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This paper investigates the effects of independent nonconformists or influencers on the behavioral dynamic
of a population of agents interacting with each other based on the Sznajd model. The system is modeled on a
complete graph using the Master Equation. The acquired equation has been numerically solved. Accuracy of
the mathematical model and its corresponding assumptions have been validated by numerical simulations.
Regions of initial magnetization have been found from where the system converges to one of two unique
steady-state PDFs, depending on the distribution of influencers. The scaling property and entropy of the
stationary system in presence of varying level of influence have been presented and discussed.

I. INTRODUCTION

Social scientists, for many years have developed theories
of group position [1], social identity [2], and system justi-
fication [3]. Now, such theories can be validated quanti-
tatively by analyses of ‘retweets’, ‘via’, ‘hat tip’, and ‘men-
tion’ conventions which have been shown to be analogous to
broadcasting one’s position, and helps explain how virality,
meme propagation, and opinion formation occur on Twitter
[4]. Fast diffusion of uncorroborated information through
such non-traditional pathways has often exposed our weak-
ness to safeguard against ‘perception manipulation’ attacks
or ‘cognitive hacking’ [5]. The widespread adoption of tools
related to network-based social engagement and its vast im-
plications have generated a renewed interest in scientists to
study the nature, topology, and mechanisms of interactions
among individuals in a networked society.

The study of macroscopic changes in the outcome of or-
dering processes in complex networks mostly proceeds along
several well-researched avenues. Of relevance to this pa-
per, are the studies (a) investigating effects of different in-
teraction mechanisms such as the Voter model [6], the Sz-
najd model [7] and the Bounded Confidence model [8] on
large-scale ordering dynamics, and (b) investigating effects
of different network topologies such as the complete graph,
the Watts-Strogatz small world topology, the Barabási-Albert
scale free network, etc. on the mechanism and rate of infor-
mation diffusion. For such studies, models from statistical
physics such as the Ising model have been often adopted, in
which a Master equation for global variables extracts basic
features of the ordering process. Presence of influences and
zealots in networks is another dimension where researchers
have made considerable contributions in relatively recent
years.

The Voter model is considered one of the simplest inter-
action mechanisms which models the spin flip of two neigh-
boring nodes; if two neighboring agents have different opin-
ions (binary states, spins), then one of the agents changes its
state to match the opinion of the other one. This mechanism
has been modeled on different networks with and without
zealots [9–11]. However, because only two agents are present
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in this opinion exchange, the dynamics do not consider the
social validation aspect. The concept of social validation in
opinion change through interactions is introduced by Sznajd-
Weron and Sznajd in [12].

In all the above-mentioned models, opinions are modelized
as numbers, integer or real. Each agent is initialized with
a random number as their representative opinions. As in-
teractions proceed, the agents rearrange their opinion vari-
ables, through mutual discussions. At some stage, the sys-
tem reaches a configuration which is stable under the chosen
dynamics; this final configuration may represent consensus
with all agents sharing the same opinion, polarization with
two main clusters of opinions (“parties”), or fragmentation
where several opinion clusters survive. In all such evolution-
ary models of societies, the detailed behavior of each human,
inherently the complex outcome of many internal processes,
is largely overlooked. Decisions can be described in terms
of three essential components such as alternatives, antici-
pated consequences, and uncertainty. Some of the earliest
attempts to formalize this theory were by von Neumann &
Morgenstern [13] and Savage [14, 15] who popularized the
expected utility family of theories. The heart of the the-
ory, sometimes called the rational expectations principle or
expectancy-value model [16], proposes that each alternative
course of action or choice should be evaluated by weighting
its global expected satisfaction-dissatisfaction with the prob-
abilities that the component consequences will occur and be
experienced. These rational actor models prove that social
validation is surely not the sole reason of an individual’s
opinion formation in social settings [17]. Effects such as ed-
ucation [18], culture [19], and group identity [20] are also
important when an individual makes a decision.

Gross simplification adopted in the Sznajd model is justi-
fied by assuming that higher level features, such as symme-
tries, dimensionality, and topology of the interaction network
are strong indicators of the global behavior of the society,
along with microscopic details of individual motives, percep-
tions and judgments, and worthy of studying in isolation.

II. RECENT STUDIES ON SZNAJD MODEL

In recent years nonconformity has been a focal point for
a large number of studies on the Sznajd model. In these
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studies, two types of nonconformity are usually considered -
anti-conformity and independence. In a study by Nyczka et.
al., the authors investigate the effect of two types of social re-
sponses: conformity and anti-conformity in the dynamics of
the Sznajd model on a complete graph [21]. In this dynamic,
conformists choose the opinion of the group with probabil-
ity p1 (i.e. ↑↑⇓−→↑↑⇑ with probability p1, no change with
probability 1− p1), and anticonformists choose the opposite
opinion of the group with probability p2 (i.e. ↑↑⇑−→↑↑⇓
with probability p2, no change with probability 1 − p2). In
another study by the same group, authors expand this idea
to investigate the qualitative and quantitative differences of
the two types of nonconformity under the framework of the
q-voter model [22] on a complete graph. In this dynamic, an-
ticonformists choose the opposite opinion of the group, and
the independent agents do not follow the group; they act in-
dependently and choose the opposite opinion of the group
with probability 1

2 .
Jędrzejewski [23], expanded these studies with the Pair

Approximation methodology to study the behavior of a q-
voter model with stochastic noise characterized as Indepen-
dence on several complex networks. In this model, with prob-
ability p, a chosen agent acts independently and adopts the
opposite opinion or preserves the old one with equal chances.
Otherwise, with probability 1 − p, the agent will be a con-
formist.

A special class of independent agents are ‘zealots’ (some-
times called ‘inflexibles’ or ‘influencers’). These are agents
who do not change their state throughout the progression
of the dynamics. Mobilia uses Mean-Field approximation
method to analytically model the nonlinear q-voter model in
presence of zealots [24]. In this work, for simplicity, repe-
tition in choosing agents is allowed. The derived transition
probabilities are used for bifurcation analysis and finding
critical zealotry density. Analyses presented in this work re-
late to special cases of symmetric and parameterized asym-
metric zealotry distributions.

In this paper, we model and investigate the effects of in-
fluencers and initial conditions on the dynamics of the Sz-
najd model. The problem setup is closely linked to [24], but
in contrast to Mobilia’s work, does not allow repetitive agent
choices. Disallowing repetitive agent choices is not only more
realistic, but surprisingly, leads to a new master equation
which can be solved under specific conditions. Also, we do
not observe rapid phase transitions in this dynamic. Here,
influencers are nonconformists of the Independent type, who
never change their opinions (as opposed to [23]) but affect
other agents’ decisions. It is worth mentioning that influ-
encers of this study are different from what have been used
in [21, 22]. In these studies, the nonconformists are Anti-
conformists, however in our study, we have chosen Inde-
pendents as nonconformists.

In section III, the influenced Sznajd model is formulated on
a complete graph. Then, the derived differential equation is

used to study the behavior of the society at the steady state
without considering any type of symmetry for influencers.
Section IV is dedicated to numerical simulations and valida-
tion of the mathematical model. Finally, the findings of this
paper are summarized and concluded in section V.

III. INFLUENCED SZNAJD MODEL

In this paper, a complete graph is considered. A complete
graph can be characterized by a “magnetization parameter”
defined as m = N+−N−

N , where, N+ represents the number
of agents in state +1, and N− represents the number of
agents in state −1 at any instant. N = N+ + N− nodes
make up the vertices of the graph [25]. The system also
includes I = I+ + I− influences, in which I+ represents
the number of influences in state +1, and I− represents the
number of influences in state −1.

In the original Sznajd Model [12], the idea of social valida-
tion is used to introduce a spin dynamic with ±1 alignments:

• In each time step a pair of spins Si and Si+1 is cho-
sen to change spins of their nearest neighbors, namely
Si−1 and Si+2.

• If Si = Si+1 then Si−1 = Si and Si+2 = Si (social
validation).

• If Si = −Si+1 then Si−1 = Si+1 and Si+2 = Si.

In this study, a simplified Sznajd dynamics, modified for
a complete graph, rather than a one-dimensional lattice, in-
troduced in [7], is used which inherits the social validation
concept, but has slightly different update rules:

• In each time step a pair of nodes (i and j), respectively
in states Si and Sj are chosen at random and attempt
to change the state Sk of a randomly-chosen common
nearest neighbor, k ∈ Ni ∩Nj , where Ni is the set of
neighbor nodes of node i.

• If Si = Sj then Sk = Si (social validation).

• If Si = −Sj then nothing happens.

Due to the stochastic process of spin flips, Master Equa-
tion (ME) is used to formulate this model. ME represents
the time evolution of the probability of a system having any
configuration of ±1 spins defined by m. Eqn. 1 represents
the general form of the ME which includes in/out-flow rates
calculated as probabilities [25].

Ṗm = rm+ 2
N
Pm+ 2

N
+gm− 2

N
Pm− 2

N

− (rm + gm)Pm
(1)

where, in/out-flow rates are derived based on the Sznajd
model as:



3

rm = P (m→ m− 2

N
) =

(
N− + I−
N + I

)(
N− + I− − 1

N + I − 1

)(
N+

N + I − 2

)
gm = P (m→ m+

2

N
) =

(
N+ + I+
N + I

)(
N+ + I+ − 1

N + I − 1

)(
N−

N + I − 2

)
rm+ 2

N
= P (m+

2

N
→ m) =

(
N− + I− − 1

N + I

)(
N− + I− − 2

N + I − 1

)(
N+ + 1

N + I − 2

)
gm− 2

N
= P (m− 2

N
→ m) =

(
N+ + I+ − 1

N + I

)(
N+ + I+ − 2

N + I − 1

)(
N− + 1

N + I − 2

)
(2)

By substituting Eqn. 2 in Eqn. 1, after some manipulations, and by defining the control variable as u = I+−I−
I , for large

but finite population sizes N , the master equation can be
expressed as:

Ṗm =
1

N4

[(
Nm2 −N +

N2

2
− N2m2

2
+
I2

2
+
I2u2

2
+ IN − I2mu− Im2N

)
∂2Pm
∂m2

+

(
10mN + INu− INm− N3m

2
− I2uN −N2Iu− 2N2m+

N3m3

2

+
I2mN

2
+
I2u2mN

2
+N2Ium2 − 4ImN − 2I2u+ 4Iu

)
∂Pm
∂m

+

(
4N − 3IN −N2 − N3

2
+

3N3m2

2
+ 2N2Imu+

I2N

2
+
I2u2N

2

)
Pm

]
(3)

Assuming that a steady state density function exists, limt→∞
dPm
dt = 0 [26], the steady state density Pss(m) has

to satisfy:

(
Nm2 −N +

N2

2
− N2m2

2
+
I2

2
+
I2u2

2
+ IN − I2mu− Im2N

)
d2Pss(m)

dm2
+(

10mN + INu− INm− N3m

2
− I2uN −N2Iu− 2N2m+

N3m3

2
+

I2mN

2
+
I2u2mN

2
+N2Ium2 − 4ImN − 2I2u+ 4Iu

)
dPss(m)

dm
+(

4N − 3IN −N2 − N3

2
+

3N3m2

2
+ 2N2Imu+

I2N

2
+
I2u2N

2

)
Pss(m) = 0

(4)

which is a homogeneous second order linear differential
equation. The terms can be rearranged to a more compact
form:

d

dm

[(
Σ3
i=0aim

i
)
Pss(m) +

(
Σ2
i=0bim

i
) dPss(m)

dm

]
= −4mN

dPss(m)

dm

(5)

Integrating the same equation and using the identity∫ 1

−1 Pss(m)dm = 1, the general form of a first order ODE

is obtained:

B(m)
dPss(m)

dm
+A(m)Pss(m) = 4N (6)

The coefficients of this equation are presented in Table I
The analytical solution of such equations has the general

form of:

Pss(m) =
1

v(m)

(∫
v(m)

4N

B(m)
dm

)
+ C, (7)

where v(m) = e
∫ A(m)
B(m)

dm. Pss(m) after normalization, pro-
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a0 4Iu− I2u−N2Iu−NI2u+NIu

a1 8N−3NI−N2− N3

2
+ NI2

2
+ NI2u2

2

a2 N2Iu

a3
N3

2

b0 −N + N2

2
+ I2

2
+ I2u2

2
+ IN

b1 −I2u
b2 N −NI − N2

2

A a3m
3 + a2m

2 + a1m+ a0
B b2m

2 + b1m+ b0

TABLE I

vides the steady state distribution of the population starting
from an initial distribution m0. In the simplified setting of
I = 0 and N →∞, the population almost surely converges
to either all +1 or all −1 states, the two attractors for that
dynamics, i.e. Pss(m) = δ(m ± 1) where δ is the Dirac
delta function. Which direction the population converges to
depends on the initial starting condition, i.e. whether m0

is greater or less than 0. However, for all these cases, it is
observed that Pss(m = 0) = 0, i.e. at steady state the prob-
ability of the population being equally divided between +1
and −1 states is almost surely 0, which stems from m = 0
being an unstable equilibrium and the stochastic nature of
the process.

Keeping these in mind, the ODE is solved separately over
two ranges, Pssl solved over −1 ≤ m ≤ 0 and Pssh solved
over 0 ≤ m ≤ 1 with Pss(m = 0) = 0, as the boundary
condition for both. It will be shown next, that the entire span
[−1, 1] of possible starting values for m0 can be divided into
two distinct regions,

• a convergence zone (ZC ), starting from which the popula-
tion consistently converges toward a particular attractive
state - consequently, the steady state PDF matches either
Pssl or Pssh , and

• an indeterminate zone (ZI ), starting from which the pop-
ulation can, by chance converge toward any of the two
attracting states, thus Pss(m) has a bimodal distribution
which is a combination of Pssl and Pssh .

It may be noted, that for the simple case of I = 0 and
N →∞, ZI is a singleton set, with ZI = {0}.

IV. RESULTS

Using a variable-step Runge-Kutta method, Eqn. 6 is nu-
merically solved and plotted for different population sizes.
Then, results from the Monte Carlo (MC) simulations are
overlayed on it.

Fig. 1 includes numerical solution of Eqn. 6 (solid lines) as
well as data points from MC simulations for different pop-
ulation sizes (N ). Larger populations are characterized by
higher peak values and lower variances. Additionally, the as-
sumption of large but finite N lower bounds the population
size. This can be seen in the N = 50 plot, where results
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FIG. 1: Effect of the population size N on the steady state density
Pss(m)

from numerical simulations are not in accordance with the
numerical solution of the mathematical model. High degree
of fidelity between MC simulations data and numerical solu-
tions of the model is observed for N > 100.

A caveat on the assumption of large population size should
be mentioned here. Realistically, N cannot be unbounded,
since there is a cognitive limit to the number of people with
whom one can maintain social relationship - this is known
as the Dunbar number [27]. It is true that influence in the
world of social network is not completely dictated by rela-
tionships in which an individual knows the identity of each
person and how he/she relates to every other person. For
example, the Pew Research Center puts the average number
of friends for a Facebook user at 338 [28]. However, these
kinds of social networks rarely ever assume a complete graph
topology, but can be more realistically modeled as a scale-
free network. Keeping this in mind, and since the deriva-
tions in this paper rely on the complete graph assumption,
all subsequent results are for an intermediate population
size (N = 100) which is large enough for numerical accu-
racy, but smaller than the permissible Dunbar number limit
(Nlimit = 150).

A. Convergence and Indeterminate Zones

This section aims to elaborate on the effect of initial mag-
netization (m0) on the steady state of the system. Each re-
sult is from 1000 runs of Monte Carlo simulations in which
the magnetization parameterm is treated as a random vari-
able. The rescaled histogram of the random variable is used
to estimate the probability density function of the system at
steady state. Different population sizes are considered and
simulated with all the possible initial conditions (m0 varies
with steps equal to 2

N ).
For ease of representation, the mean magnetization 〈mss〉

estimated from the steady state PDF, Pss(m), for each simu-
lation is plotted. Although, not the most comprehensive rep-
resentation, Fig. 2 by representing the behavior of the mean
steady state magnetization of systems as initial magnetiza-
tion varies, provides a visual representation of the conver-
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FIG. 2: Dependency of mean steady state magnetization on initial
magnetization,

(a) N = 50, I+ = 6, I− = 5, (b) N = 100, I+ = 12, I− = 10,
(c) N = 200, I+ = 24, I− = 20, (d) N = 500, I+ = 60, I− = 50

gence and indeterminate zones.
Fig. 2 depicts the two regions, convergence and indeter-

minate zones. The convergence zone is again composed of
two regions - ZC = ZCl ∪ ZCh , where

ZCl =
{
m0 ≤ m∗0l |Pss(m) = Pssl(m)

}
ZCh =

{
m0 ≥ m∗0h |Pss(m) = Pssh(m)

} (8)

The indeterminate zone

ZI =
{
m∗0l < m0 < m∗0h |Pss(m) = ClPssl(m) + ChPssh(m)

}
where Cl > 0, Ch > 0. For different configurations of
population size and influences, ZCl and ZCh are represented
by green with boundaries denoted by m∗0l and m∗0h .

It can be observed that as population size increases, the
convergence zone covers larger intervals of m0. In addi-
tion, with linear scaling of simulation parameters, systems
starting from their respective convergence zones converge to
the same mean steady state magnetization value. In other
words, for two generic systems α and β, with a scale factor of
η, if (m0α = m0β ) ≤ m∗0l or if (m0α = m0β ) ≥ m∗0h , then
〈mss(N, I+, I−)〉 = 〈mss(ηN, ηI+, ηI−)〉, η = 2, 3, 4, . . ..

It may be noted that although the results presented so far
are illustrated with the help of the mean of the stationary
distribution, in fact, the hypothesis is that for each α, the
sequence, Pαn (m) converges in distribution to Pss(m), i.e.,
limn→∞ Pαn (m) = Pss(m).

To prove this, denoting a system configuration as sys =
{N, I+, I−,m0}, the following null and alternative hypothe-
ses are constructed:

• Null Hypothesis (H0): For sysα and sysβ withNα =
Nβ , I+α = I+β , I−α = I−β , if (m0α 6= m0β ) ≤ m∗0l
or if (m0α 6= m0β ) ≥ m∗0h then Pαss(m) ∼ P βss(m).

• Alternative Hypothesis (H1): For sysα and sysβ
with Nα = Nβ , I+α = I+β , I−α = I−β , if (m0α 6=
m0β ) ≤ m∗0l or if (m0α 6= m0β ) ≥ m∗0h then
Pαss(m) � P βss(m).

Simulation data with different m0’s are tested at α =
0.01 significance level using the two-sample Kolmogorov-
Smirnov (KS) test. Results of the testing do not reject the
null hypothesis; thus, the null hypothesis stands true with
99% certainty.

Fig. 3 illustrates steady state PDF’s of a system with dif-
ferent initial conditions (marked by red stars in Fig. 3a) for
visual verification. It may be noted that when initial con-
ditions are chosen from ZCh (Figs. 3f, g, h), or from ZCl
(Figs. 3c, d, e), the steady state PDFs each time converge
respectively to Pssl(m) and Pssh(m).

For m∗0l ≤ m0 ≤ m∗0h (Fig. 3b), the PDF is a mixture
of two PDFs. K-S tests reveal that the rescaled PDFs of
these modes are the same as Pssl and Pssh proving that
the solution of Eqn. 4 contains both specific solutions; or
equivalently, Cl 6= 0 and Ch 6= 0.

B. Convergence Zone with Varying Control Inputs

In section IV A, a fixed control input is used to find the
convergence zones related to different population sizes. The
objective of this section is to investigate whether there exist
convergence zones for other values of u. Also, how such
convergence zones depend on the control input is studied.

To do this, control input u is treated as an independent
variable in Fig. 4. Similar to section IV A, MC simulations
are performed for all possible combinations of m0 and u.
Then, mean magnetization of the system at the steady state
is calculated and plotted.

A specific control input can correspond to different
combinations of I+ and I−; for e.g., I+ = 8, I− = 2
and I+ = 16, I− = 4 both represent u = 0.6. To fully
specify the problem, we define influence ratio, λ = I

N , as a
simulation parameter, where |I| = |I+| + |I−|. Somewhat
arbitrarily, we focus on the range 0 ≤ λ ≤ 1 for λ, which
regulates the total number of influences in the system to
be at most the same size as the population. In Fig. 4, the
control input changes with steps equal to 2

I to cover all
possible discrete values in [−1, 1].

Existence of convergence zones: Fig. 4 depicts that for
different combinations of λ and u, region(s) (m0 ≤ m∗0l or
m0 ≥ m∗0h ) exist, where the mean steady state magnetiza-
tion 〈mss〉 loses its dependency on the initial magnetization,
and all systems converge to a unique PDF.

To determine boundaries of convergence zones, a new set
of figures are presented. Fig. 5a represents the case with
λ = 0.2 with markers for m∗0l and m∗0h . Fig. 5b is the two
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FIG. 3: Convergence zone and stationary PDF’s of a system with N = 100, I+ = 12, I− = 10, (a) chosen initial values (m0) for hypothesis
testing, (b) m0 = −0.04, (c) m0 = −0.7, (d) m0 = −0.8, (e) m0 = −0.9, (f) m0 = 0.5, (g) m0 = 0.7, (h) m0 = 0.9

dimensional location of the same markers on the m0 − u
plane. As it can be seen, for most values of the control input,
both m∗0l and m∗0h are present. However, in extreme cases
of control input one of them is absent. For example, u = −1
and u = 1 lack m∗0h and m∗0l respectively. Same analysis
can be applied to systems with other values of λ.

Exit probability, i.e. the probability that the system
ultimately reaches consensus as a function of the initial
composition of the population, is a very important first-
passage property [29]. In this work, the concept of exit
probability is not completely applicable since the influenced
system never reaches consensus. However, the proof of
our Null Hypothesis does show some similarities with the
concept of exit probability. Here, we have shown that
two similar systems with initial conditions belonging to
the same convergence zone will converge to the same
probability distribution in their stationary states. The
limits of convergence zones depend on N,λ, and u.

Effect of influence ratio (λ): Fig. 4a represents an unin-
fluenced society. 〈mss〉 is only a function of m0, and bound-

aries of convergence zone are clear on both sides. However,
as soon as influences are added to the society (λ = 0.2), the
behavior of the 〈mss〉 starts to change, and dependency on u
is noticeable. For instance, on plane u = −1, the 〈mss〉s for
positive m0s decrease since all of the influences are focused
on the negative side. Also, on plane u = 1, the 〈mss〉s for
negative m0s increase because all the influences are focused
on the positive side.

More importantly, at λ = 0.2, number of influences is not
high enough to make the 〈mss〉 flatten as m0 changes on
planes u = ±1. This is the reason why there is neither
a m∗0h on plane u = −1 nor a m∗0l on u = 1. However,
for higher values of λ, number of influences is high enough
to overcome the effect of m0 and make the 〈mss〉 flatten
(Figs. 4c-f).

In Figs. 4c-e, as λ increases, the control input be-
comes the dominant parameter in changing the behavior
of 〈mss〉, and 〈mss〉 completely loses its dependency
on m0 as u −→ ±1. In addition, when u −→ 0, m0

is the dominant parameter in the behavior of 〈mss〉.
Interestingly, Fig. 4f, 〈mss〉 is a function of u only. It
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FIG. 4: Dependency of mean steady state magnetization on initial magnetization and control input for N = 100,
(a) λ = 0, (b) λ = 0.2, (c) λ = 0.4, (d) λ = 0.6, (e) λ = 0.8, (f) λ = 1

is interesting to note that when the influence size (I )
exactly matches the population size (N ) the steady state
PDF completely loses its dependency on the initial condition.
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FIG. 5: (a) m∗
0l and m∗

0h marked on the 3D graph related to
λ = 0.2 for all possible values of u. (b) 2D representation of the

boundaries on the m0 − u plane.

Comparison to previous studies: In the study by
Slanina and Lavička [7], it is proven that for a simplified
Sznajd model dynamic on a complete graph, there exists a
phase transition at m0 = 0. However, in our simulations
this phase transition is absent in Fig. 4. In the case of
λ = 0, this is due to the fact that, in their analyses, Slanina
and Lavička assume the population size is infinite, N →∞;
however, in our simulations we assume the population is
large but finite. In cases where λ 6= 0, the absence of a
phase transition is partly because of the large but finite
N assumption, and in part because of the presence of
influences.

Linear scaling property: In section IV A, the linear scal-
ing property with a fixed control input is mentioned. In
this section, we investigate if this property holds true for
other values of control input. Fig. 6 compares the behavior
of 〈mss〉 for two population sizes N = 50 and N = 100
(η = 2). From visual inspection, linear scaling of simulation
parameters preserves the general trend of 〈mss〉.

However, point-to-point comparison of 〈mss〉 data shows
that the relation 〈mss(N, I+, I−)〉 = 〈mss(ηN, ηI+, ηI−)〉
does not hold true for all values of u. To determine the
interval of control input for which the scalability property
stands, we study the point-to-point difference in 〈mss〉 data
values. Fig. 6c represents δ = 〈mss〉|N=50 − 〈mss〉|N=100

calculated on planes m0 = −1 (blue line) and m0 = +1 (red
line).

It can be seen that for some values of u, 〈mss〉 of the
scaled system (N = 100) and the base system (N = 50)
are exactly equal (δ = 0); thus, for the corresponding m0

scalability property stands. For instance, if λ = 0.2, for



8

-1
1

0

1

 m
ss

 

u
0

m 0

1

0
-1 -1

(a)

-1
1

0

1

 m
ss

 

u
0

m 0

1

0
-1 -1

(b)

-1 -0.5 0 0.5 1
Control Input (u)

-0.5

0

0.5

(c)

FIG. 6: Three dimensional linear scaling property, (a) the base system (N = 50, λ = 0.2), (b) the scaled system (N = 100, λ = 0.2),
(c) Scalability zone for m0 = ±1 with λ = 0.2

1

-0.5

0

1
u

0.5

0

m 0
0

-1 -1

(a)

1

-0.5

0

1
u

0.5

0

m 0
0

-1 -1

(b)

1

-0.5

0

1

u

0.5

0

m 0
0

-1 -1

(c)

1

-0.5

0

1

u

0.5

0

m 0
0

-1 -1

(d)

1

-0.5

0

1

u

0.5

0

m 0
0

-1 -1

(e)

FIG. 7: Scalability zone for all m0s for N = 100, (a) λ = 0.2, (b) λ = 0.4, (c) λ = 0.6, (d) λ = 0.8, (e) λ = 1

∀u ∈ [−1, 0.4], δ = 0 on plane m0 = −1 (the green area).
For a unique m0, intervals of control input for which δ =
0 will be referred to as the Scalability Zone of the base
system for that m0.

To study the existence of scalability zone for different val-
ues of initial magnetization, the same process has been ap-
plied to 〈mss〉 data on other available m0 planes. Fig. 7
presents δ(m0, u) for different values of influence ratio. In-
teresting characteristics are observed for different values of
λ regarding existence of scalability zone and its expansion,
maximum difference values, and sign of δ.

It can be seen in Fig. 7a that for some values ofm0 close to
zero δ 6= 0. However, scalability zone appears and expands
in the first and third quadrant of the m0 − u plane (where
sgn(m0) = sgn(u)) towards outer borders. In this figure,
dependency of δ on m0 is clear in a large area. Also, maxi-
mum difference happens in the second and fourth quadrants

near the outer borders (where sgn(m0) = −sgn(u)).
As λ increases, the dependency of δ on m0 decreases;

maximum differences decrease, and they happen close to
u = 0 plane. The scalability zone is available for all val-
ues of m0. When λ = 1, δ is a function of u only. Inter-
estingly, sgn(δ) = sgn(u) = −sgn(m0) for all values of
λ. This means that for m0 ≥ 0, δ < 0 ⇒ 〈mss〉|N=50 <
〈mss〉|N=100 if δ(m0, u) 6= 0, or for m0 ≤ 0, δ > 0 ⇒
〈mss〉|N=50 > 〈mss〉|N=100 if δ(m0, u) 6= 0.

So far, our findings are dominantly based on the mean
of the probability distribution function of the system at its
steady state; however, while calculating the mean, some in-
formation of the PDF is lost. For instance, although a fam-
ily of Gaussian distributions defined as f(x) = 1√

2πσ2
e

−x2

2σ2

have a mean value of zero, their disorder or uncertainty can-
not be explained by their mean. In information theory the
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FIG. 8: Entropy of distributions for different values of λ for N = 100, (a) λ = 0, (b) λ = 0.2, (c) λ = 0.4, (d) λ = 0.6, (e) λ = 0.8, (f) λ = 1

concept of Entropy is used to study the uncertainty of PDFs.
Next section is devoted to the study of system entropy at
steady state.

C. Entropy Analysis

Entropy of a random variable X is defined as the expecta-
tion of the random variable − logP (X) with respect to the
probability measure P [30, 31]:

H(X) =EPX{− logPX(X)}

=−
∑
x∈X

PX(x) logPX(x) (9)

where, EP denotes the expectation with respect to proba-
bility distribution P . We use the steady state magnetization
PDF of the systems in Fig. 4 to calculate entropy of each data
point. Fig. 8 represents the entropy of the system for dif-
ferent values of influence ratio. It is worth noting that low
entropy corresponds to higher certainty and high entropy
represents lower certainty in the steady state.

For λ = 0, there are no influences in the population, and
entropy of the system is a function of m0 only. Entropy is
zero for m0 ≤ m∗0l or m0 ≥ m∗0h because in these regions
there are enough agents at the corresponding state to push
the system PDF towards a Dirac delta function at either −1
for m0 ≤ m∗0l or at +1 when m0 ≥ m∗0h . Also, entropy
reaches its maximum at m0 = 0, because in this region nei-
ther of the groups in ±1 states are strong enough to com-
pletely attract the population towards themselves; this phe-

nomenon results in a more distributed density function over
the magnetization axis, and consequently higher entropy.

Figures 8b-f depict that adding influences to the popu-
lation increases the entropy of the system. The reason is
that although small in number, influences are capable of at-
tracting agents to their state; as a result, the steady state
magnetization of the system will have a different value from
that of the uninfluenced population. So, the density function
of the system becomes more distributed over the magneti-
zation axis leading to higher entropy values.

For instance, u = 0|λ=0.2 represents a system with in-
fluences equally divided between the two groups; this might
imply that their effects on the steady state PDF will be elim-
inated by each other, and the resulted PDF will be the same
as that of the uninfluenced system (λ = 0). However, by
point-to-point comparison of data points we find that ∀m0

on the u = 0 plane, the PDF of the influenced system is more
distributed, and H(m0, u = 0)|λ=0 < H(m0, u = 0)|λ=0.2.

In Fig. 8b, entropy is at its lowest levels when sgn(m0) =
sgn(u). In this situation higher number of influences sup-
port the initially more populated state resulting in a sharp
less-distributed magnetization density function close to one
of the ends of the magnetization axis. The opposite hap-
pens when sgn(m0) = −sgn(u) since more influences are
in the favor of the initially less populated state preventing
the population from clustering at one of the edges of the
magnetization axis; the resulting density function is nicely
distributed causing higher entropy. This reasoning explains
why the point (m0 = 0, u = 0) is similar to a saddle point.

It is observed in Fig. 8b that entropy is more sensitive to
the control input rather than the initial condition. Consider
point (m0 = −1, u = −1) on the graph. Entropy starts
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to propagate from zero faster if {m0 = const. and u ↑}
compared to the situation where {u = const. and m0 ↑}.
The reason is that influences (even in small numbers) are
always active in the process of changing agents’ states to
theirs. However, an agent is active in attracting other agents
to its initial state till s/he changes to the opposite state; i.e.
its effect is not ever-lasting. As a result, more agents are
needed to have the same effect of a few number of influences
on the PDF of the system and the entropy.

In Fig. 8b, as u increases on m0 = −1 plane, entropy as-
cends till u = 0.9. This phenomenon is easy to comprehend
since more influences in state +1 attract more agents from
state −1, and the PDF of the system is more distributed.
However, at u = 1, since all the influences are at the posi-
tive side, they are able to dramatically shift the PDF towards
themselves and make it narrower resulting in lower entropy
value. Here, the number of influences is not high enough to
change the PDF into a Dirac delta function, so entropy does
not reach zero.

On the contrary, in Figures 8c-f, number of influences is
high enough to completely attract the population towards
themselves on planes u = ±1; so, the entropy is zero. As λ
increases, similar to 〈mss〉, for larger intervals of u entropy
loses its dependency on m0 and sgn(m0), and the saddle
point disappears; for λ = 1, entropy depends on the control
input only.

V. CONCLUSION

In this paper, effects of external influences on the behavioral
dynamic of a group of agents who interact with each other
based on the Sznajd model are studied. The Sznajd model
is formulated on a complete graph in presence of influences,
and the governing differential equation for the population
behavior at steady state is derived. The resulted ODE shows
the dependency of pe(m) on population sizeN , control input
u = I+−I−

I , and total influence size I .
The mathematical model is numerically solved, and the

results are compared with data from numerical simulations.
Higher peak values and lower variances are observed for
larger population sizes. We find good agreement between the
results from numerical experiments and numerical solution
of the mathematical model for network sizes exceeding N =
100.

Based on numerical simulations, regions (called conver-
gence zone) are available where the steady state loses its de-
pendency on the initial condition. By adopting Kolmogorov-
Smirnov hypothesis testing method, it is proven with 99%
certainty that steady state PDF’s of systems with initial con-
ditions belonging to the same convergence zone are equiv-
alent. Different graphs are provided to display this phe-
nomenon. A relationship based on these findings and the
general solution of the stationary ODE is drawn for different
ranges of m0. Furthermore, results show that by increasing
the population size, the convergence zone covers a larger
area. Interestingly, it is observed that linear scaling of sim-
ulation parameters causes the same convergence value for
the mean steady state magnetization.

Effect of the control input on convergence zones is stud-
ied on three dimensional graphs by defining a new parameter
λ = I

N named influence ratio. Results show that for differ-
ent combinations of u and λ, convergence zone(s) exist. Fig-
ures are provided to show the boundaries of the convergence
zones. It is shown that increase in the number of influences
results in larger convergence zones. When λ = 1, the whole
m0−u plane is independent of m0. In addition, the absence
of a phase transition is explained by the large-but-finite pop-
ulation size assumption and presence of influences.

Linear scaling property is also investigated for all combi-
nations of m0 and u. It is shown that not for all values of
the control input the mentioned property stands. Three di-
mensional figures are provided which show the dependency
of the difference between the 〈mss〉’s of two linearly scaled
systems for different λ’s. In general, as influence ratio in-
creases, δ decreases; and δ loses dependency on m0. The
reason behind high values of δ on the second and fourth
quadrants of the m0 − u plane is discussed in detail. It was
also shown that for negative initial conditions, the 〈mss〉 of
the base system is higher than that of the scaled system.

Entropy study of the system reveals that higher influence
(although small in number) equals higher entropy. Gener-
ally, entropy is a function of the initial magnetization and
the control input, but as λ increases, the system loses its
dependency on m0. When λ = 1 the entropy is only a func-
tion of the control input.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the support from NSF
CIS grant number 1538139.

[1] H. Blumer, American sociological review 19, 3 (1954).
[2] M. A. Hogg, in Understanding Peace and Conflict Through Social

Identity Theory (Springer, 2016) pp. 3–17.
[3] J. T. Jost, M. R. Banaji, and B. A. Nosek, Political psychology

25, 881 (2004).
[4] L. K. Hansen, A. Arvidsson, F. Å. Nielsen, E. Colleoni, and

M. Etter, Future information technology , 34 (2011).

[5] G. Cybenko, A. Giani, and P. Thompson, Computer 35, 50
(2002).

[6] F. Vazquez et al., New Journal of Physics 10, 063011 (2008).
[7] F. Slanina and H. Lavicka, The European Physical Journal B-

Condensed Matter and Complex Systems 35, 279 (2003).
[8] J. Lorenz, International Journal of Modern Physics C 18, 1819

(2007).
[9] M. Mobilia, Physical review letters 91, 028701 (2003).



11

[10] M. Mobilia, A. Petersen, and S. Redner, Journal of Statistical
Mechanics: Theory and Experiment 2007, P08029 (2007).

[11] A. R. Srinivasan and S. Chakraborty, in 2014 American Control
Conference (IEEE, 2014) pp. 2096–2101.

[12] K. Sznajd-Weron and J. Sznajd, International Journal of Mod-
ern Physics C 11, 1157 (2000).

[13] J. Von Neumann and O. Morgenstern, Theory of games and eco-
nomic behavior (Princeton university press, 2007).

[14] M. Friedman and L. J. Savage, Journal of political Economy 56,
279 (1948).

[15] L. J. Savage, The foundations of statistics (Courier Corporation,
1972).

[16] M. Fishbein and I. Ajzen, (1977).
[17] F. S. N. Karan and S. Chakraborty, in International Confer-

ence on Social Computing, Behavioral-Cultural Modeling and Pre-
diction and Behavior Representation in Modeling and Simulation
(Springer, Cham, 2017) pp. 182–192.

[18] W. E. Huffman, American Journal of Agricultural Economics
56, 85 (1974).

[19] D. A. Briley, M. W. Morris, and I. Simonson, Journal of con-
sumer research 27, 157 (2000).

[20] M. B. Brewer and R. M. Kramer, Journal of personality and
social psychology 50, 543 (1986).

[21] P. Nyczka, J. Cisło, and K. Sznajd-Weron, Physica A: Statistical
Mechanics and its Applications 391, 317 (2012).

[22] P. Nyczka, K. Sznajd-Weron, and J. Cisło, Physical Review E
86, 011105 (2012).
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