ηeff ≡ 2σb/γ̇ can be calculated as:

ηeff = η + (1 − ν1)
2η1 − (1 − ν1)η1 cos 2θ tanh c , (34)

where the cell shape anisotropy c and orientation θ de-
pend on the driving stress σb (see Appendix C). In the
presence of a coupling between the cellular rearrange-
ment rate and the elastic stress (η1 6= 0), ηeff depends
on σb, which makes the tissue non-Newtonian (Fig. 5).
The shear rate is an increasing function of the external
stress σb, whereas the effective shear viscosity decreases
with γ̇, indicating that the model predicts shear-thinning
(Fig. 5(b-c)). Cellular shape anisotropy c increases with
σb or γ̇, to converge to a finite value for large driving.
Cells turn in the direction of the applied stress as they
elongate (Fig. 5(d-f)). Shear-thinning was reported in
vitro, using cellular spheroids [67], and was shown to
be related to stress-dependent barriers that may control
cell rearrangements (see [56] for a mechanism leading to
shear-thinning in active materials that does not involve
topological effects). To the best of our knowledge, there
is no experimental evidence for the shear-thinning in ep-
ithelial tissues in vivo, which is a non-trivial prediction
of our model, obtained assuming only linear force-flux
couplings.
Including the active stress and active cell rearrange-

ments, both internal, Eqs. (20-21), or due to an oriented
signal, Eqs. (27-28), the shear rate becomes

γ̇ = 2
σb + σ2 + σQ

η + (1 − ν1)2η1 − (1 − ν1)η1 cos 2θ tanh c
, (35)

with σ2 = ∆µM0 sinh c sin 2θ(ζ2 − 2η1(1 − ν1)β2) and
σQ = ∆µ sin 2φ(ζQ + η1(1 − ν1)βQ). In addition to the
external stress σb, active stresses and active cell rear-
rangements are able to drive shear flow. Indeed, the ac-
tive rearrangements described by Eq. (28) produce shear
flow for an arbitrary orientation φ, as has been observed
in the genitalia of Drosophila and demonstrated using
the CVM in the case of ~n pointing to φ = 3π/4 [53].

IV. DISCUSSION

We formulated a two-dimensional continuum model of
epithelial mechanics that treats in-plane tissue deforma-
tion in which cells deform, move and intercalate without
compromising tissue cohesion. Our aim was to provide
a general modeling scheme rather than a specific exten-
sion of the CVM/CPM. The functional form of the elas-
tic energy density F , apart from the usual requirements
imposed by symmetry, is free to accommodate other rel-
evant aspects of the mechanics of tissue. For instance,
specific expressions of F may allow to include non-linear
elasticity, to study the dynamics of non-epithelial tissues,
which fall out of the scope of the CVM, or to coarse-
grain other cell-based models, including particle-based
and phase-field models [20–25]. Once the functional form
of the energy is formulated in terms of M , a contin-
uum model can be derived as has been done here: the

CVM/CPM is but a possible source of inspiration to con-
nect cell scale with tissue scale mechanics, and was chosen
due to its popularity in developmental biology.

The advantages of using this approach are as follows.
Most importantly, our model is designed to connect cellu-
lar level mechanical ingredients (e.g., cell area elasticity
and cell junction tension) and cell morphogenetic pro-
cesses (e.g., cell rearrangements), in order to drive tis-
sue mechanics and deformation. This was achieved by
defining the energy function and kinematic relationship
in terms of the cell shape field M , which distinguishes our
work from the previous continuum models [30, 33, 34].
The model describes time-dependent flows, and allows
the evaluation of time scales as a function of material
parameters. Large and non-affine deformations can be
treated. In addition, the model can also incorporate a
signal field, for instance, the axial tensor Q, which, here,
orients active stresses and cellular rearrangements. The
main hypotheses underlying our approach are the follow-
ing: (i) the symmetric part of the velocity gradient tensor
and of the total stress tensor can be decomposed addi-
tively, see Eqs. (1) and (15) respectively; (ii) the frame-
work of linear nonequilibrium thermodynamics allows to
describe epithelial mechanics. When considering applica-
tions, we assumed in addition that external forces applied
on the epithelium, such as friction between the tissue and
substrate, are negligible. Upon coarse-graining, possi-
ble short-range heterogeneity among cells is also lost, a
point that should be kept in mind when modeling actual
tissues. Many relevant fields can be experimentally de-
termined, including tissue stress, tissue deformation, cell
morphogenetic processes, and chemical signaling fields,
such as the concentrations of cell polarity molecules or
the orientation field describing the spatial distribution
of myosin molecules. Once their dynamics are quanti-
tatively characterized by the relevant scalar, vector, or
tensor variables [5, 6, 11–13, 52, 68, 69], comparison be-
tween the model and experiments is feasible.

The results presented here demonstrate that using our
model, we can predict the dynamical behaviors under-
lying epithelial tissue morphogenesis. In the future, the
quantitative comparison of the model predictions with
experimental data should help us evaluate material pa-
rameters and validate constitutive equations. For exam-
ple, since D, Dr [12] and σe [13, 14] are measurable quan-
tities, the validity of the kinematic relationship Eq. (2)
and of the constitutive relation Eq. (18) can be tested by
experimental observation.

The current approach can be extended in several ways.
Other cell morphogenetic processes, such as cell divi-
sion and cell death, should be incorporated to the cur-
rent modeling scheme [70]. Plastic behavior [67] may
be considered as well, either within the dissipation func-
tion formalism [30], or by considering non-linear consti-
tutive equations to effectively incorporate a yield stress.
In analogy to the recent adaptations of the CPM [71]
or the CVM [72], a cell polarity field may be included
to describe collective cell migration [70]. Another possi-
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1/2 = 0.1mNm−1, 2πκ0 = 0.4mNm−1, ν1 = 0.1 and η1 = 1.0 Pam s.

ble extension of the model concerns kinetics. Here, the
associated dissipation coefficients, including the coeffi-
cients governing active stress and active rearrangement,
were determined phenomenologically by employing the
thermodynamic formalism. This point can be further
explored by considering detailed processes at the cellu-
lar level [12, 43, 49, 52]. In particular, the cell-level ma-
chinery underlying tissue-level active processes should be
studied further in connection with signal activity dynam-
ics. Emerging spatio-temporal patterns will also be of in-
terest. Various dynamics arise in active nematic models,
which may describe cultured cell monolayers [54], and
which share a common mathematical structure with the
present model. Finally, our 2D formalism can be ex-
tended to 3D.
In conclusion, the present work provides an integrated

scheme for the understanding of the mechanical control
of epithelial morphogenesis. Dynamics of signal fields can
be coupled to the equations. Feedback between biochem-
ical signaling and mechanics through the mechanosensing
of a cell [4–8] may represent a potential future research
direction.
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Appendix A: Energy function and elastic stress

1. Derivation of elastic stress

The shape of a given cell is represented by (~r −
~rc)

T M−1 (~r − ~rc) = 1, where M is a positive definite
matrix, and the center of the cell is located at ~rc.
Let each material point at the position ~r move to ~̃r =

~r + ~u(~r), thus defining the displacement field ~u. The

center of a cell changes as ~̃rc = ~rc + ~u(~rc) and the cell
shape changes as

(~r − ~̃rc)
T
(

(1 +∇~u)−1
)T

M−1(1 +∇~u)−1(~r − ~̃rc) = 1 .

Upon coarse-graining, this indicates that M changes as

M̃(~x+ ~u) = (1 +∇~u)M(~x)(1 +∇~uT ) ,

whereby, at order O(|∇~u|),

M → M̃ = M − ~u · ∇M +M(∇~u)T +∇~uM . (A1)

This equation represents the relationship between the
change in the cell shape and tissue displacement field, in
the absence of cell rearrangements. It has been derived
rigorously for a cellular material in [30].
By the virtual displacement ~u, the total energy

F̃ (M) =
∫

F (M)d~x changes as follows:
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δF̃ = F̃ (M ′)− F̃ (M) ≃
∫

∂F

∂M
: δMd~x =

∫

∂F

∂M
:
(

−~u · ∇M +M(∇~u)T +∇~uM
)

d~x

=

∫

[

−∇·(~uF ) +

(

FI +

(

∂F

∂M

)T

M +
∂F

∂M
MT

)

: ∇~u

]

d~x (A2)

where δM = M ′ − M . The first term vanishes at the
boundary of the system, and the elastic stress σe is given
as Eq. (5).

2. Comparison of macroscopic and microscopic
stress

To check the validity of coarse-graining, we conducted
numerical simulations of the CVM with an energy func-
tion given by Eq. (8) in the main text [26, 46] and com-
pared two expressions of the stress tensor.
The first one is the ‘microscopic’ expression directly

calculated from the CVM [12–14]

σCVM =
1

∑

iAi



−
∑

i

PiAiI +
∑

[ij]

Tij
ℓij ⊗ ℓij
||ℓij ||





(A3)
where Ai is the area of cell i, and ℓij is the length of
the interface between cells i and j. Pi is the pressure of
the i-th cell originating from cell elasticity, and Tij is the
tension of cell interface [ij]. Pi and Tij are determined
from the energy function (8) as Pi = −K(Ai − A0) and
Tij = γ0 + κ0 (Li + Lj).
The second one is the ‘macroscopic’ expression of stress

as a function of the coarse-grained cell shape tensor M ,
Eq. (13), estimated from the given geometry of cells in a
CVM simulation. In practice, we calculated the centroid
and the second moment µi

2 of a two dimensional region
occupied by each polygon (cell) i [73], and then averaged
it over N cells:

M =
4

N

∑

i

µi
2 =

4

N

∑

i

(

µi
2,xx µi

2,xy

µi
2,yx µi

2,yy

)

(A4)

The factor 4 is needed since the second moment of an
ellipse with major and minor radii a and b has eigenval-
ues a2/4 and b2/4. With the estimated M , we calculated
the cell area as π|M |1/2, and the cell perimeter by us-
ing Euler’s formula for the ellipse perimeter truncated to
second order [47]:

L(M) = chπ
√
2TrM

[

1− 1

16

(

1− 4|M |
(TrM)2

)]

(A5)

Agreement between the two expressions improves slightly

when taking into account the ratio ch =
√

2
√
3/π ∼ 1.05

between the perimeters of a circle and an hexagon with
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FIG. S1. Euler approximation of the perimeter L of an ellipse
of semi-axes a = 1 and b ∈ [0, 1] as a function of 1 − b at
first and second order is compared to the exact value. The
isotropic case corresponds to a = b, or 1− b = 0.

the same area. The precision of Euler’s expansion for the
ellipse perimeter is illustrated in Fig. S1.

CVM simulations were conducted by minimising the
energy Eq. (8). An external stress σex was applied on
the boundary of the system, for which we took σex

xy =
σex
yx = σex

yy = 0, while σex
xx was controlled to stretch the

system along the x-axis. After the system relaxed, we
confirmed that the force was balanced and that the stress
σCVM converged to coincide with the external stress σex.
We distinguish the stress that comes from cell elasticity
(−P ce I, where P ce denotes the pressure) and from cell
junction tension (σT), respectively (i.e., the first and the
second terms of Eqs. (A3) and (13)). In the simulations,
parameters are set as K = 10.0, A0 = 1.0 and κ0/KA0 =
0.02, 0.04. The results are summarized in Fig. 2(a,b) in
the main text and detailed in Fig. S2.

The values found for the macroscopic expression of
stress with coarse-grained cell shape M agree well with
the microscopic (correct) stress, as long as the cell aspect
ratio is not too large.

3. Stability analysis of the energy function

a. Cell area instability Let cell shape be uniform,
not depending on the position ~r. With the expression
M = M0e

cΘ, the cell area reads A = πM0, and the en-
ergy density function per cell, f = AF (M), is expressed
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3/2
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and κ0/KA0 = 0.04 (left column). P ce and σT are the pres-
sure and stresses originating from cell elasticity and cell junc-
tion tensions, respectively. Blue triangles denote the mean
cell shape aspect ratio (right vertical axis), equal to exp(2c)
in terms of the cell shape anisotropy. A green solid line over-
laps with a red one and does not appear in (a) and (d). Com-
ponents of the external stress are set as σex
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yy = 0, with
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as

f =
K

2
(πM0 −A0)

2 + πγ0
√

M0 cosh c

+ 2π2κ0M0 cosh c (A6)

The pressure P is obtained by differentiating f with re-
spect to A = πM0 (equivalently P = −Tr σe/2)

P = −K(πM0 −A0)−
γ0
2

√

cosh c

M0
− 2πκ0 cosh c .

(A7)

Thermodynamic stability holds when ∂P/∂A < 0, which
leads to the following condition:

γ0 ≡ γ0
KA3/2

<
4

π1/2 cosh c
(A8)

Note that cosh c ≥ 1, where the equality holds at c = 0.
The cell area A depends on parameters and boundary
conditions. For a given cell area, the described condition
does not hold for large γ0 values, indicating that the ho-
mogenous cell size state becomes unstable. Taking higher
order terms into account when approximating the ellipse
perimeter does not change the condition.
b. Cell shape instability Since f is an even function

of c, its Taylor expansion reads f(c) = f(0) + f ′′(0)
2! c2 +

f(4)(0)
4! c4 + · · · , with f ′′(0) = π γ0

2

√
M0 + 2π2κ0M0. As

long as f ′′(0) > 0, i.e., γ0 > −4κ0πM
1/2
0 , f takes its

minimal value at c = 0. If γ0 is smaller than the threshold

value −4κ0πM
1/2
0 , the circular shape is no longer stable,

and cells preferentially take an elongated shape. Using a
non-dimensionalized parameter κ0 = κ0/KA, the above
condition can be written as

γ0 > −4π1/2κ0 (A9)

This condition is unchanged when higher orderer correc-
tion of ellipse perimeter is taken into account.

Appendix B: Hydrodynamic equations of epithelial
mechanics

1. Constitutive equations

Including lowest-order non-linearities, with the condi-
tion that Dr is traceless, the generic form of the force-flux
relationships can be written as:

σp = η D′ + η′ (TrD)I

+ µ (DM ′ +M ′D) + µ′ (TrD)M ′ + µ′′(Tr (DM ′))I

− ν1σe
′ − ν2 (σe

′M ′ +M ′σe
′)− ν3(σe

′ :M ′)I

− ζ1∆µ I − ζ2∆µM ′ , (B1)

Dr = ν1D
′ + ν2(DM ′ +M ′D − Tr (DM ′)I) + ν3(TrD)M ′

+ η−1
1 σe

′ + η−1
2 (σe

′M ′ +M ′σe
′ − Tr (σe

′M ′)I)

− β2∆µM ′ , (B2)

where the coupling coefficients are scalar in an isotropic
system (compare with Eqs. (20-21)). Note that the
results of Secs. III A-III B are unchanged when using
Eqs. (B1-B2) instead of Eqs (20-21), since the M -
dependent terms in (B1-B2) either cancel, or are isotropic
tensors that may be absorbed into the pressure.
To obtain Eqs. (B1) and (B2), we set the fourth-order

tensors χsr and χrr as follows:
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χss
ijkl = ηδikδjl + η′δijδkl + µ

(

δikM
′

lj +M ′

ikδjl
)

+ µ′M ′

ijδkl + µ′′M ′

lkδij (B3)

χsr
ijkl = ν1

(

δikδlj −
1

2
δijδkl

)

+ ν2
(

δikM
′

lj +M ′

ikδjl−M ′

ijδkl
)

+ ν3M
′

klδij (B4)

χrs
ijkl = ν1

(

δikδlj −
1

2
δijδkl

)

+ ν2
(

δikM
′

lj +M ′

ikδjl − δijM
′

kl

)

+ ν3δklM
′

ij (B5)

χrr
ijkl = η−1

1 δikδjl + η−1
2

(

δikM
′

lj +M ′

ikδjl −M ′

lkδij
)

, (B6)

Here δij is the Kronecker tensor. Onsager’s reciprocity
χrs
ijkl = χsr

klij is satified.

2. Incompressible flow

An incompressible flow is characterized by a constant
|M |, and thus ∇ · ~v = 0 according to Eq. (3). The fac-
torization M = M0 e

cΘ is all the more useful since M0 is
constant. The constitutive equations are replaced by

σ = σ′

e + σp
′ − pI (B7)

with

σe
′ =

(

γ0√
2TrM

+ 2πκ0

)

M ′

|M |1/2 , (B8)

σp
′ = η D′ + µ (DM ′ +M ′D − Tr (DM ′)I)

− ν1σe
′ − ν2 (σe

′M ′ +M ′σe
′)− ζ2∆µM ′ (B9)

Dr = ν1D + ν2(DM ′ +M ′D − Tr (DM ′)I) ,

+ η−1
1 σe

′ + η−1
2 (σe

′M ′ +M ′σe
′ − Tr (σe

′M ′)I)

− β2∆µM ′ , (B10)

where p represents the tissue pressure.

Appendix C: Shear flow

We will consider shear flow for which three kinds of
driving are taken into account. The first is a shear
stress acting on the boundary, the other two are the cell-
intrinsic active stresses and rearrangements. Cell ver-
tex model simulations have shown that directed cell re-
arrangements may produce self-driven shear flow [53]. In
addition, the properties predicted by the following analy-
sis will give opportunities to test the model in the future.
We look for a solution with steady and uniform shear

velocity gradient in the form of

∇~v =

(

0 γ̇
0 0

)

. (C1)

In the incompressible case, σ′

e, σ
′

p, and Dr are given as

follows

σ′

e =

(

γ0√
2TrM

+ 2πκ0

)

M ′

M0
= Γ(c) sinh(c)Θ , (C2)

σ′

p = ηD′ − ν1σ
′

e − ζ2∆µM ′ − ζQ∆µQ , (C3)

Dr = ν1D
′ + η−1

1 σ′

e − β2∆µM ′ − βQ∆µQ . (C4)

Here, for simplicity, we omit possible dependences of the
coefficients χss, χsr, χrs, and χrr on M ′. With an orien-
tation along ~n = (cosφ, sin φ)T , the external signal reads

Q =
1

2

(

cos 2φ sin 2φ
sin 2φ − cos 2φ

)

. (C5)

Writing Dr as

Dr =

(

dr δr
δr −dr

)

, (C6)

dr and δr are given as follows

dr =

(

Γ(c)

η1
− β2∆µM0

)

sinhc cos 2θ − βQ∆µ

2
cos 2φ ,

(C7)

δr =
ν1
2
γ̇ +

(

Γ(c)

η1
− β2∆µM0

)

sinhc sin 2θ

− βQ∆µ

2
sin 2φ . (C8)

The kinematic equation at steady state (Ṁ = (∇~v −
Dr)M +M(∇~v −Dr)

T = 0) leads to

(cosh c+ sinh c cos 2θ) dr = sinh c sin 2θ(γ̇ − δr) (C9)

cosh c (γ̇ − 2δr) = γ̇ cos 2θ sinh c (C10)

(cosh c− sinh c cos 2θ) dr = sinh c sin 2θδr (C11)

One of these three equations is not independent of the
others, since |M | is constant. With some calculation, we
derive two independent equations

γ̇ − 2δr = γ̇ cos 2θ tanh(c) (C12)

2dr = γ̇ tanh(c) sin 2θ (C13)

By substituting Eqs. (C7) and (C8), we reach the equa-
tions
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2

(

Γ(c)

η1
− β2∆µM0

)

sinh c sin 2θ − βQ∆µ sin 2φ = (1− ν1 − tanh c cos 2θ) γ̇ (C14)

2

(

Γ(c)

η1
− β2∆µM0

)

sinh c cos 2θ − βQ∆µ cos 2φ = tanh c sin 2θ γ̇ , (C15)

σ = (1− ν1) Γ(c) sinh cΘ+ ηD′ − ζ2∆µM ′ − ζQ∆µQ− pI . (C16)

The first and second equations determine cell shape (c, θ)
for a given shear rate γ̇, while the third equation repre-
sents the total stress σ = σ′

e+σ′

p−pI. The stress bound-

ary condition at y = +L (top) is given as σxy = σb, where
σb is the force per unit length applied at the boundary
to drive the shear flow. This condition reads

σb +
ζQ∆µ

2
sin 2φ =

η

2
γ̇ + (1− ν1)Γ(c) sinh c sin 2θ − ζ2∆µM0 sinh c sin 2θ (C17)

The active stress ζQ∆µ sin 2φ/2 plays a role equivalent
to the external driving stress σb in the sense that it shifts

σb by a constant as σ′

b = σb − ζQ∆µ sin 2φ/2.
From Eqs. (C14), (C15) and (C17), we can evaluate

how the shear rate γ̇ depends on the driving stress σb.

γ̇ = 2
σb +∆µ ((ζQ − (1− ν1)η1βQ) sin 2φ+ (ζ2 − 2η1(1− ν1)β2)M0 sinh c sin 2θ)

η + (1− ν1)η1[1− ν1 − tanh c cos 2θ]
(C18)

For σb = ζQ = β2 = ζ2 = 0, Eq. (C18) shows that
oriented active rearrangements suffice to generate shear
flow, as shown using the CVM in [53] with an orienta-

tion along ~n = (−1/
√
2, 1/

√
2), with φ = 3π/4, and an

external signal

Q =
1

2

(

0 −1
−1 0

)

. (C19)

For ∆µ = 0, ηeff = 2σb/γ̇ is not constant, indicating
that the tissue is a non-Newtonian material (Fig. 5(b-c)
in the main text). As σb and accordingly γ̇ increase, ηeff
converges to η∞eff = η (Fig. 5(c)). This convergence occurs
at the rate ηeff − η ∼ γ̇−2, as shown in the numerical
calculation (Fig.S3).
To understand this dependence of ηeff on γ̇, let us con-

sider Eqs. (C14) and (C15) with ∆µ = 0.

2Γ(c) sinh c sin 2θ = η1(1 − ν1 − tanh c cos 2θ) γ̇ (C20)

2Γ(c) sinh c cos 2θ = η1 tanh c sin 2θ γ̇ (C21)

For the right hand sides of these equations to remain
finite in the limit γ̇ → ∞, c and θ converge to c → c∞

and θ ∼ γ̇−1 → 0, respectively, where c∞ is a solution of
the following equation:

tanh c∞ = 1− ν1 . (C22)

γ

η = 0.1
0.5
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5.0

10.0
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eff∞

-2∝

.

γ
.

FIG. S3. Log-log plot of the difference ηeff −η∞

eff as a function
of the shear rate γ̇. The dashed line corresponds to ηeff−η∞

eff ∝

γ̇−2.

Considering small deviations c = c∞ −∆c and θ = ∆θ,
Eq. (C20) reads

4Γ(c∞) sinh c∞∆θ =
∆c

cosh2 c∞
γ̇ , (C23)

thus ∆c is of the order of ∆c ∼ γ̇−2. The difference
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ηeff − η for large γ̇ is evaluated from Eq. (C18), as

ηeff − η = (1 − ν1)η1 [1− ν1 − tanh c cos 2θ]

∼ (1 − ν1)η1
∆c

cosh2 c∞

∼ η1ν1(1− ν1)(2− ν1)∆c , (C24)

which is of the order of γ̇−2.
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