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Many spherical viruses encapsulate their genome in protein shells with icosahedral symmetry.
This process is spontaneous and driven by electrostatic interactions between positive domains on
the virus coat proteins and the negative genome. We model the e↵ect of the non-uniform, icosahedral
charge distribution from the protein shell instead using a mean-field theory. We find that this non-
uniform charge distribution strongly a↵ects the optimal genome length, and that it can explain the
experimentally observed phenomenon of overcharging of virus and virus-like particles.

I. INTRODUCTION

The simplest viruses consist of two components: the
genome, either an RNA or DNA polynucleotide that car-
ries the genetic code, and the capsid, a protein shell that
encloses the genome. The capsid consists of many iden-
tical (or nearly identical) copies of the coat protein sub-
unit. Even though the coat proteins are highly irregular
in shape, the protein shells of most spherical viruses are
highly structured and obey icosahedral symmetry [1–4].
One of the consequences of icosahedral symmetry is that
it puts restrictions on the number of proteins that can
make up a spherical virus shell. It limits this number
to 60 times the structural index T that almost always
assumes certain “magic” integer values T = 1, 3, 4, 7, . . .
[5–7].

Many small single-stranded RNA or ssRNA viruses
have been shown to spontaneously self-assemble in vitro,
that is, outside living cells in solutions containing virus
coat protein subunits and genome. In fact, virus coat pro-
teins are able to co-assemble with a variety of cargos, in-
cluding RNAs of other and sometimes unrelated viruses,
synthetic polyanions, and negatively charged nanoparti-
cles [8–10]. The spontaneous assembly of properly struc-
tured viral capsids of many icosahedral RNA viruses with
this variety of cargos, is due to the presence of a disor-
dered RNA binding domain on the N- or C-terminal end
of the protein subunits. These are rich in basic amino
acids that potentially extend quite deep into the capsid
interior. These basic amino acids are positively charged
under most solution conditions, and typically bear a few
to tens of positive charges depending on the species of
virus. It is now widely accepted that electrostatic inter-
actions between the positive charges on the coat protein
tails and negative charges on the genome is the main driv-
ing force for the spontaneous assembly of simple viruses
in solution [11–19].

Näıvely, one might expect that the total charge on
the genome and the capsid would balance out, if not
perfectly, then certainly approximately. However, in
many ssRNA viruses the number of negative charges on
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FIG. 1. (a) a T = 1 structure presented as ISBF15,0 (b) a T = 3
structure presented as ISBF27,0

the genome significantly exceeds the number of positive
charges on capsid proteins. For example, the number of
positive charges on capsids of Cowpea Chlorotic Mottle
Virus (CCMV) and Brome Mosaic virus (BMV), both
with T = 3 structures, is about 1800, yet their genome
measures about 3000 nucleotides (nt) [20]. As each nu-
cleotide bears a single charge, this suggests an overcharg-

ing of over 60 per cent. Furthermore, in a recent set of in
vitro experiments, where shorter segments of BMV RNAs
in the range of 500 � 2500 nts were mixed with CCMV
capsid proteins, the resulting virus-like particles (VLPs)
had a mixed population of pseudo T = 2 and T = 3 shells
that were all overcharged [20]. RNA molecules shorter
than 2000 nts were packaged in multiple copies, e.g., four
in the case of 500 nt RNAs or two for 1000 nt RNAs in
pseudo T = 2 capsids and two 1500 nt RNAs in T = 3
capsids.

While the in vitro self-assembly studies show that
RNA-based virus-like particles are overcharged, exper-
iments with linear negatively charged polymers, rather
than virus RNAs, are less conclusive. In fact, studies
with linear polyanions, such as poly(styrene sulfonate)
(PSS), have often focused attention more strongly on how
the capsid size distribution is impacted upon by either
the polymer length or the stoichiometry ratio of the cap-
sid proteins and polymers [12, 21]. What is known, is
that polymers, ranging in degree of polymerisation from
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1900 � 16500 monomers, could all be encapsidated by a
T = 3 structure, resulting in anything from a weakly to a
highly overcharged structure [21]. In vitro self-assembly
studies on mixtures of CCMV coat proteins and PSS
chains as short as 180 monomers show a bimodal dis-
tribution of particle sizes corresponding to T = 1 and
pseudo T = 2 structures[22]. According to these experi-
ments there are on average two polymers in each T = 1
capsid (600 positive charges) and three in each T=2 (1200
positive charges) [22]. Hence, the VLPs are in this case
undercharged: the ratio of negative to positive charges is
0.6 for the T = 1 and 0.45 for T = 2 capsids. From all
these findings it is not easy to extract a sound conclusion
about the optimal length of the encapsulated polymer.

Several theoretical studies have shed light on the puz-
zling phenomenon of overcharging. Simulations on en-
capsulation of polymers with a fixed (quenched) level
of branching as a model for RNA, have shown that the
level of overcharging is a sensitive function of the sec-
ondary and tertiary structures of the RNA [23, 24]. Field-
theoretic calculations presuming the branching to be an-
nealed, not quenched, have also shown that the length of
encapsidated polymer, and hence the level of overcharg-
ing, increases as the number of branch points increases
[25, 26]. While these theoretical studies confirm that
the topology of RNA is important to the phenomenon of
overcharging, they also predict that the optimal number
of charges on a linear polyelectrolyte must be less than
the total number of charges on the inner capsid wall:
these complexes must be under- rather than overcharged.
This contrasts with the molecular dynamics simulations
of Perlmutter et al., which show that even linear polyan-
ion encapsulation can lead to overcharging [23].

In virtually all theoretical studies focusing on the as-
sembly of viral shells, the capsid has been assumed to
be smooth and to have a uniform charge distribution in
a region near the surface of the capsid [2, 27–30]. How-
ever, as already alluded to, in most simple RNA viruses
the positive charges reside on the RNA binding domains
of the coat proteins, which are arranged according to the
underlying icosahedral symmetry of the shell. This im-
plies that the charge distribution must somehow reflect
this icosahedral symmetry, certainly near the surface of
the capsid, and perhaps less so away from it. Theoreti-
cally, the e↵ects of localization of charge near the inner
surface of the capsid on the encapsulation of genome re-
main largely unexplored.

To remedy this, we study the impact of a non-uniform
charge density on the optimal length of genome encap-
sulated by small icosahedral viruses. Since T = 1 and
T = 3 capsids have 60 and 180 RNA binding domains,
respectively, we model capsids with 60 and 180 positively
charged regions, as shown in Fig. 1. We show how a
non-uniform charge distribution, associated with the un-
derlying icosahedral arrangement of the proteins part of
a virus shell, results in a longer optimal genome length
compared to a uniform charge distribution. This can give
rise to the phenomenon of overcharging even for linear

polyanions. The e↵ects of a non-uniform charge distri-
bution and the highly branched secondary structure of
RNA, in particular for viral RNAs, conspire to greatly
enhance overcharging. This allows for a larger amount
of RNA to be packed in the same restricted interior of
the virus shell, which arguably would be an evolutionary
advantage to the virus.

Furthermore, we find that the optimal length of the
genome, and as a result that of the number of encapsu-
lated charges, depends on the detailed structure of RNA
binding domains, i.e., the thickness, height and charge
density. This is consistent with the experimental find-
ings of Ni et al. on Brome Mosaic virus (BMV), in which
mutations in the RNA binding domains that keep the
number of charges constant but change their length and
charge density, impact upon the packaged RNA length
[14]. These and many other experiments reveal the ex-
istence of intriguing results arising from the N-terminal
domain topology[14, 19, 31, 32]. A satisfactory theoret-
ical approach needs to treat the coat protein topology
(N-terminal domains), RNA folding, electrostatic inter-
actions and polymer confinement simultaneously. Our
theoretical calculations allow us to single out the impact
of length and charge density of the RNA binding do-
mains, without considering other e↵ects such as the im-
pact of translational entropy and kinetic trapping that
make the interpretation of experiments and simulations
di�cult.

The paper is organized as follows. In the next section,
we introduce the model and derive the equations that we
will employ later. In Section III, we present our results
corresponding to the capsid non-uniform charge distribu-
tion as well as RNA branching. Section IV discusses the
impact on the capsid stability and overcharging phenom-
ena of the length and charge density of N-terminal tails
and the capsid radius. Finally, we present our conclusion
and summarize our findings.

II. MODEL

Our model consist of a mean-field theory that includes
the entropic and steric constributions of the polyelec-
trolyte and the electrostatic interactions between the
polyelectrolyte and the capsid. We initially model the
genome as a flexible linear polyelectrolyte that inter-
acts attractively with the positive charges residing on
the binding domains and postpone the discussion of the
impact of RNA secondary structure, to Section II.A.

The free energy of a confined polyelectrolyte confined
in a salt solution interacting with an external charge dis-
tribution can, within the ground-state approximation, be
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with � the reciprocal temperature in units of energy, a
the statistical step or Kuhn length of the polymer, v is
e↵ective excluded volume per monomer, �
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the Bjerrum length, ✏ the dielectric permittivity, e the el-
ementary charge, µ density of monovalent salt ions, and ⌧

the linear charge density of chain. As usual, the dielectric
permittivity of the medium is persumed constant[33].

The fields  (r) and �(r) are the monomer density
field and electrostatic potential of mean force respec-
tively. The positive charge density ⇢0(r) is placed in an
icosohedrally symetric distribution either on the capsid
surface as shown in Figs. 1(a) and 1(b) or extending into
the interior of the capsid along the N-terminal tails as in
Fig. 2(b). Extremizing the free energy with respect to
the  (r) and �(r) fields subject to the constraint that
the total number of monomers inside the capsid is con-
stant [34], N =

R
d3r  2(r), results in two self-consistent
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with E the Lagrange multiplier enforcing the fixed num-
ber of monomers. Note ⇢(r) here is the volume charge
density that will be set to zero if there are no charges
extended to the interior of capsid. The boundary condi-
tions for the electrostatic potential inside and outside of
the capsid that we model as a sphere of radius R are,
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with �(✓,�) the surface charge density. In case of a space
charge distribution ⇢ 6= 0, but then we assume � = 0. If
the charges are localized to the surface, then � 6= 0 but
the volume charge density ⇢ = 0. Thus, if the charges as-
sociated with the capsid are lying completely on the cap-
sid wall, the volume charge density ⇢(r) = 0 in Eq. (2b),
and the charge from the capsid is modeled as the surface
charge �(✓,�) in Eq. (3a). We discuss the exact forms of
�(✓,�) and ⇢(r) in Section II.B.

We use Dirichlet  (r) |
r=R

= 0 boundary conditions
for the chain density at the capsid wall but our findings
are robust and we found the same results for Neumann
boundary condition @

r

 (r) |
r=R

= 0. While Eq. (2a)
applies to a linear chain, a similar formalism can be em-
ployed to obtain the free energy of RNA modeled as a
branched polymer trapped in a viral shell [25], as ex-
plained in the next section.

A. Branched Polymer

To examine the combined e↵ect of the secondary struc-
ture of RNA and non-uniform capsid charge distribution
in this paper, we model RNA as an annealed branched
polymer and add to Eq. (1) the following terms

� 1p
a

3
(f

e

 +
a

3

6
f

b

 3), (4)

which describe the statistics of an annealed branched
polymer [25, 26, 35–39] with f
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In this formalism, the stem-loops or hair-pins in RNA are
considered as end points. The number of end and branch
points N
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the case of a single encapsulated polymer with no closed
loops, and thus we have the following constraint: N

e

=
N

b

+ 2. The fugacity of branch points f
b

determines the
degree of branching.

B. Icosahedral Symmetric Based Function(ISBF)

To explicitly model the charged N-terminal tails, we
employ Icosahedral Symmetric Based Functions (ISBFs)
for T = 1 and T = 3 structures with 60 and 180 positively
charged regions, respectively. These functions are real-
valued, complete, and orthogonal and can be written as
a sum over spherical harmonics [40],
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The ISBF functions are indexed by the integers l and
n, where l(l + 1) is the azimuthal separation constant.
n 2 {0, 1, ..., N

l

� 1} indexes the di↵erent ISBFs and N

l

denotes the number of linearly independent ISBFs that
can be constructed for a given l. The weights b

l,n,m

can
be computed for each l by comparing the expansion of
icosahedrally symmetric set of delta functions in both
spherical harmonics and ISBFs.

The coe�cients, b
l,n,m

given in Eq. (6) become nonzero
only when m is a multiple of five, corresponding to five-
fold symmetry of icosahedral group. As a function of
the associated Legendre function P

l

m

(x), ISBFs [40] can
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(a) (b)

FIG. 2. The charge distributions from the capsids for (a) A T=1
thin capsid. The black spots show the regions with a uniform
surface charge density. The charges are smeared on the surface
representing the thin capsid model. (b) A T=3 thick capsid. The
charges are extended into the interior of the capsid.

easily be written as
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The charge distributions for structures with T = 1 and
T = 3 icosahedral symmetry are modeled by the ISBF
with (l = 15, n = 0) and (l = 27, n = 0) respectively, shown
in Figs. 1(a) and 1(b). The values of bl,n,m for T=1 and
T=3 structures are given in Table I.

TABLE I. The coe�cients of bl,n,m for ISBF15,0 (T = 1) and
ISBF27,0 (T = 3) structures, see Eq. (6) in the manuscript.

l bl,0,5 bl,0,10 bl,0,15 bl,0,20 bl,0,25
15 0.51653 0.39131 -0.28298
27 0.44330 -0.23513 -0.02788 0.41768 -0.27011

Assuming that there are no charges in the regions be-
tween N-terminal tails (see Fig. 2(a)), we set charge den-
sity equal to zero if the magnitude of the ISBFs is smaller
than a certain cuto↵ value C. Thus, the distance between
the charged regions depends on the cuto↵, and, since we
fix the total charge of the capsid, the charge density of
the N-terminal domain changes as a function of the cut-
o↵. We consider both the “thin capsid model” where the
charges are smeared on the surface of the spherical cap-
sid in 60 or 180 positions as shown in Fig. 2(a), and the
“thick capsid model” where the charges extend into the
capsid as shown in Fig. 2(b). For the thick capsid model,
we assumed that there are 60 (T = 1) or 180 (T = 3)

“bumpy” charged regions extended inside the capsid. To
this end, we shifted and truncated ISBF15,0 and ISBF27,0

such that the capsid surface protrudes in 60 or 180 po-
sitions presenting peptide tails (Fig. 2(b)) with charges
uniformly distributed in the volume of protruded regions.

III. RESULTS

We solved the coupled equations given in Eqs. (2) for  
and � fields, subject to the boundary conditions given in
Eqs. (3) through the finite element method(FEM). The
polymer density profiles  2 as a function of the distance
from the center of the shell, r, are shown in Figs. 3(a)
and 3(b) in three and one dimension(s) respectively. As
illustrated in the figure, the polymer density is higher
at the N-terminal regions. Note that the density at the
wall in the regions between N-terminal tails is lower than
that in the N-terminal domains, but still higher compared
to the capsid center even though the capsid wall is not
charged between the tails.
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FIG. 3. Genome density profile of a T=3 capsid in (a) 3D view.
The protruded regions represent RNA (red). The density of RNA
between N-terminals is very small and not shown in the figure. (b)
1D view as the function of capsid radius with non-uniform charge
distribution. The figure shows the profiles along two di↵erent di-
rections. The solid line corresponds to the direction in which the
N-terminal tail is located and the dashed line to the direction with-
out N-terminal tail (inset graph). In the absence of surface charge
density and N-terminal tail (dashed curve), the density is still max-
imum close to the wall. The polymer is branched with fb = 3,
total monomer number=2411, salt concentration µ = 100mM,
R = 12nm and Qc = 1800.

We find that the optimal genome length increases for
a non-uniform charge distribution as compared to that
where the charge distribution is uniform. In fact, the free
energy in addition becomes deeper indicating a higher ef-
ficiency of genome encapsulation. Furthermore, we find
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FIG. 4. Encapsulation free energy for a linear and branched poly-
electrolyte as a function of monomer number for a capsid with
uniform (dashed lines) and non-uniform (dotted lines) charge den-
sity. For a linear chain the branching fugacity fb = 0 and increases
to fb = 1.0 and fb = 3.0 as the chain becomes more branched. The
diamonds indicate the minimum of free energy. Other parameters
used correspond to a T = 3 virus: total capsid charges on capsid
Qc = 1800, a = 1.0 nm, v = 0.01 nm3, µ = 100 mM , R = 12 nm,
tail length = 4 nm

that the optimal genome length increases if the cuto↵ C

is increased, and that the distance between the charged
regions correspondingly increases. That is, as the charges
on the capsid are distributed more non-uniformly, the op-
timal genome length increases. Nevertheless, for the thin
capsid model, we have not been able to observe the phe-
nomenon of overcharging with linear chains, i.e., the num-
ber of charges on genome is always lower than those on
the capsids for all the parameters values that we tested.
This is not the case for the thick capsid model as ex-
plained below.

Figure 4 illustrates the encapsulation free energy as
a function of genome length for a T = 3 structure with
the radius of capsid R = 12 nm at µ = 100 mM salt con-
centrations for the thick capsid model (Fig. 2(b)). The
total number of charges are assumed to be Qc = 1800 for a
T = 3 structure, 10 charges on each N-terminal tail. The
dashed lines in Fig. 4 correspond to a capsid with a uni-
form charge density and the dotted lines to a non-uniform
charge density. The lines with the smallest distance be-
tween the dashed and dots correspond to that of a linear
polymer. As illustrated in the figure, the minimum of
the free energy moves towards longer chains if the charge
distribution is non-uniform.

Figure 4 also shows the impact of RNA secondary
structures on the optimal length of encapsulated genome.
The graphs in Fig. 4 corresponds to fb = 0 for a lin-
ear polymer and fb = 1.0 and fb = 3.0 for branched ones.
The polymer becomes more strongly branched as fb in-
creases. Note that in the figure the distance between dots
or dashed lines increases as the fugacity or the number
of branch points increases. The figure reveals that as the
degree of branching increases, the length of encapsulated
genome increases for a capsid with a uniform charge den-
sity. This e↵ect becomes stronger if we consider a non-
uniform charge distribution. The diamonds in the figure
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FIG. 5. Optimal genome length or Charge Ratio vs. N-terminal
charge density or volume occupied for a T = 3. (a) Hollow symbols
correspond to capsid radius of R = 9.5 nm and solid ones to R =
11.5 nm with the N-terminal tail length 3.5 nm; (b) Hollow symbols
correspond to tail length of 3.5 nm and solid ones to 5.5 nm for
R = 12.5 nm. Other parameters are total charge Qc = 1800, and
salt concentration µ = 100 mM (dashed) and µ = 500 mM (solid)

indicate the optimal length of genome. The ratios of the
optimal length or number of charges on RNA to the cap-
sid total charge Qc = 1800 from left to right in the figure
are 0.39, 0.52, 0.92, 1.07, 1.22, 1.66, which clearly shows a
transition from undercharging towards overcharging. We
note that we find the same behavior when employing a
T = 1 instead of a T = 3 capsid.

IV. DISCUSSION AND SUMMARY

The reason for overcharging associated with the non-
uniform charge distributions is twofold. A non-uniform
charge distribution on the capsids obviously promotes a
non-uniform genome density distribution. However, in
order to have a more uniform polymer distribution with
lower entropy cost, longer chains are preferably encap-
sulated to make the genome distribution more uniform
in the regions between the N-terminal tails. Figure 5(a)
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illustrates this e↵ect for a T = 3 structure with 180 tails
as a plot of the optimal length of genome vs. the capsid
charge density. Note that since the total charge of capsid
is fixed, as we increase the charge density, we lower the
volume of the N-terminal regions, which is also shown in
the axis on the top of the graph. The vertical axis on the
right-hand side of the figure shows the degree of over-
charging. The circles in the figure correspond to µ = 100

mM salt concentration and squares to µ = 500 mM . For
the hollow symbols the radius of capsid is R = 9.5 nm but
for the solid symbols R = 11.5 nm. As shown in the figure,
if we increase the area between the N-terminals or the ra-
dius of capsid, the amount of overcharging increases at a
given salt concentration.

However, the noted entropy e↵ect cannot explain all
the observations. At the physiological salt concentration
of µ = 100 mM , the genome only interacts with the capsid
if it is sitting in vicinity of the capsid coat protein charges.
This is due to the rather short range of electrostatic in-
teractions at that salt concentration. The presence of
N-terminals increases the region with which the genome
interacts attractively through electrostatic interactions.
Thus, the higher the salt concentration, the more impor-
tant becomes the role of N-terminals. The figure shows
that the overcharging is more pronounced at µ = 500 mM .
Also, the higher salt concentration, the lower is the elec-
trostatic self-repulsion between genome monomers, which
helps to the encapsidation of longer chains.

We also examined the impact of the length of N-
terminal domains in the thick capsid model, which corre-
sponds to how far the charged regions extend into the
interior of the capsid. As illustrated in Fig. 5(b) for
T = 3 capsids, more genome is encapsidated for longer
N-terminal tails, which is again due to larger interacting
region for a fixed total numer of charges on the capsid.
The e↵ect becomes more pronounced for higher salt con-

centrations as illustrated in the figure.

In summary, we have studied the phenomena of over-
charging observed in many viruses. Previous mean-field
theories as well as the experimental studies of CCMV
capsid proteins with short linear polymers have indi-
cated the resulting VLPs are undercharged[25, 26, 41–
44]. However, MD simulations revealed overcharging
can happen even for linear polymers and the question is
why[23]. In this paper, we showed that the non-uniform
charge distribution increases both the stability and the
amount of genome that can be assembled by CPs as a
result of what in essence is entropy. For a thin capsid
model with the charges smeared flatly on the surface,
longer chains are encapsulated, but we have not been
able to observe overcharging with linear polymers. This
indicates that overcharging for linear systems is primar-
ily due to the charged N-terminal regions that protrude
into the interior of the capsid. The N-terminal regions
increase the regions in which the genome can interact
with the capsid proteins and thus resulting in the encap-
sidation of longer chains. This latter e↵ect is stronger
at higher salt concentrations. We find that the com-
bined e↵ect of RNA base-pairing, which gives rise to the
genome branching, and non-uniform charge distribution
can explain the pronounced charge inversion observed in
viruses.
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