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Abstract
A spin-like model mimicking the human behavior in groups is employed to investigate the dynamics of the decision making

process. Within the model, the temporal evolution of the state of systems is governed by a time-continuous Markov chain. The
transition rates of the resulting master equation are defined in terms of the change of interaction energy between the neighboring
agents (change of the level of conflict) and of the change of a locally defined agent fitness. Three control parameters can be
identified: (i) the social interaction strength βJ measured in units of social temperature, (ii) the level of confidence β′ that
each individual has on his own expertise, (iii) the level of knowledge p which identifies the expertise of each member. Based
on these three parameters the phase diagrams of the system show that a critical transition front exists where a sharp and
concurrent change in fitness and consensus takes place. We show that at the critical front the information leakage from the
fitness landscape to the agents is maximized. This event triggers the emergence of the collective intelligence of the group, and
in the end leads to a dramatic increase of the performance of the group in making decision. The effect of size M of the system
is also investigated, showing that, depending on the value of the control parameters, increasing M may be either beneficial or
detrimental.

Keywords: Collective intelligence, decision making, complex problems, optimization, spin systems, social interactions, Markov process,

phase transitions, mutual information.

I. INTRODUCTION

Human groups are proven to outperform single indi-
viduals in solving a variety of complex tasks in many
different fields, including new product development, or-
ganizational design, strategy planning, research and de-
velopment. Their superior ability originates from the col-
lective decision making: individuals make choices, pursu-
ing their individual goals on the basis of their own knowl-
edge/expertise and adapting their behavior to the actions
of the other agents. Social interactions, indeed, promote
a mechanism of consensus seeking within the group, but
also provide a useful tool for knowledge and information
sharing [1–5]. This type of decision making dynamics is
common to many social systems in Nature, e.g., flocks
of birds, herds of animals, ant colonies, school of fish
[3, 6–15], as well as bacterial colonies [16–18], and even
to artificial systems [19–22].

Even though the single agent possesses a limited
knowledge, and the actions it performs are usually very
simple, the collective behavior leads to the emergence of
a superior intelligence known as swarm or collective intel-
ligence [23–26], which recently is receiving a growing at-
tention in the literature as to its antecedents and proper
measures [27, 28]. In the last years, indeed, a great deal
of research has been carried out aiming at improving our

knowledge of social behavior in Natural systems [29–31],
with the aim of understanding the physical origin of the
collective intelligence of such systems [32–37]. A large
part of the papers recognize consensus-seeking as one of
the key factor of decision making process enabling the
emergence of collective intelligence [38–46]. However, it
has been also recognized that the development of brand
new technologies, products and novel findings, may be
also the results of accidental events or the outcome of
extremely gifted minds, as in the case of scientific discov-
eries granting Nobel prizes. Therefore, in modelling the
decision-making process of human groups one has to take
into account the effect of social interactions, which pro-
mote consensus-seeking, but also the influence of the level
of expertise/knowledge of individuals. Under this per-
spective a few models of decision-making can be found in
the literature, attempting to capture the influence of the
main drivers of the individual behavior in groups, and in
particular, of self-interest and consensus-seeking [47–51].
Following this line of research, in this paper, we employ
a model of decision making, already proposed by GC and
IG in [51], where consensus-seeking is modelled using the
Ising-Glauber dynamics [52, 53], whereas the knowledge
of each member in the group is modelled through an indi-
vidual fitness landscape described in terms of a Kauffman
NK model [54, 55]. A continuous time Markov chain
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governs the decision-making process, where the transi-
tion rates of individual’s opinion change are represented
by the product of the Ising-Glauber rate [53, 56–59],
which mimics the process of consensus-seeking within the
group, and the Weidlich exponential rate [60, 61], which
speeds up or slows down the change of opinion depending
on the level of individual fitness. Here, we explore how
the dynamics of the system is affected by the strength of
social interactions, the level of knowledge of individuals
and their self-confidence. In particular, we focus on the
behavior of the system at criticality, where a phase tran-
sition and a significant amount of information exchange
occur, and study how these conditions are related to the
emergence of collective intelligence of the group. Recent
investigations, indeed, suggest, that criticality and large
amounts of information flow are the conditions leading
to the emergence of collective intelligence [64–74].

II. THE DECISION MAKING MODEL

Here we summarize the decision making model (DMM)
proposed by two of the authors in Ref. [51]. We consider
a set of M interacting agents, which is assigned to carry
out a task. The latter consists in attempting to solve a
complex combinatorial problem by identifying the set of
configurations with the highest fitness of the group, out
of a certain finite (but large) number of different config-
urations.

A. The Hamiltonian of the system

Consider a discrete system constituted of M agents.
Each agent is characterized by a state vector σk =
(

σ1
k, σ

2
k, ...σ

N
k

)

, k = 1, 2, ...,M . The spin σj
k = ±1,

j = 1, 2, ..., N , is a binary variable taking only two pos-
sible values ±1. It represents the opinion that the agent
k has on the j-th decision variable dj . Each decision
variable identifies a ‘decision layer’ [see Fig. (1)], where
spin-spin interactions occur leading to the definition of
an Ising-like energy term. The entire system is then de-
scribed by a multiplex network. Moreover, interaction
among the different decision layers occurs as a conse-
quence of the fact that each state vector σk is associated
with a certain energy level that defines the fitness of the
k-agent. The Hamiltonian of the system is then

H (s) = E (s)−ρV (s) = −1

2
JAs · s−ρV (s) (1)

=− 1

2
J
∑

ij

Aijsisj−ρV (s)

where the state vector s of the whole system is a vec-
tor of n = M × N components s =(s1, s2, ..., sM ) =
(

σ1
1 , σ

2
1 , ...σ

N
1 , σ1

2 , σ
2
2 , ...σ

N
2 , ..., σ1

M , σ2
M , ...σN

M

)

, E (s) is
the Ising energy, due to the mutal spin-spin interaction,
V (s) is the fitness associated with the state vector s. In

FIG. 1: The multiplex network utilized to build up the model.
Observe that on each decision-layer the structure of the so-
cial network (blue-links) may be different. Blue links identify
those spins (on a given layer) which interact through a Ising-
like interaction energy. Red dashed links connect the differ-
ent decision-layers. These type of links identify, for any given
member, the interaction among spins on the different decision
layer, leading to an additional energy term which provides the
fitness of each single member of the group.

Eq. (1) Aij are the elements of a N -block adjacency ma-
trix A. Note that A is a block matrix, since social inter-
actions occurs only among the spin belonging to the same
decision layer. The indipendent parameter ρ defines the
weigth of the fitness V (s) compared to the Ising energy
E (s).

B. The Markov chain formulation

Starting from any initial condition the dynamics of the
system of spins, identified by the Hamiltonian Eq. (1),
can be modelled in terms of a continuos-time Markov
where the probability P (s, t) that at time t, the state
vector takes the value s out of 2M×N possible states,
satisfies the master equation

dP (s, t)

dt
= −

∑

l

w (sl → s′l)P (sl, t) (2)

+
∑

l

w (s′l → sl)P (s′l, t)

where sl = (s1, s2, ., sl.., sn) and s′l = (s1, s2, .,−sl.., sn).
The transition rate of the Markov chain (i.e. the proba-
bility per unit time that the opinion sl flips to −sl while

2



the others remain temporarily fixed) are chosen by fol-
lowing similar argument as those presented by Glauber
[53], and is the product of an Ising-like term which mod-
els the process of consensus seeking aimed at minimizing
the level of social conflict, and the Weidlich exponential
rate [60, 61], which models the self-interest behavior of
the agents, i.e.

w (sl → s′l) =
1

2

[

1− sl tanh

(

βJ

〈κ〉
∑

h

Alhsh

)]

(3)

× exp {β′ [∆V (s′l, sl)]}

In Eq. (3) Alh are the elements of the N -block adja-
cency matrix A. Note that A is a block matrix, since
N different decision layers need to be identified, where
social interactions among the members occur to allow
for consensus seeking on each single decision dj . The
quantity βJ can be interpreted as the social interaction
strength measured in units of temperature β−1, and 〈κ〉
is the mean degree of the network of interactions among
the agents on each decision layer. The use of the re-
duced coupling constant J/ 〈κ〉 is needed to guarantee
that independent of the type of network structure the
Ising energy term is an extensive physical quantity. In
fact for the case of a fully connected network, as the one
considered in this study, the quantity 〈κ〉 = M − 1 and
the number of link among the nodes is M (M − 1) /2.
Hence, the term

∑

ij Aijsisj in eq. (1) increases quadrat-

ically with M , but dividing by 〈κ〉 this would again lead
the Ising-like interaction energy to increase linearly with
the number of nodes M . The quantity β can be in-
terpreted as the degree of trust the members have in
the others judgement/opinion. Similarly, the quantity
β′ = βρ/2 can be related to the level of confidence the
members have about their perceived fitness, i.e. about
their own knowledge/expertise. Note that the Markov
process Eq. (2) with transition rates Eq. (3) is shown
to obey the detailed balance conditions (see Ref. [51]),
with steady state probability P (s, t → +∞) = P0 (s) =
Z−1 exp [−βE (s) + 2β′V (s)], where the partition func-
tion Z =

∑

s
exp [−βE (s) + 2β′V (s)]. The quantity

∆V (s′l, sl) is simply the change of fitness of the agent
when its opinion changes from sl to −sl.

C. Group decision and the degree of consensus.

As the process evolves, the bit-string d (t) of the deci-
sion of the group of agents needs to be determined at each
time step t given the state vector s (t). Different choices
can be made. Among these the majority rule seems ap-
propriate, especially in presence of cognitive limits of the
agents, as it avoids the need for inquiring about the value
of fitness perceived by each agent at time t. Therefore,

given the set of opinions
(

σj
1, σ

j
2, ..., σ

j
M

)

that the agents

have about the decision j, at time t, we set:

dj (t) = sgn

[

M−1
∑

k

σj
k (t)

]

, j = 1, 2, ..., N (4)

If M is even and in the case of a parity condition, dj
is uniformly chosen at random between the two possi-
ble values ±1. The group fitness is then calculated as
V (t) = V [d (t)] and the ensemble average 〈V (t)〉 is then
evaluated together with the degree of consensus among
the agents [51]

χ (t) =
1

M2N

N
∑

j=1

M
∑

kh=1

Rj
hk (t) (5)

whereRj
hk (t) =

〈

σj
k (t)σ

j
h (t)

〉

. Observe that 0 ≤ χ (t) ≤
1.

III. THE FITNESS LANSCAPE

In this section we define the complex fitness landscape
of the system. More precisely, the fitness landscape is
defined consisting of 2N discrete values. To identify each
single value we first need to label each of them, in other
words we need to count them. To this end we use a
binary numeral system so that each fitness value is iden-
tified by a bit-string d =(d1, d2, ..., dN ), where each vari-
able di = ±1, i = 1, 2, ..., N is a two-state variable. The
total number of different configurations is 2N and each
bit-string d is, then, associated with a certain fitness
value V (d). The discrete landscape V (d) may be al-
most anything, e.g. it may be represented by the length
of the Hamiltonian cycle in the travelling salesman prob-
lem (TSP) [75], the optimization function in the knap-
sack problem [76], the Kauffman NK landscape [54, 55],
a fractal landscape [77] (see also Sec. A 2) or any other
complex landscape [78]. In this study we will make use
of the complex landscape defined within the framework
of the NK Kaufmann model of combinatorial complex-
ity [54, 55]. The motivation of this choice is that within
the NK framework it is relatively easy to model the cog-
nitive capabilities of each agent in the groups (i.e. it is
easy to take into account that each agent in the group
has his own personal understanding of the problem), and
to tune the complexity of the landscape through the pa-
rameters N and K. Within the NK approach the dis-
crete fitness function V (d) is computed as the weighted
sum of N independent stochastic contributions Wj

(

dK
j

)

,
j = 1, 2, ..., N , which only depend on the correspond-
ing sub-bitstring dK

j =
(

dj , d
1
j , .., d

K
j

)

of length K + 1,
where K may take the values K = 0, 1, ...N − 1 [54, 55].
The number of different values that each contribution
Wj

(

dK
j

)

may take is 2K+1, i.e. it is equal to the number
of different configurations that can be enumerated with a
K+1-bitstring. The fitness landscape of the group V (d)
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is then defined as

V (d) =
1

N

N
∑

j=1

Wj

(

dK
j

)

(6)

The integer index K tunes the complexity of the prob-
lem: increasing K increases the complexity C. Consider,
indeed, that the entire NK fitness landscape can be gen-
erated (see Sec. A) by combining together, through Eq.
(6), L = 2K+1N different values, drawn at random from
a uniform distribution. Thus, we need to specify L differ-
ent numbers to completely define the NK fitness land-
scape. With this in mind, we can easily estimate the
complexity C as

C = log2 L = K + 1 + log2 N (7)

Eq. (7) shows that the parameter K is much more in-
fluential than N in affecting the complexity of the land-
scape. It is worth noticing that for K = N − 1 the com-
plexity becomes C = N + log2 N and L = 2NN , which,
then, increases exponentially with N . Recalling that a
measure of complexity is also provided by the number of
local maxima, we expect that, for K = N − 1, also the
number of local optima exponentially increases with N .
This has been indeed found by Kaufmann [54, 55], who
showed that, under the condition K = N−1, the number
of local optima is on the average 2N/ (N + 1). Inciden-
tally we note that solving aNK Kaufmann combinatorial
problem, i.e. finding the optimum of the NK landscape
is classified for K > 2 as a NP -complete problem [79].

In our DMM model each agent in the group possesses
a specific cognitive level (i.e. the level of knowledge). To
model this level of knowledge, we introduce the proba-
bility p ∈ [0, 1] that each single agent knows the contri-
bution Wj (dj) to the total fitness. Based on its level
of knowledge, each agent k can, then, compute its own
perceived fitness as

Vk (d) =

∑N

j=1
DkjWj

(

dK
j

)

∑N

j=1
Dkj

(8)

whereD is the matrix, whose elementsDkj take the value
1 with probability p and 0 probability 1−p. Observe that
when p = 0 all the elements Dkj = 0, when this happens
we set Vk (d) = 0. Observe that with this definition of
perceived fitness Vk (d) the quantity ∆V (s′l, sl) appear-
ing in Eq. (3) is ∆V (s′l, sl) = Vk (σ

′

k)−Vk (σk), with σk =
(

σ1
k, σ

2
k, ...σ

j
k, ..., σ

N
k

)

and σ′

k =
(

σ1
k, σ

2
k, ...− σj

k, ..., σ
N
k

)

,

i.e., as mentioned so far, it is the change of the fitness
perceived by the agent k = quotient (l− 1, N) + 1, when

its opinion σj
k on the decision j = mod (l − 1, N) + 1

changes from sl = σj
k to s′l = −σj

k.

FIG. 2: The stationary values of the normalized averaged
fitness V∞, (a); and of the statistically averaged consensus
χ∞, (b); as a function of βJ . Results are presented for β′ =
10, p = 1, N = 15, K = 14 and for three different team sizes:
M = 7, 21, 100.

IV. CRITICALITY, MUTUAL INFORMATION

AND THE EMERGENCE OF COLLECTIVE IN-

TELLIGENCE

Calculations have been carried out assuming that the
network of social interactions on each single decision
layer is fully connected. We simulate the Markov pro-
cess by using the well-established stochastic simulation
algorithm proposed by Gillespie [51, 62, 63]. For any
given set of input parameters we computed hundreds of
different realizations of the same process (we replicated
the simulations 200 times) and calculated the ensemble
average of the realizations. The simulation stopped at
steady-state, i.e., when changes in the time-averages of
consensus and group fitness over consecutive time inter-
vals of a given length were sufficiently small.
In Fig. 2 we show the stationary values of fitness

V∞ = 〈V (t → ∞)〉 and the degree of consensus χ∞ =
〈χ (t → ∞)〉 as a function of the quantity βJ for differ-
ent group sizes M = 7, 21, 100, and N = 15, K = 14,
β′ = 10 and for a level of knowledge p = 1.0.
Results clearly show that a critical range of βJ values

exists at which both consensus and fitness have a sharp
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FIG. 3: The stationary values of the normalized averaged
fitness V∞, (a); and of the statistically averaged consensus
χ∞, (b); as a function of βJ . Results are presented for β′ = 5,
p = 1, N = 15, K = 14 and for three different team sizes:
M = 7, 21, 100.

and concurrent increase. Notably, this transition from
low to high fitness is affected by the groups size M , in
that, for given β′ = 10 and p = 1.0, an increase of M
moves the transition to higher values of βJ . Somehow
unexpectedly, increasing M does not seem to sharpen
this transition, as instead occurs in pure Ising system.
This is clearly related to the presence of an additional
energy term in the Hamiltonian of the system. Indeed,
in our model, two terms contribute to the total energy of
the system: (i) the Ising social interaction energy, i.e. the
level of conflict (or disagreement) within the group, and
(ii) the energy term associated with the perceived (in-
dividual) fitness. The latter breaks the symmetry of the
system dynamics making it sensitive to the parameter β′.
Thus, for β′ = 5 (the other quantities being fixed), the
trend of V∞ and χ∞, represented in Fig. 3, differs from
the case β′ = 10, and, this time, resembles closely what
is expected for the pure Ising systems. Indeed, the tran-
sition is much steeper and becomes sharper and sharper
as the number of agents M is increased.

To identify the presence of phase transitions and crit-
ical fronts, we represent, for given values of p and M ,
the long-term system response (i.e. the steady-state re-

FIG. 4: The stationary values of the normalized averaged
fitness V∞, (a); the statistically averaged consensus χ∞, (b)
as a function of βJ and β′. The phase diagram is represented
in (c). Results are presented for p = 1, N = 15, K = 14,
M = 7.
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FIG. 5: The stationary values of the normalized averaged
fitness V∞, (a); the statistically averaged consensus χ∞, (b);
as a function of βJ and β′. The phase diagram is represented
in (c). Results are presented for p = 1, N = 15, K = 14,
M = 21.

FIG. 6: The critical critical transition fronts, for M = 7 (blue
line) and M = 21 (red line). Results are presented for p =
1, N = 15, K = 14. On the thick part of the lines the
critical transition is sharp and is associated with a very large
step from low to high fitness. On the thin line the critical
transition is smeared and the step change in fitness is smaller.
It even decreases as one moves along the line as to increase
β′. Note that increasing M from 7 to 21 makes the point
Pmin move to Qmin, thus β

′

min significantly decreases wherease
(βJ)

min
slightly increases.

sponse), in terms of average fitness V∞ and level of con-
sensus χ∞, as a function of βJ and β′. The phase dia-
grams can be, then, generated and the critical transition
fronts identified.An example is reported in Fig. 4 for
p = 1, N = 15, K = 14, M = 7. A critical transi-
tion front can be clearly observed, where a sudden and
concurrent change of the group fitness V∞ [Fig. 4(a)]
and consensus χ∞ [Fig. 4(b)] take place. For any given
value of β′ the value (βJ)C at which the transition from
low to high fitness and consensus is completed is iden-
tified as the critical threshold of the control parameter
βJ . The resulting phase diagram is illustrated in Fig.
4(c), where the solid line represents the critical tran-
sition front, and two phases can be distinguished: (i)
the ordered region where the consensus is high with the
binary opinions (spin) of the agents almost all aligned
along the same direction, and (ii) the disordered region
where the consensus is low, i.e. the opinion of the agents
are randomly distributed. The critical front comprises
a thick branch and a thin one. These two branches are
separated by the point of coordinates {β′

min, (βJ)min
},

where β′

min is the value of self-confidence β′ at which the
critical threshold (βJ)C , needed to complete the transi-
tion, takes its minimum value (βJ)

min
. For β′ < β′

min[see
Fig. 4(c)], increasing βJ from zero leads to a signifi-
cantly sharper transition (thick branch). On the other
hand, when β′ > β′

min a much softer transition occurs
(thin branch). Note that for β′ = 0 the only driving
force is consensus seeking. In this case, the system, not
being influenced by any information associated with the
fitness landscape, follows exactly the Ising-Glauber dy-
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namics, resulting in an inefficient decision making process
in terms of fitness. Increasing the level of self-confidence
β′, makes the agents be driven also by the self-interest,
while remaining, for β′ < βmin, sufficiently prone to
change mind based on the opinions of the other group
members. The presence of the self-interest is, then, ben-
eficial since, by breaking the symmetry of the pure Ising
system, pushes each member to make choices aimed at
increasing the fitness. This, in turn, also expedites the
process of consensus seeking, decreases the level of social
interaction strength needed to trigger the phase transi-
tion, and explains why increasing β′, from zero, makes
the critical transition threshold (βJ)C decrease down to a
minimum value (βJ)

min
. However, as soon as β′ > β′

min,
agents, because of their high level of self-confidence, are
reluctant to change their mind. Thus, even when they
are wrong, i.e. even when their choices do not necessar-
ily lead to an increase of fitness, agents hardly accept
to change opinion unless the social interaction strength
between them is increased. This leads to higher values
of (βJ)C , to smoother transition, smaller fitness and, in
the end, to a decay of the performance of the group in
making decisions.

Increasing the number of agents from M = 7 to
M = 21 (see Fig. 5) the overall qualitative trend of the
quantities V∞ and χ∞ remains almost the same. How-
ever, some differences should be noted: (i) for β′ < β′

min

the fitness V∞ presents, at the critical transition, a higher
peak, (ii) for β′ > β′

min the transition is smoother leading
to smaller fitness values, (iii) the parabola-shaped criti-
cal front changes in that β′

min is significantly decreased
and (βJ)

min
slightly increased. These changes are clearly

shown in Fig. 6 where the critical transition fronts are
presented for M = 7 (blue line) and M = 21 (red line),
given p = 1, N = 15, K = 14. Note the presence of two
points: (i) Qmin for M = 7 and (ii) Pmin for M = 21.
These two points identify the minimal values of critical
value (βJ)C triggering the phase transition. On the thick
branch, being β′ < β′

min, the critical transition is sharp
and the step change of group fitness and consensus is very
significant. On the thin branch (β′ > β′

min) the critical
transition is smeared and the group-fitness and consensus
variations smaller. Moreover, moving on the thin branch
of the front, along to β′-increasing direction, worsens the
performance of the decision making process (see also Fig.
4 and 5).

As mentioned so far, increasing M makes β′

min smaller
and (βJ)

min
slightly larger. This has an important con-

sequence as, depending on the value of β′, increasing the
number M of the agents may be either beneficial or detri-
mental. Indeed, for large β′ (i.e. on the thin branch side
of the phase diagram in Fig. 6) increasing M worsens
the performance of the decision making process in terms
of fitness values. On the other hand, when β′ is small
(i.e. on the thick branch side of the phase diagram in
Fig. 6), increasing M improves the performance of the
decision making process as it leads to an increase of fit-
ness. This makes it clear why in the literature the size of

the team is a strongly debated aspect of team design, for
some studies show that small group perform better than
big groups but also the opposite has been demonstrated
to occur depending on environmental conditions [80, 81].
So far, we have shown that the collective intelligence

of the group (i.e. the ability to make decisions leading
to high values of the group fitness) emerges just at the
critical transition. Literature [64–74] ascribes the emer-
gence of collective intelligence to high values of mutual
information and to an increase of information flow among
the members of the group. However, in this study we
are not interested in determining the level of mutual in-
formation among the members of the group, which is a
points already sufficiently investigated in the literature.
We are, instead, interested in determining the mutual in-
formation between the fitness V∞ and the consensus χ∞

within the group. The rationale behind this choice is
that the mutual information between fitness and consens
can be considered as a proxy of how much information
leaks from the fitness landscape to the group members,
and, therefore, it is an indirect measure of the amount
of awareness of the entire group about the fitness land-
scape itself. The mutual information MI (x, y) between
two stochastically distributed continuous variables x and
y is

MI (x, y) =

∫

dxdyp (x, y) log2
p (x, y)

p (x) p (y)
(9)

It is a measure of the information gained about the be-
havior of one random variable, say x, by observing the
behavior of the other variable y. Hence, the mutual infor-
mation measures the difference between the initial uncer-
tainty on the variable x and the uncertainty that remains
about x after the observation of the behavior of the vari-
able y. Under this perspective it measures the amount
information leakage from the variable y to the variable
x, and vice-versa.
Fig. 7 shows the quantity MI (χ∞, V∞) as a function

of the control parameters β′ and βJ for M = 7, Fig.
7(a), and M = 21, Fig. 7(b). Results are presented for
p = 1, N = 15, K = 14. Notice that MI (χ∞, V∞) is
small everywhere except close to the critical front, where
it takes higher values. The highest mutual information
is obtained for β′ < β′

min where also the fitness V∞ and
the consensus χ∞ are maximized. This seems to confirm
previous findings, which showed that the mutual informa-
tion among different spins is maximized at the criticality
[66, 82]. However, here we go a bit further and find out
that also the mutual information between the fitness and
the consensus of the group is maximized at the transi-
tion threshold. This clearly shows that, at criticality, a
significant amount of information leaks from the complex
fitness landscape to the group of agents, leading to a su-
perior performance of the group decision making in terms
of fitness values. In other words, at the critical threshold,
the indirect exchange of information, promoted by social
interactions, provides the group with higher knowledge of
the fitness landscape. The exploration of the landscape
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FIG. 7: The mutual information MI (χ∞, V∞), in colour scale
(blue for low values, red for high values), between the consen-
sus χ∞ and the group fitness V∞, M = 7, (a); and M = 21,
(b). Results are presented for p = 1, N = 15, K = 14. Notice
that MI (χ∞, V∞) is small everywhere but close to the crit-
ical front where it takes higher values. The highest mututal
information is obtained for β′ < β′

min.

is, then, strongly improved, leading to better choices and
finally to the emergence of the collective intelligence of
the group [27].

V. THE EFFECT OF LEVEL OF KNOWLEDGE

The critical dynamics described so far is observed even
in presence of cognitive limits of the agents, i.e. for p < 1.
Fig. 8 show the fitness V∞ as a function of β′ and βJ
for p = 0.3 [Fig. 8(a)], p = 0.7 [Fig. 8(b)], and p = 1.
[Fig. 8(c)]. The emergence of the collective intelligence,
in presence of cognitive limits of the agents, can be ex-
plained by considering that, at the critical threshold, the
agent with limited knowledge will exploit social interac-
tions and consensus seeking to follow those agents with
higher knowledge, resulting in a final consensus about the
decisions to make. Note that for p = 0.7 the performance
of the group, in terms of V∞ values, are comparable, al-
though a bit smaller, than p = 1 [Fig. 8(c)]. Whereas,
if p is sufficiently small, e.g. p = 0.3, the performance
of the group lowers quite significantly. Fig. 9 shows the
critical fronts for different values of p. In particular, as
p is decreased, a continuously decrease of the minimum
value β′

min, and a concurrent increase of (βJ)
min

can be
noted. Thus, as the cognitive capacity of the agents de-
creases, they need to rely more on the others in order to
make good decisions. More importantly, the presence of
relatively highly self-confident individuals easily worsens
the performance of the group, since self-confident individ-
uals are reluctant to change their mind, thus inhibiting
the exploration of the fitness landscape.

VI. THE EFFECT OF LEADERSHIP

It is widely recognized that one of the key features of a
charismatic leader is self-confidence. The reason is that
being self-confident helps the team feeling the same and
pushes it to move ahead and solve problems [83–86]. This
type of leadership is non authoritative and is called par-
ticipative. Within the proposed model self-confidence is
modelled trough the parameter β′. Therefore, to analyze
the effect of the leadership we assume that the level of
confidence of the leader is β′

L, whilst the other members
of the group have smaller confidence β′

NL = αβ′

L, where
α is a factor ranging in the interval 0 ≤ α < 1. Fig.
10 shows the steady state fitness V∞ as a function of βJ
and α, for M = 7, N = 15, K = 14, p = 1.0, and two
different levels of confidence of the leader: β′

L = 5 [Fig.
10(a)], and β′

L = 10 [Fig. 10(b)]. Fig. 10(a) shows that
for β′

L < β′

min (i.e. for not too confident leader), pro-
vided that the system is in the ordered side of the phase
diagram but close to the transition front, the best per-
formance is obtained when all members have the same
self-confidence as that of the leader. To explain this, let
us first consider that, being β′

L < β′

min, the exploration of
the landscape is already sufficiently facilitated as agents

8



FIG. 8: The stationary values of the normalized averaged
fitness V∞ as a function of βJ and β′. Results are presented
for p = 0.3, (a); p = 0.7, (b); p = 1., (c); and for N = 15,
K = 14, M = 7.

FIG. 9: The critical transition fronts for different level of
knowledge of the agents: p = 0.3, 0.7, 1.Results are presented
for N = 15, K = 14, and M = 21. Note that decreasing p

reduces β′

min and increases (βJ)
min

.

are prone to change their mind based on others’ opin-
ion. Therefore, values of α < 1 would make the agents
even more prone to change opinion and, thus, to under-
estimate their self-interest in making decisions. This will
make the random walk of the agents on the group fitness
landscape too much chaotic, hampering an easy identifi-
cation of the good set of decisions. We conclude that for
β′

L < β′

min the presence of a leader is detrimental. On
the other hand if β′

L > β′

min [Fig. 10(b)] the fitness of
the group is maximized for values of α < 1. For β′

L = 10,
i.e. for the specific case considered in Fig. 10(b), results
shows that the decision making performance are maxi-
mized for α ≈ 0.5, i.e. when the level of confidence of
the leader almost doubles the one of the other members.
This is evident if one considers that, for β′ > βmin, the
exploration of the landscape is quite strongly inhibited.
But, we have shown that to make good decision, the ex-
ploration of the landscape needs to be enhanced. Low-
ering the self-confidence β′

NL of the other (non-leader)
members of the group just makes this happen leading to
better performance. However, if β′

NL ≪ β′

L non-leader
members will largely neglect their self-interest in making
decisions. Thus, driven by consensus seeking, they will
end up following the leader in making decision. But, since
the leader has already a high level of self-confidence, the
resulting low level of landscape exploration will worsen
the performance of the decision making process.

VII. GROUPTHINK PHENOMENON.

In the literature consensus achievement within groups
is often associated with the emergence of collective intel-
ligence [38, 39, 45]. However, it has been also recognized
that consensus seeking may even lead to a phenomenon
known as groupthink[87–89], i.e. a faulty thinking that
occurs in highly cohesive groups and leads to irrational
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FIG. 10: The stationary values of the normalized averaged
fitness V∞, as a function of βJ and α. Results are presented
for p = 1, N = 15, K = 14, M = 7, and β′

L = 5, (a); β′

L = 10,
(b).

or dysfunctional decision-making outcome. When group-
think occurs, members try to minimize conflict and to
reach consensus without critically evaluating possible al-
ternative point of views. Grouphink occurs in situations
where members have similar backgrounds that increases
the propensity for them to agree on a rather irrational
or poor final decision. Evidence of such a phenomenon
emerges naturally in our model as shown in Fig. 11 where
V∞ [Fig. 11(a)] and χ∞ [Fig. 11(b)] are plotted as a func-
tion of βJ for two different values of β′. Indeed, for large
values of βJ , i.e. far away from the critical threshold
(βJ)C , the driving force related to consensus seeking is
dominant. This facilitates the achievement of consensus
among the members, independent of the level of fitness.
The final outcome is simply that the entire groups con-
verges to a highly agreed but ineffective and inadequate
final decision.

FIG. 11: The occurrence of groupthink. Far from the critical
threshold, i.e. for high values of the social interaction strength
(high level of trust), the pressure for consensus seeking makes
the members completely overlook the effect of their decision
on their own perceived fitness. The dynamics of the system
resemble the classical dynamics of a pure Ising-like system.
This leads to high value of consensus χ∞, (b); but to very
low value of group fitness V∞, (a). Results are presented for
p = 1, N = 15, K = 14, M = 7, and for β′ = 5, 10.

VIII. CONCLUSIONS

The present study identifies specific conditions leading
to the emergence of collective intelligence in groups of
interacting agents. To this purpose we have employed
a recent model of group decision making. This model
formulates the decision process of the agents in terms
of a time-continuous Markov chain, where the transition
rates are defined so as to capture the effect of the self-
interest, which pushes each single agent to increase the
perceived (individual) fitness, and of social interactions,
which stimulate member to seek consensus with the other
members of the group. The process is, then, character-
ized by three different parameters: (i) the strength of
social interaction βJ in units of social temperature β−1,
(ii) the level of self-confidence β′ of the agents in their
own expertise, (iii) and the level of knowledge p of each
agent. These parameters all together identify the long-
term behavior and the different phases of the system. In
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particular critical fronts can be identified at which a con-
current transition from low to high fitness and from low
to high consensus within the group takes place. We show
that at the critical transition the mutual information be-
tween the fitness landscape and the level of consensus
within the group is maximized, demonstrating that, at
the criticality, a significant amount of information ex-
change, promoted by social interactions, leads to a better
exploration of the landscape, and triggers the emergence
of superior performance of the group in making good de-
cisions, i.e. leads to the emergence of the collective in-
telligence of the group. We show that the self-confidence
of the agents has an important influence on the perfor-
mance of the decision making process. Our simulations
show that too high or too low self-confidence levels are
deleterious, as they hamper the emergence of collective
intelligence. However, for any given size M of the group
an optimal level β′

min of self-confidence can be found that
minimizes the critical social strength (βJ)C required to
trigger the transition to the collective intelligent state
and to maximize the performance of the group in mak-
ing decisions. Concerning the effect of M , results show
that it can be twofold. In fact increasing M may lead
either to an increase of the performance, if the level of
self-confidence of the agents is low, or to a decrease of the
performance in the opposite case. We also analyze the
effect of the level of knowledge p on the decision making
performance of the group. We show that even at very
low level of knowledge, e.g. p = 0.3, the performance of
the group can be kept relatively high. However, to this
purpose the agent need to be less self-confident and to
trust more in their peers. We also demonstrate that the
presence of a highly self-confident leader is not signifi-
cantly beneficial if not detrimental. Moreover, the social
phenomenon of groupthink naturally emerges within the
proposed model when the driving force pushing the mem-
bers toward imitation and consensus, strongly prevails
over the self-confidence level of the agents.

Appendix A: The fitness landscape

1. The NK model

In the NK model a real valued fitness is assigned to
each bit string d =(d1, d2, ..., dN ), where di = ±1. This
is done by first assigning a real valued contribution Wi

to the i-th bit di, and then by defining the fitness func-

tion as V (d) = N−1
∑N

i=1
Wi

(

di, d
i
1, d

i
2, .., d

i
K

)

. Each
contribution Wi depends not just on i and di but also
on K (0 ≤ K < N − 1) other bits. Now let us de-
fine the substring si =

(

di, d
i
1, d

i
2, .., d

i
K

)

, by choosing at
random, for each bit i, K other bits. The number of
contributions Wi (si) is equal to the number of differ-
ent values that can be enumerated with the substring
of k + 1 binary elements, i.e. it is 2K+1. Each single
value Wi (si) is its value is drawn from a uniform distri-
bution, usually in the range [0, 1]. Thus, a random table

of N × 2K+1contributions is generated independently for
each i-th bit, allowing the calculation of the fitness func-
tion V (d). The reader is referred to Refs. [54, 55] for
more details on the NK complex landscapes. Notice that
increasing the complexity C = K + 1 + log2 N , not only
affects the number of local maxima, but also the auto-
correlation of the landscape itself. In particular at the
maximum level of complexity i.e. when K = N − 1, one
can show that the number of local maxima is 2N/ (N + 1)
and that the fitness values are completely uncorrelated
with each other, in this case the fitness landscape is rep-
resented by a isotropic white noise. This means that
using NK model it is not possible to control separately
the complexity, the autocorrelation and the actual level
of anisotropy of the landscape. Also, it is worth notic-
ing that the stochastic fitness function V (d), being the
mean value of several independent uniformly distributed
contributions of expectation value W̄ = 〈W 〉 and vari-

ance σ2
W =

〈

(

W − W̄
)2
〉

, is very well approximated,

as prescribed by the central limit theorem, by a Gaus-
sian distribution with average 〈V 〉 = W̄ and variance

σ2
V =

〈

(

V − W̄
)2
〉

= σ2
W /N . Thus, increasing the num-

ber of decisions N leads to a decrease of σ2
V , so that for

very large N the distribution of fitness values V degen-
erates into a Dirac delta distribution centered in W̄ . To
prevent this from occurring we preferred to rescale the
fitness values V in such a way to keep the same average
W̄ and the same variance σ2

W , i.e. we use

V → W̄ +
√
N
(

V − W̄
)

(A1)

2. The spectral method

A different way to generate random landscapes of given
complexity is to use spectral methods. The advantage of
such methods is that they allow to control separately
the level of complexity, the autocorrelation function, and
consequently also the anisotropy of the landscape. We
assume that the rugged surface is statistical homogenous,
i.e. translationally invariant. For the sake of simplicity
we also consider that the surface is periodic. Therefore,
the rugged surface can be expressed in the form of a
Fourier series.

h (x) =

+∞
∑

hk=−∞

ahke
iqkh·x (A2)

where x is the in-plane position vector and h is the out
of plane height of the surface. Also we have qkh =
(k, h),with k, h = ....,−2,−1, 0, 1, 2, ..., and x = (x, y).
The quantities ahk = ξkh + iηkh satisfy the relation
a00 = 0, a−h,−k = ahk to guarantee that h (x) is real, and
are determined by drawing from a Gaussian distribution
the random real quantities ξkh and ηkh with zero mean

and variance
〈

ξ2kh
〉

=
〈

η2kh
〉

=
〈

|akh|2
〉

/2 = σ2
hk/2. One
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can easily show that 〈akhalm〉 = σ2
khδk,−lδh,−m where δij

is the Kronecker delta operator. Then the autocorrela-
tion function is

〈h (x′)h (x)〉 =
∑

kh

σ2
khe

iqkh·(x′
−x) (A3)

Thus, choosing the quantities σ2
kh allows to identify the

autocorrelation function of the landscape. Note that the
resulting surface h (x) is Gaussian with zero average and
variance

〈

h2
〉

=
∑

kh σ
2
kh. Now, in order to fully define

the rugged landscape h (x) we need to specify the quan-
tities qkh and σ2

kh. Thus, if we choose an even number
n = 2R−1, with the integer number R ≥ 2, and assume
qkh = (k, h),with k, h = −n, .. − 2,−1, 0, 1, 2, ..., n − 1,
we can employ the fast Fourier transform numerical tech-
nique to calculate 2n × 2n = 22R different values hij of
the fitness landscape as

hij =

n−1
∑

hk=−n

ahke
iqkh·xij (A4)

with xij = (πi/n, πj/n), and i, j =
−n, ...,−2,−1, 0, 1, 2, ..., n − 1. Given the number
N = 2R, which defined the number of points of the
fitness landscape, we can also tune the complexity
of the landscape by choosing the number of non-zero
coefficients ahk, h, k = 1, 2, ..., r, with r = 2L (note that
L ≤ R). In this case, in order to completely specify the

surface we need to know r× r = 22L coefficients ahk plus
the single number n So the complexity of the landscape
can be estimated as

C = log2
(

22L + 1
)

≈ log2 2
2L = 2L (A5)

In the case of a fractal-like self-affine surfaces, the statis-
tical properties of the surface h (x) are invariant under
the transformation

x → tx; h → tHh (A6)

where the Hurst exponent H is related to the fractal di-
mension of the surface, Df = 3 −H . For self-affine sur-
faces the quantities σ2

hk satisfy the relation

σ2
hk = σ2

11

(

h2 + k2

2

)−H−1

(A7)

Hence, σ2
hk can be determined once known σ2

11 and the
fractal dimension of the landscape. The reader is referred
to [77] for more details on the generation of random sur-
face h (x) with spectral techniques.
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