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Abstract

Oscillations in far from equilibrium systems (e.g., chemical, biochemical, biological) are generated

by the nonlinear interplay of positive and negative feedback effects operating at different time scales.

Relaxation oscillations emerge when the time scales between the activators and inhibitors are well sep-

arated. In addition to the large amplitude oscillations (LAOs) or relaxation type, these systems exhibit

small amplitude oscillations (SAOs) as well as abrupt transitions between them (canard phenomenon).

Localized cluster patterns in networks of relaxation oscillators consist of one cluster oscillating in the

LAO regime or exhibiting mixed-mode oscillations (LAOs interspersed with SAOs), while the other os-

cillates in the SAO regime. Because the individual oscillators are monostable, localized patterns are a

network phenomenon that involves the interplay of the connectivity and the intrinsic dynamic properties

of the individual nodes. Motivated by experimental and theoretical results on the Belousov-Zhabotinsky

reaction, we investigate the mechanisms underlying the generation of localized patterns in globally cou-

pled networks of piecewise-linear (PWL) relaxation oscillators where the global feedback term affects

the rate of change of the activator (fast variable) and depends on the weighted sum of the inhibitor (slow

variable) at any given time. We also investigate if these patterns are affected by the presence of a diffu-

sive type of coupling whose synchronizing effects compete with the symmetry breaking global feedback

effects.

1 Introduction

Several far from equilibrium chemical, biochemical and biological systems exhibit oscillatory tempo-

ral patterns [1–7]. These phenomena are generated by the nonlinear interplay of positive and negative

feedback effects operating at different time scales. Point (single) oscillators require at least one variable

(activator) that favors both changes in its own production via autocatalytic effects and the production of a

second variable (inhibitor). Inhibitors oppose changes in the activator on a slower time scale. Activators

and inhibitors represent different state variables in different systems. Examples are the chemical com-

pounds in the Belousov-Zhabotinsky (BZ) reaction [8,9], the substrates and products in product-activated

glycolytic oscillations [4,10], the activators and repressors in genetic oscillators, and the neuronal voltage

and ionic current recovery variables [5].

In many realistic systems the time scales between activators and inhibitors are well separated, and

the resulting oscillations are of relaxation type [2,5]. These are captured by the prototypical van der Pol

(VDP) model for a triode circuit [11] and the FitzHugh-Nagumo (FHN) tunnel-diode model for nerve
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cells [12, 13], and, also, by more detailed models such as the Oregonator for the BZ reaction [14–16],

the Morris-Lecar model for neuronal oscillations [17], the modified versions of the Selkov model for

glycolytic oscillations [18–21], and genetic oscillators [22].

The complexity of individual relaxation oscillators results from the combined effect of two distinct

inherent properties: (i) the presence of characteristic types of nonlinearities (typically cubic-like) and

(ii) the time scale separation between the participating variables referred to above. In addition to the

typical large amplitude oscillations (LAOs) of relaxation type, these systems may exhibit small amplitude

oscillations (SAOs), with an amplitude difference of roughly an order of magnitude between LAOs

and SAOs, as well as abrupt transitions between them (canard phenomenon) as a control parameter

changes through a critical range (exponentially small in the parameter defining the slow time scale)

[23–29]. Individual 2D relaxation oscillators may display either SAOs or LAOs, but not both. Higher

dimensional relaxation oscillators may exhibit mixed-mode oscillations (MMOs) [30, 31], where LAOs

are interspersed with SAOs. This creates additional effective time scales.

In addition to the individual oscillators’ intrinsic feedback effects, oscillatory networks have feedback

effects that result from the interplay of the connectivity and the intrinsic properties of the individual oscil-

lators. The effects of global coupling, where each oscillator in the network is affected by the dynamics of

the whole, have been studied in a variety of systems both experimentally and theoretically. These include

oscillatory chemical reactions [32–37], electrochemical oscillators [38–48], laser arrays [49], catalytic

reactions [50], salt-water oscillators [51], metabolic oscillators and cellular dynamics [20,52,53], cardiac

oscillators [54, 55], coupling through quorum sensing [56–60], circadian oscillators [61–63], neuronal

networks [5, 64–69] and image processing [65, 70].

Globally coupled networks of 2D relaxation oscillators have been shown to generate oscillatory clus-

ter patterns [20, 32–35, 38, 39, 64, 71–75] where each cluster consists of synchronized in-phase identical

oscillators. Oscillators in different clusters differ in at least one of their attributes (e.g., frequency, ampli-

tude or phase). Typical examples are the phase-locked (e.g., antiphase) oscillatory two-cluster patterns

where each cluster exhibits LAOs or MMOs. The latter typically reflect the effects of the network con-

nectivity (e.g., inhibition transiently pushing the activator down or terminating an oscillation before it

reaches high enough values) and/or the interaction between the connectivity and the intrinsic canard

structure [76] of the individual oscillators [72, 73].

A more complex type of pattern that emerges in these globally coupled networks are localized

oscillations, where one cluster exhibits LAO or MMOs and the other shows no oscillations or SAOs

[32–36, 72, 73]. The break of symmetry requires some type of network heterogeneity such as different

cluster sizes or different global feedback intensities acting on each cluster. Because the individual oscil-

lators are monostable (SAOs or LAOs, but not both), localized patterns are a network phenomenon that

involves the interplay of the connectivity and the intrinsic dynamic properties of the individual nodes. In

previous work, we showed that the canard phenomenon (generated in a supercritical Hopf bifurcation)

present in individual oscillators plays an important role in the generation of localized patterns. How-

ever, the dynamic mechanisms that give rise to localized oscillatory patterns in networks of relaxation

oscillators and how these patterns depend on the properties of the participating oscillators is not fully

understood.

The goal of this paper is to address these issues in the context of globally coupled networks where

the global feedback term affects the rate of change of the activator (fast variable) and depends on the

weighted sum of the inhibitor (slow variable) at any given time [32–36, 72, 73]. An additional goal is

to understand how these patterns are affected by the presence of a diffusive type of coupling. Since,

in contrast to global inhibition, diffusion tends to synchronize oscillators, their interplay generates a

competition between the two opposing effects.

We use a cluster reduction of dimensions argument [35] and assume the system is divided into two

clusters with the same or different sizes. The effects of the cluster size on the dynamics of these two-

cluster networks are absorbed into the global feedback parameter coding for the intensity. Different

cluster sizes result in an effective heterogeneous connectivity.

To capture the intrinsic dynamics of the individual oscillators we use a piecewise-linear (PWL) re-

laxation oscillator model of FitzHugh-Nagumo (FHN) type, which is an extension of the one we used

in [77] to investigate the mechanisms of generation of the canard phenomenon. PWL models can be

explicitly analyzed using linear tools of dynamical systems and matching “pieces of solutions” corre-
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sponding to consecutive linear regimes. PWL models have been used in a variety of fields as caricature

of nonlinear models to provide insights into the dynamics of smooth nonlinear models to investigate

either the dynamics of individual nodes or networks [78–104].

As in [77], the activator (v) nullcline we use is cubic-like and has four linear pieces (Fig. 1, red

curve). The inhibitor (w) nullcline is sigmoid-like and has three linear pieces (Fig. 1, green curve).

The canard phenomenon requires the presence of the two linear pieces in the middle branch of the v-

nullcline, but a linear piece for w-nullcline suffices [77]. However, localization in models having a linear

w-nullcline is more difficult to obtain and is less robust than in models having sigmoid-like w-nullclines.

In addition, the realistic models mentioned above have inhibitor nullclines of sigmoid type.

An additional advantage of using PWL models for this study is that they provide a way of under-

standing how the intrinsic properties of the individual oscillators affect the network dynamics in terms of

the different linear portions of the PWL nullclines whose properties are easily captured by their slopes,

end-points and other parameters. For example, by increasing the values of βL and βR in Fig. 1 the

w-nullcline becomes “more linear” in the region of the phase-plane where the oscillations occur (around

the four branches of the cubic-like v-nullcine). This allows us to compare the effects of the different

“degrees of nonlinearity” in terms of the parameters βL and βR. Along this paper we will compare two

representative scenarios where the w-nullcline is sigmoid-like, as in Fig. 1 (βL = βR = 0.05) and

linear-like where both βL and βR are significantly larger (βL = βR = 1).

The localized patterns as well as the other types of MMO patterns analyzed in this paper can be a de-

sired or an undesired result of the network activity. For memory devices and working memory [105–108],

localized patterns allow for the effective representation of information in the LAO components. In con-

trast, the presence of localized oscillations may disrupt the communication between neurons [5] and

the effective pulsatile secretion of insulin when controlled by glycolytic oscillators or other oscillatory

systems (e.g., calcium) [20,109–111] (but see [112]). Our results will contribute to understand the mech-

anisms underlying the generation of these patterns and how to control or prevent them when necessary.

The outline of the paper is as follows. In Section 3.1 we discuss the occurrence of the canard phe-

nomenon for individual oscillators. This is an extension of previous work [77] for linear w-nullclines. In

Section 3.2 we discuss the canard phenomenon induced by the global feedback parameter (γ) when the

system exhibits bulk oscillations (one cluster). As γ increases, the LAOs abruptly transition to SAOs.

Globally coupled bulk oscillations are not likely to be a realistic scenario, but it is a useful step to-

wards the investigation of two-cluster systems. The main reason is that the interaction between mutually

coupled oscillators can be understood in terms of a dual contribution of the coupling term: (i) the modi-

fication of the dynamic structure of the autonomous part of each individual oscillator, and (ii) a forcing

exerted on each oscillator by the other ones. The latter may favor, disrupt or interfere with the canard

phenomenon. In Sections 3.3 and 3.4 we characterize the different network patterns that emerge in

the globally coupled system with different cluster sizes (heterogeneous), including phase-locked LAOs,

MMOs and localized patterns. Cluster patterns with the same cluster size show phase-locked LAOs, but

not localized patterns. In Sections 3.5 and 3.6 we explore the transition mechanisms from phase-locked

to localized patterns as γ increases. This transition is abrupt for models with sigmoid-like nullclines,

but gradual for models with linear-like nullclines. In Section 3.7 we show that the oscillations frequency

of the localized patterns in the two types of models have different monotonic dependencies with γ. In

Sections 3.8 to 3.10 we explore additional dynamic differences between the two types of models. In Ap-

pendix B we explore how the interplay of global and diffusive (local) coupling between clusters affect the

generation of localized clusters. While this is not a realistic situation, since diffusive coupling occurs be-

tween oscillators and not between clusters, it allows us to explore the interplay of two competing effects:

the tendency of global coupling to create clusters and the tendency of diffusion to synchronized oscil-

lators.Finally, in Section 4 we discussed our results and their limitations and implications for network

dynamics.
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2 Methods

2.1 Piecewise linear models of FitzHugh-Nagumo type

We consider the following piecewise linear (PWL) models of FitzHugh-Nagumo (FHN) type

{

v′ = f(v)− w,
w′ = ǫ [ g(v;λ)− w ].

(1)

where the prime sign represents the derivative with respect to the variable t and the functions f and g are

PWL cubic- and sigmoid-like functions (see Fig. 1) given, respectively, by

f(v) =















−v if v < 0,
η v if 0 ≤ v < vc,
(1− η vc)/(1− vc) (v − 1) + 1 if vc ≤ v ≤ 1,
−v + 2 if 1 ≤ v,

(2)

and

g(v;λ) =







−βL if v < (λ− βL)/α,
α v − λ if (λ− βL)/α ≤ v ≤ (λ+ 1 + βR)/α,
1 + βR if v > (λ+ 1 + βR)/α.

(3)

The PWL cubic-like function f (Fig. 1, red) has a minimum at (0, 0) and a maximum at (1, 1). As

in the smooth case, this choice ensures that large amplitude oscillations are O(1) [77]. The parameter η
governs the slopes of the two middle branchesL2 and L3. The slope of L3 also depends on the parameter

vc (v-coordinate of the point joining L2 and L3). The slopes of both the left (L1) and right (L4) branches

are equal to −1.

The PWL sigmoid function g (Fig. 1, green) has three branches. The two horizontal branches S1

and S3 are below and above the minimum and maximum of f , respectively. The middle branch S2 joins

these two horizontal branches. The parameter λ controls the displacement of g to the right (λ > 0) or

the left (λ < 0). The parameter α controls the slope of the middle branch S2, which increases with

increasing values of α. In the limit of βL, βR → ∞, the PWL system is the one used in [77] where g is

a linear function.
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Figure 1: (Color online) Cubic- and sigmoid-like piecewise lin-

ear v- and w-nullclines for system (1). The v-nullcline f(v) (red)

is given by (2). We used the following parameter values: η = 0.3,

vc = 0.3 The w-nullcline g(v;λ) (green) is given by (3). We used the

following parameter values for the two superimposed w-nullclines:

α = 4 (solid-green), α = 2 (dashed-green), λ = 0.3 (solid-green),

λ = 0.21 (dashed-green), βL = βR = 0.2. The arrows indicate

the effects of increasing values of λ and α. Increasing (decreasing)

λ displaces the w-nullcline to the right (left), while increasing (de-

creasing) α increases (decreases) the slope of the w-nullcline.

2.2 Linear regimes and virtual fixed-points

The dynamics of a PWL model of the form (1)-(3) can be divided into four linear regimes Rk (k =
1, . . . , 4), corresponding to the four linear pieces Lk of the cubic-like PWL function f(v) (Fig. 2). The

initial conditions in each regime are equal to the values of the variables v and w at the end of the previous

regime where the trajectory has evolved.

In each linear regime the dynamics are organized around a virtual fixed-point (Fig. 2), which results

from the intersection between the w-nullcline (green line) and the corresponding linear piece (red line) or
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its extension beyond the boundaries of this regime (dashed-red line). In the latter case the virtual fixed-

points do not coincide with the actual fixed-points, and are located outside the corresponding regime,

but still play an important role in determining the dynamics in that regime. The trajectories in a given

regime never reach the purely virtual stable fixed-points (outside the regime), but their presence provides

information about the trajectory’s direction of motion. More specifically, within the boundaries of each

regime trajectories evolve according to the linear dynamics defined in that regime as if the dynamics

were globally linear, and they “do not feel” that the “rules” governing their evolution will change at a

future time when the trajectory moves to a different regime. We refer the reader to [77] for more details.
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Figure 2: (Color online) Linear regimes and actual/virtual fixed-point for system (1). The v-nullcline (red) is as in Fig. 1.

For the w-nullcline (green) we used α = 2, λ = 0.3 βL = βR = 0.05. The superimposed dashed-green w-nullcline is linear

(extension the linear piece S2). The virtual fixed-points for each regime (blue dots) are the intersection between the extensions of

the corresponding linear pieces and the w-nullcline. The stable virtual fixed-point for R2 coincides with the actual fixed-point.

2.3 Networks of PWL oscillators with global inhibitory feedback

We consider networks of PWL oscillators of FHN type of the form (1) globally coupled through the

inhibitor variable (w)

{

v′k = f(vk)− wk − γ Γ(w),
w′

k = ǫ [ g(vk;λ)− wk ],
(4)

for k = 1, . . . , N , where N is the total number of oscillators in the network, γ ≥ 0 is the global feedback

parameter and

Γ(w) =
1

N

N
∑

k=1

wk. (5)
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2.4 Cluster reduction of dimensions and heterogeneous coupling

Following previous work [35, 36, 72, 73] we assume the network is divided into two clusters where all

oscillators in each cluster are identical and have identical dynamics, while oscillators in different clusters

may have different dynamics. Accordingly, for a two-cluster network,

Γ(w) = σ1w1 + σ2w2 (6)

where σ1 and σ2 (σ1 + σ2 = 1) are the fractions of oscillators in each cluster. Alternatively, the global

coupling term (6) can be also interpreted as consisting of clusters with the same fraction of oscillators

each, but heterogeneous connectivity.

System (4) with (6) can be written as

{

v′k = f(vk)− (1 + σk γ)wk − σj γ wj ,
w′

k = ǫ [ g(vk;λ)− wk ],
(7)

for k, j = 1, 2 with j 6= k.

The zero-level surfaces (“higher-dimensional nullclines”) for the kth oscillator are given by

wk = Nv,k(vk, wj ; γ) =
f(vk)

1 + σkγ
− γ σjwj

1 + σkγ
, k, j = 1, 2, j 6= k, (8)

and

wk = Nw,k(v) = g(v;λ), k = 1, 2, (9)

respectively.

Eq. (8) describes a two-dimensional surface having the shape of the first term in the right hand side of

Nv,k(vk, 0; γ). For γ > 0, we view the nullsurface (8) as the v-nullcline for the individual (uncoupled)

oscillator Nv,k(v, 0; 0), flattened by the effect of the denominator and forced by the second oscillator via

the variable wj(t). When there is no ambiguity, we refer to the autonomous part Nv,k(vk, 0; γ) in (8)

as the v-nullcline for the oscillator Ok. The oscillations in the latter “raise” and “lower” this v-nullcline

following the dynamics of wj and therefore affect the evolution of the trajectories in the phase-plane

diagrams.

2.5 Diffusive coupling between clusters

System (7) with an added diffusion term reads

{

v′k = f(vk)− (1 + σk γ)wk − σj γ wj +Dv (vj − vk),
w′

k = ǫ [ g(vk;λ)− wk ],
(10)

for k, j = 1, 2 with j 6= k, where Dv is the diffusion coefficient.

This way of adding diffusion is somehow artificial and does not reflect the diffusive effects in the

original system nor is it derived from it. However, its inclusion helps understand the competitive effects

of global inhibition and diffusion.

Equation (8) is extended to

wk = Nv,k(vk, vj , wj ; γ,Dv) =
f(vk)−Dv vk

1 + σkγ
− γ σjwj −Dv vj

1 + σkγ
, k, j = 1, 2, j 6= k. (11)

For Dv > 0 the v-nullcline Nv,k(vk, 0, 0; γ,Dv) is linearly modified by the term Dv vk. In contrast

to global coupling, this effect is not homogeneous for all values of vk, but is dependent on its sign.

For positive values of vk the v-nullcline is flattened, while for negative values of vk the v-nullcline is

sharpened. The oscillations in vj “raise” and “lower” this v-nullcline following its dynamics. In order

for the linear piece L2 to remain positive for Dv > 0, we will restrict Dv < η.
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2.6 Numerical simulations

The numerical solutions were computed using the modified Euler method (Runge-Kutta, order 2) [113]

with a time step ∆t = 0.1 ms (or smaller values of ∆t when necessary) in MATLAB (The Mathworks,

Natick, MA).

3 Results

3.1 The canard phenomenon for PWL models of FHN type revisited

In a two-dimensional relaxation oscillator, the canard phenomenon refers to the abrupt transition between

small amplitude oscillations (SAOs) and large amplitude oscillations (LAOs) as a control parameter

crosses a very small critical range (Figs. 3-a), which is exponentially small in the parameter defining the

slow time scale (ǫ) [23–29]. We identify this critical range with a critical value for the control parameter

(e.g., λc if the control parameter is λ). If the Hopf bifurcation underlying the creation of the SAOs is

supercritical (subcritical), then the SAOs are stable (unstable). The relaxation-type LAOs are always

stable.

The canard phenomenon for PWL models of FHN type with a linear w-nullcline has been described

in [77,98] and has been throughly analyzed in [77]. Here we briefly describe it in the context of the PWL

models of FHN type with sigmoid-like PWL w-nullclines using the parameter λ as the control parameter

(Fig. 3).

For the SAOs to be generated (Figs. 3-a1), the limit cycle must cross either the linear piece L2 or the

first portion of the linear piece L3 of the v-nullcline. Otherwise (Figs. 3-a2) the limit cycle trajectory

moves into the linear regime R4 and the system displays LAOs. For a trajectory arriving in R2 to be

able to cross L2 or the first portion of L3, the actual fixed-point in R2 must be a focus (see eq. (16) with

κ = 1 in Appendix A). In addition, the initial amplitude of the trajectory in R2 (the distance between

the actual fixed-point and the initial point in R2) must be small enough so that the trajectory reaches

the v-nullcline before reaching the region of fast motion that would cause it to move towards the right

branch. For the parameter values in Fig. 3-a, | η + ǫ | = 0.4 and 2
√
ǫ α ∼ 0.89 in the linear regime

R2 and therefore the actual fixed-point is a focus (Appendix A). However, as ǫ decreases this inequality

may no longer hold. For example, for the parameters in Fig. 3-b, | η + ǫ | = 31 and 2
√
ǫ α ∼ 0.28

and therefore the actual fixed-point is a node (see Appendix A), and, as a consequence, the system is no

longer able to exhibit the canard phenomenon.

The canard critical value λc is affected by the vector field away from the local vicinity of the small

amplitude limit cycle. For example, all other parameters equal, for linear-like w-nullclines, when the

horizontal pieces are far away from the v-nullcline (e.g., βL = βR = 1), λc is smaller than for the

parameters in Fig. 3-a (not shown). Additionally, the oscillation frequencies for values of λ around λc

are larger for linear-like than for sigmoid-like w-nullclines.

3.2 The canard phenomenon induced by global feedback

Here we follow previous work [35,36,73] and focus on the dynamics of the one-cluster globally coupled

system (7): σ1 = 1 (σ2 = 0). This is not likely to be a realistic situation since one expects the network

bulk oscillations to be unstable for sufficiently large values of the global feedback parameter γ and

the network to be separated into clusters. However, the dynamics of this reduced system show how

the canard phenomenon results from changes in γ for constant values of λ. The results of this section

will be helpful in understanding the dynamics of the autonomous component of the two-cluster systems

discussed below in this paper.

From (16) in Appendix A with κ = 1+γ, increasing values of γ (all other parameters fixed) can cause

the fixed-point to transition from a node to a focus. In addition, from (15) in Appendix A , increasing

values of γ changes the location of the fixed-point. Therefore, the global feedback parameter γ can act

as a control parameter that induces the canard phenomenon for fixed-values of λ (Fig. 4).

The left panels in Fig. 4 show curves of the oscillation amplitude versus γ for representative param-

eter values. The corresponding middle and right panels show the phase-plane diagrams for values of γ
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Figure 3: (Color online) Dynamics of system (1) for representative parameter values. The v- and w-nullclines are is as in

Fig. 1. (a). Canard phenomenon as λ crosses λc ∈ (0.194, 0.195). The actual fixed-point are foci. (b). The actual fixed-points are

nodes (no SAOs).

before and after the canard phenomenon (for the blue curves in the top panels). The parameter values in

Figs. 4-a and -b are the same, except for the w-nullcline that is sigmoid-like in Fig. 4-a and linear-like

in 4-b. The w-nullcline Fig. 4-c is linear-like (as in panel b), but ǫ is smaller than in panel b (larger time

scale separation).

In Fig. 4-a the canard phenomenon is induced by changes in γ. The transition is more pronounced

for lower values of λ. As γ increases, the v-nullcline flattens (Figs. 4-a2 and -a3) and for γc the limit

cycle trajectory is able to cross L3, thus generating SAOs (Figs. 4-a3), instead of moving towards R4 to

generate LAOs (Figs. 4-a2).

For the same value of ǫ and the linear-like w-nullcline in Fig. 4-b, the system fails to exhibit the

canard phenomenon as γ changes. The effective time scale separation in the vicinity of the minimum of

the v-nullcline is smaller than in Fig. 4-a because of the absence of the horizontal piece of the w-nullcline

(compare panels a1 and a2 with panels b1 and b2), and therefore the limit cycle trajectories are more

rounded in Figs. 4-b than in Figs. 4-a. This causes the limit cycle trajectory to move further away from

L2 and L3 in Fig. 4-b2 than in Fig. 4-a2. As a result, the v-nullcline is able to flatten significantly before

the limit cycle trajectory is able to cross the middle branch, and therefore the oscillations’ amplitude

decreases gradually instead of abruptly. For lower values of λ (red and green curves in Fig. 4-b) the

transition from LAOs to SAOs is faster and the final amplitude smaller than for λ = 0.7, but still this

transition is not abrupt

A decrease in ǫ for the same parameter values as in Fig. 4-b restores the ability of γ to induce the

canard phenomenon (Fig. 4-c). The decrease in ǫ compensates for the lack of the horizontal pieces of the

w-nullcline, thus maintaining similar levels of the time scale separation in the vicinity of the minimum

of the v-nullcline.

As we discussed in the previous section, for ǫ = 0.01 and α = 2 the uncoupled oscillator (γ = 0)

fails to exhibit the canard phenomenon. However, the canard phenomenon can be induced by γ (not

shown) with similar properties as for α = 4 in Fig. 4-c. The values of γc increase with λ and, in contrast

to the α = 4 case, they are both significantly larger for α = 2 than for α = 4. Also, the range of values

of γc spanned by λ is significantly larger for α = 2 than for α = 4.
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Figure 4: (Color online) The canard phenomenon induced by global inhibitory feedback in bulk (one-cluster) oscillatory

systems. The solid-red v-nullclines in the phase-plane diagrams (middle and right columns) corresponds to the actual values of

γ used in each panel. The v-nullcline for γ = 0 (dashed-red in the phase-plane diagrams) is as in Fig. 1 and is presented for

reference. For the w-nullcline we used the following parameter values: (a) α = 4, ǫ = 0.1, λ = 0.7, βL = βR = 0.05. (b) α = 4,

ǫ = 0.1, λ = 0.7, βL = βR = 1. (c) α = 4, ǫ = 0.01, λ = 0.08, βL = βR = 1.
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3.3 Canard and non-canard (standard) SAOs for two interacting oscillators forc-

ing one another

The interaction between two oscillators due to global coupling can be thought of as the two oscillators

forcing one another through the last term in the first equation in (7) as discussed above. If the product

σkγ (k = 1, 2) is large enough, then the autonomous part of Nv,k (8) can be in a SAO regime. This

means that if wj (j = 1, 2 with j 6= k) was artificially made equal to zero, then the oscillator Ok

would exhibit the type of canard-like SAOs discussed in the previous section. However, since wj is

not necessarily equal to zero or very small, but also oscillates, then Nv,k raises and shifts down from

their baseline location in an oscillatory fashion. This interferes with the canard SAOs to create the more

complex patterns that we discuss in the following sections.

Among these patterns are the representative “blue” MMOs shown in Fig. 5-a, which consist of two

types of SAOs. The ones along the ascending phase correspond to the portion of the trajectory evolving

along the left branch of Nv,1 (Fig. 5-c) as they respond to the motion of Nv,1 following the forcing

exerted by O2 (Fig. 5-d). The ones on the more shallow phase corresponds to the trajectories moving

around the minimum of Nv,1 as they are able to cross the linear piece L2 to create SAOs. We refer to

them as canard-like SAOs.

The canard-like and standard SAOs are created by different mechanisms. The standard SAOs in v1
(Fig. 5-a, blue) primarily respond to the oscillatory input from w2 (Fig. 5-b, red). During the ascending

phase, w1 is decreasing, therefore the oscillations in v2 and w2 are intrinsically generated by a canard-

like mechanism (Fig. 5-d) that does not require oscillations in the input. The canard-like SAOs are

created by the canard-like mechanism described in the previous sections. Note that although v1 receives

an oscillatory input from w2, the oscillations in w2 during the shallow phase have a smaller amplitude

than during the ascending phase, indicating that they are less important in the generation of the SAOs in

O1.

3.4 Localized, mixed-mode, phase-locked and SAO network oscillatory patterns

In the next sections we examine the consequences of the global feedback’s ability to induce the canard

phenomenon in autonomous oscillators (σ1 = 1 and σ2 = 0) for two-cluster network dynamics (σ1 > 0,

σ2 > 0). We use σ1 = 0.2 (σ2 = 0.8) as a representative case of heterogeneous clusters. Homogeneous

clusters (σ1 = σ2 = 0.5) produce relatively simple network patterns as we briefly explain below.

From eq. (7), the autonomous part of each oscillator is affected by both the cluster size (σk) and γ. In

the absence of the forcing exerted by the other oscillator (wj), the canard phenomenon in each oscillator

would be induced by increasing values of both σk and γ [35,36]. The global feedback parameter critical

value for the autonomous part of each oscillatory cluster is given by

γc,k =
γc
σk

(12)

where γc is the global feedback parameter critical value for the single-cluster oscillator discussed above

(e.g., γc = 0.32 in Fig. 4-a and γc = 0.38 in Fig. 4-c).

For σ1 = σ2 = 0.5, γc,1 = γc,2 and therefore both oscillators would simultaneously be either in the

LAO or SAO regime (Fig. 6) with no intermediate types of patterns. The forcing that the two oscillators

exert on each other does not change this fact, but the values of γ at which these abrupt transitions occur

are larger than the ones predicted by eq. (12).

For example, for the parameter values in Fig. 6, γc,1 = γc,2 ∼ 0.72 (not shown) and the transition

occurs at γ ∼ 0.99. For another example, for the same parameter values and βL = βR = 1 (a “more

linear” w-nullcline), γc,1 = γc,2 ∼ 0.76 (see Fig. 4-c) and the transition occurs at γ ∼ 5.21 (not shown).

In this case, the oscillation frequency is larger than in Fig. 6.

From e.q., (12), for σ1 6= σ2 it is be possible for one oscillator (σ1 < 0.5) to be in the LAO regime,

while the other (σ2 > 0.5) is in the SAO regime, thus generating localized patterns (described in more

detail below). However, the forcing effects that the oscillators exert on each other may disrupt this

scenario and create more complex dynamics. It is, in fact, not a priori clear whether and under what

conditions these localized patterns exist. For this to happen, the forcing effects should not interfere with
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Figure 5: (Color online) Canard and non-canard (standard) SAOs in two-cluster networks. (a) Curves of v1 and v2 vs. t. (b)

Curves of w1 and w2 vs. t. (c,d) Phase-plane diagrams. The gray-dashed curves represent the v-nullcline for the uncoupled system

(γ = 0). The blue- and red-dashed curves represent the v-nullclines for the autonomous part of the globally coupled system. The

green-dashed curves represent the w-nullclines. The solid blue and red curves represent the trajectories of the globally coupled

system for the oscillators O1 and O2 respectively. The right panels are magnifications of the left ones. We used the following

parameter values: α = 4, ǫ = 0.01, λ = 0.08, σ1 = 0.2, σ2 = 0.8, γ = 5 and βL = βR = 1.
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Figure 6: (Color online) Abrupt transition between antiphase LAO and SAO patterns in two-cluster networks for repre-

sentative values of γ. Parameter values (α = 4, ǫ = 0.01, λ = 0.08 and σ1 = σ2 = 0.5) are as in Fig. 4-c, except for βL = 0.05
and βR = 0.05 (same as in Figs. 4-a and -b).

the “autonomous” canard phenomenon for each oscillator. A richer repertoire of intermediate patterns

that are not “purely LAO” or “purely SAO” are expected to result from the complex interactions between

oscillators as it happens for other systems [72, 73].

We have identified various types of network patterns for different parameter regimes.

• Phase-locked LAO patterns (e.g., Figs. 7-a1 and -a2) correspond to both oscillators in the LAO

regime. All other parameters fixed, the phase-difference between the two oscillators depends on

the relative cluster sizes. For σ1 = σ2 = 0.5 the patterns are antiphase (Fig. 6). The underlying

mechanisms are qualitatively similar to these described in [72, 73] involving the standard SAOs

discussed above, and will not be discussed further in the context of this paper.

• Mixed-mode oscillatory (MMO) patterns (e.g., Fig. 7-a3) correspond to either one or both oscilla-

tors exhibiting MMOs.

• Localized patterns (e.g., Figs. 7-a5 and -a6 and Figs. 7-b2 and -b3) correspond to one oscilla-

tor exhibiting LAOs or MMOs, while the other exhibits exclusively SAOs. From eq. (12), the

oscillator with the larger cluster size is the one expected be in the SAO regime.

• LAO localized patterns (e.g., Figs. 10-a3 and -b3) correspond to the two oscillators exhibiting

LAOs or MMOs, but the number of LAOs per cycle is different between the two oscillators. The

typical situation is one oscillator exhibiting one LAO per cycle, while the other exhibits a burst of

LAOs.

• SAO patterns correspond to both oscillators exhibiting SAOs that may or may not be synchronized

in phase or have the same amplitude.

In addition, we have identified various irregular patterns that emerge mostly as transition patterns

between these mentioned above. We will not analyze these patterns in this paper.

3.5 Gradual transition between phase-locked LAO to localized patterns through

network MMOs in the PWL model with a linear-like w-nullcline

Fig. 7-a shows various representative two-cluster patterns for the same parameter values as in Fig. 4-c.

The global feedback critical values are γc,1 ∼ 1.9 and γc,2 ∼ 0.475. The corresponding phase-plane

diagrams are presented in Fig. 8-a.

For low values of γ (Fig. 7-a1 and -a2), the system exhibits phase-locked LAO patterns. The duty

cycle is smaller for the larger cluster (oscillator O2) since its nullcline is flatter (Fig. 8-a2). The relative

size of the (smaller to larger) duty cycles for the two oscillators O1 and O2 decreases with increasing

values of γ.

As γ increases above these values, the system transitions to MMO patterns (Fig. 7-a3 and -a4). The

SAOs for O2 in Fig. 7-a3 are canard-like (Fig. 8-a3) (the limit cycle trajectories cross the linear piece

L2 or at most the early portion of L3). The last SAO in each cycle for O1 is also canard-like. They all

occur as both w1 and w2 are very small so their forcing effects are almost negligible. In contrast, the
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first SAOs in each cycle are standard (not canard-like) and reflect the motion of Nv,1 in response to the

dynamics of O2 as explained in Section 3.3.

During the active phase of O1, O2 is almost silent (constant). When O1 jumps down, w1 decreases

and Nv,2 raises, thus releasing O2. Because Nv,2 is flatter than Nv,1, O2 completes the cycle just before

O1, and for some time they are both silent (w1 ∼ 0 and w2 ∼ 0). Fig. 7-a4 corresponds to a slightly

higher value of γ. This causes the first O2 oscillation to transition to a SAO. As this happens, O1 is

moving along the left branch of Nv,1 and continuing to release O2 from inhibition. As a result, the

second O2 oscillation is a LAO.

For larger values of γ, the system transitions to localized patterns (Fig. 7-a5 and -a6) where the

smaller cluster (O1) exhibits MMOs and larger cluster (O2) exhibits canard-like SAOs (Fig. 8-a5 and

-a6). The SAOs displayed by O1 are a combination of canard-like and standard SAOs. (as described

above) in response to the dynamics of O2. Note that the transition to localized patterns requires a much

larger value of γ than the one predicted by γc,1 and γc,2.

3.6 Abrupt transition between phase-locked LAO and localized patterns for the

PWL model with a sigmoid-like w-nullcline

Fig. 7-b shows various representative two-cluster patterns for the same parameter values as in Fig. 7-a,

but with a sigmoid-like w-nullcline. The corresponding phase-plane diagrams are presented in Fig. 8-b.

The global feedback critical values are γc,1 ∼ 1.8 and γc,2 ∼ 0.45.

In contrast to Fig. 7-a, the transition from phase-locked SAO patterns (Fig. 7-b1) to localized

patterns (Fig. 7-b2) is abrupt and occurs for a value of γ slightly higher than γc,2. This is the result of

the stronger time scale separation imposed by the sigmoid-like w-nullcline, particularly in the regions of

the phase-plane where the left and right branches of the v-nullcline are located (Fig. 8-b).

When O1 jumps up, it causes Nv,2 to shift down, thus inhibiting O2. For the parameter values in Fig.

7-b1 (phase-locked SAO patterns), the trajectory for O2 is above the minimum of Nv,2 and it continues

to move down along Nv,2. After O1 jumps down and begins to move down along Nv,1, decreasing

the forcing exerted on O2, it is released from inhibition and the trajectory moves through R2 without

crossing L2, thus jumping up.

For the parameter values in Fig. 7-b2 (localized patterns) the trajectory for O2 is almost at the

minimum of Nv,2 when O1 jumps up. The trajectory for O2 first displays a small non-canard SAO,

which is the result of O1 causing Nv,2 to move down, and then two canard SAOs after O1 jumps down

and moves down along Nv,1. The larger value of γ increases the ability of the trajectory for O2 to

generate canard-like SAOs by crossing Nv,2 without jumping up.

The two models considered in this and the previous sections differ in the distances (βL and βR)

between the horizontal pieces (S1 and S3) of the w-nullcline and the v-nullcline. To determine which

one of βL or βR has a stronger effect in creating the abrupt transitions between the phase-locked LAO and

localized patterns described in this section, we looked at models with mixed values of these parameters.

We found that for βL = 1 and βR = 0.05 the system behaves as in Fig. 7-a, while for βL = 0.05
and βR = 1 the system behaves as in Fig. 7-b. This confirms that the increase in the effective time

scale separation created by the left horizontal piece of the sigmoid-like w-nullcline is key for the results

discussed above (and in the next section).

3.7 The oscillation frequency of the localized patterns in models with sigmoid-

and linear-like w-nullclines has different monotonic dependencies with γ

Comparison between the localized patterns in Figs. 7-a (panels a5 and a6) and -b (panels b2 and b3)

shows that the LAO frequency of the oscillator O1 decreases with increasing values of γ for the linear-

like w-nullcline (Figs. 7-a5 and a6), while it increases with increasing values of γ for the sigmoid-like

w-nullcline (Figs. 7-b2 and b3).

The underlying mechanisms in both cases involve the presence of canard-like SAOs. In Fig. 7-a5, O1

jumps up right after reaching the minimum of Nv,1 (Fig. 8-a5). In Fig. 7-a6, O1 engages in canard-like

SAOs after reaching the minimum of Nv,1 (Fig. 8-a6), thus increasing the LAO period. This is the result
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of the forcing exerted by O2 and lower time scale separation for the linear-like w-nullcline in Fig. 7-a as

compared to the sigmoid-like w-nullcline in Figs. 7-b.

For the sigmoid-like w-nullcline (Figs. 7-b2 and -b3), the number of SAOs per cycle also increases

as γ increases. However, O1 jumps up upon reaching the minimum of Nv,1. Also, more importantly, the

number of cycles per unit of time increases with γ because the active phase of O1 significantly decreases

with increasing values of γ. This is the result of the flattening of the the v-nullcline as γ increases and

the fact that O1 jumps down near the maximum of the baseline Nv,1.
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Figure 7: (Color online) Localization in a two-cluster network for representative values of γ. (a) Linear-like w-nullcline.

Parameter values (see below) are as in Fig. 4-c (including βL = βR = 1). (b) Sigmoid-like w-nullcline. Parameter values (see

below) are as in Fig. 4-c, except for βL = βR = 0.05, which are the same as in Figs. 4-a and -b). We used the following parameter

values: α = 4, ǫ = 0.01, λ = 0.08, σ1 = 0.2 and σ2 = 0.8.

3.8 The localized patterns persist for lower values of α for the PWL model with

a sigmoid-like w-nullcline, but not for a linear-like w-nullcline

From our previous discussion about the effects of decreasing values of α on the ability of λ and γ to

induce the canard phenomenon in the uncoupled and coupled systems, respectively, it is not a priori clear

whether the localized patterns found in the previous section for α = 4 will persist when we decrease α.

In Fig. 9 we present our results for the same parameter values as in Fig. 7 and α = 2 (instead of α = 4).

For the uncoupled system (γ = 0) and α = 2, the PWL model fails to exhibit the canard phenomenon as
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Figure 8: (Color online) Localization in a two-cluster network for representative values of γ. Phase-plane diagrams for the

parameter values in Fig. 7. (a) Linear-like w-nullcline (βL = βR = 1) (b) Sigmoid-like w-nullcline (βL = βR = 0.05). The

gray-dashed curves represent to the v-nullcline for the uncoupled system (γ = 0). The blue- and red-dashed curves represent to

the v-nullclines for the autonomous part of the globally coupled system. The green-dashed curves represent the w-nullclines. The

solid blue and red curves represent the trajectories of the globally coupled system for the oscillators O1 and O2 respectively. We

used the following parameter values: α = 4, ǫ = 0.01, λ = 0.08, σ1 = 0.2 and σ2 = 0.8.
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λ changes. For the one-cluster system, in contrast, changes in γ are able induce the canard phenomenon,

although for significantly larger values of γc than for α = 4.

Our results in Fig. 9-b show that for α = 2 and sigmoid-like w-nullclines the abrupt transition

between phase-locked and localized patterns has similar properties as for α = 4, but the abrupt transition

occurs for much higher values of γ. In contrast, for linear-like w-nullclines the PWL model fails to

produce localized patterns (Fig. 9-a). There is an abrupt transition from the LAO patterns in Fig. 9-a2

to the SAO patterns in Fig. 9-a3.

There are additional differences between the patterns in Figs. 9-a and 7-a such as the occurrence of

two LAOs per cycle for α = 2 (not shown), which we did not observe for α = 4.
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Figure 9: (Color online) Localized and non-localized patterns in a two-cluster network for representative values of γ. (a)

Linear-like w-nullcline (βL = βR = 1) (b) Sigmoid-like w-nullcline (βL = βR = 0.05). We used the following parameter values:

α = 2, ǫ = 0.01, λ = 0.08, σ1 = 0.2 and σ2 = 0.8,

3.9 The localized patterns are robust to changes in λ for the PWL model with a

sigmoid-like w-nullcline, but not for a linear-like w-nullcline

Increasing values of λ increase the global feedback critical value γc (Fig. 4-c), and therefore it increases

both γc,1 and γc,2 and is expected to increase the values of γ at which the transition to localized patterns

(if they exist) are present. If the values of γ are to high, then the v-nullcline flattens before the canard

phenomenon can be induced by γ as for the case illustrated in Fig. 4-b3. Therefore, it is not clear a priori

that the transitions observed for λ = 0.08 in Figs. 7 and 8 persist for larger values of λ. To address this

issue we used the same parameter values as in these figures, but with λ = 0.4 (instead of λ = 0.08). Our

results are presented in Fig. 10.

The model with a sigmoid-like w-nullcline (Fig. 10-b) shows an abrupt transition between phase-

locked LAOs to localized patterns with similar properties as for λ = 0.08 (Fig. 7-b). In contrast, the

patterns displayed for the model with a linear-like w-nullcline (Fig. 10-a) differ from these for λ = 0.08.

Importantly, for λ = 0.4 the model does not exhibit localized patterns. Other differences include the

presence of in-phase patterns for low values of γ (e.g., γ = 1, not shown) and LAO localized patterns
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(Figs. 10-a2) where the number of LAOs for O2 per cycle increases with increasing values of γ (not

shown). There is an abrupt transition between these patterns and the ones in Fig. 10-a3.
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Figure 10: (Color online) Localized and non-localized patterns in a two-cluster network for representative values of γ. (a)

Linear-like w-nullcline (βL = βR = 1) (b) Sigmoid-like w-nullcline (βL = βR = 0.05). We used the following parameter values:

α = 4, ǫ = 0.01, λ = 0.4, σ1 = 0.2 and σ2 = 0.8,

3.10 Localized patterns are more robust for the sigmoid-like w-nullcline than for

the linear-like w-nullcline for larger values of ǫ

In Figs. 11-a and -b we show representative patterns for ǫ = 0.1 and the parameter values in Figs. 4-a

and -b, respectively. In both cases, for low enough values of γ the system shows in-phase patterns (Fig.

11-a1 and -b1), consistent with previous findings for the smooth FHN model [72].

As γ increases, the patterns in the PWL model with a linear-like w-nullcline transition to the complex

type of patterns shown in Fig. 11-a2 and then to the synchronized in-phase patterns shown in Fig. 11-a3.

The phase-plane diagrams for these patterns (not shown) are qualitatively similar to the ones obtained for

the single-cluster case (Fig. 4-b1), which does not exhibit the canard phenomenon as γ increases. The

absence of localization for the two-cluster system is associated to this lack of ability of the single-cluster

system to exhibit the γ-induced canard phenomenon.

In contrast, for the PWL model with a sigmoid-like w-nullcline (and the same value of λ) (Figs. 11-

b), as γ increases the patterns transition to the localized patterns shown in Figs. 11-b2 and -b3. The larger

and smaller SAOs in Figs. 11-b2 and -b3 correspond to the limit cycle trajectories crossing the linear

pieces L3 and L2, respectively (not shown). A significant difference between these localized patterns

and the ones for ǫ = 0.01 (Figs. 7-b and 10-b) is that in the latter the SAOs are interrupted during LAOs,

while in the former SAOs and LAOs may occur simultaneously.

While localization does not occur for λ = 0.7 in the PWL model with a linear-like w-nullcline, it

may be restored for lower values of λ (Fig. 11-c3). For these parameter values the system also shows

antiphase patterns (Fig. 11-b2) for lower values of γ.
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Figure 11: (Color online) Localization in a two-cluster network for representative values of γ. (a) Linear-like w-nullcline

(βL = βR = 1) and λ = 0.7. (b) Sigmoid-like w-nullcline (βL = βR = 0.05) and λ = 0.7. (c) Linear-like w-nullcline

(βL = βR = 1) and λ = 0.4. We used the following parameter values: α = 4, ǫ = 0.1, σ1 = 0.2 and σ2 = 0.8.
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4 Discussion

Localized patterns in oscillatory networks where one oscillator (or cluster) exhibits LAOs or MMOs,

while the other exhibits SAOs have been observed both experimentally and theoretically [32–36, 72, 73,

114–116]. In previous work we have established that these type of localized patterns can be obtained

in networks of relaxation oscillators such as the FHN model and the Oregonator where the individual

oscillators exhibit the supercritical canard phenomenon. In these networks, localized patterns required

the presence of heterogeneity in the cluster distribution, which effectively creates heterogeneity in the

inter-cluster connectivity. One important aspect of these networks is that the individual oscillators are

monostable (they exhibit either LAOs or SAOs, but not both). The break of symmetry in the oscillation

amplitude regime between the two (or more) clusters is a network phenomenon. However, how and

under what conditions do localized patterns emerge as the result of the interaction between the network

connectivity and the intrinsic properties of the individual oscillators (e.g., the canard phenomenon) was

not fully understood.

In this paper we set out to address these issues in the context of PWL model of FHN type where

the v-nullcline is cubic-like and the w-nullcline is either sigmoid- or linear-like. This model belongs to

the set of minimal models that are able to produce localized patterns. Oscillatory patterns in globally

coupled models have also been studied using the so called phase oscillators [37, 75, 117–122]. In these

models, each oscillator is described solely by its phase and the effects of the interaction of oscillators

on their amplitude is neglected by assuming weak coupling. These models are successful in capturing

the phase-lock cluster patterns where the two oscillators are in the same amplitude regime, but they fail

to capture the generation of the more complex patterns that involve more than one oscillatory amplitude

regime and transitions between both.

In order to identify the principles that govern how the interplay of the intrinsic properties of the indi-

vidual oscillators and the network connectivity interact to produce the localized patterns, we have con-

sidered a number of representative scenarios which include qualitatively different types of w-nullclines

(sigmoid- and linear-like) and different parameter values that control the slope of the w-nullcline (α), its

displacement with respect to the v-nullcline (λ), and the time scale separation between the participating

variables (ǫ).
Our results show that the presence of the supercritical canard phenomenon in the individual oscilla-

tory clusters is a necessary ingredient to produce localized patterns, but it is not sufficient (e.g., Figs. 9-a

and 10-a). Localized patterns require a specific tuning between the various model parameters and the

shape of the w-nullcline. In fact, the robustness of these patterns is strongly dependent on the shape of

the w-nullcline. Models with a sigmoid-like w-nullcline produced more robust localized patterns than

models with linear-like w-nullclines (e.g., Fig. 7) as well as abrupt transitions between phase-locked and

localized patterns that were absent in models with linear-like w-nullclines. The shape of the w-nullcline

has additional effects on the network patterns. A salient one is the fact that the monotonic properties of

the localized patterns LAO frequency with changes in γ are different in models with sigmoid-like and

linear-like w-nullclines. This is expected to have implications for realistic systems. However, the exact

details of these implications remain to be understood.

The different types of cluster patterns we describe in this paper are stationary solutions in the corre-

sponding larger networks, which result from using the cluster reduction of dimensions argument. Other

stationary solutions are possible and the cluster solutions we found may not be stable. Our goal was to

investigate under what conditions the localized (and other MMO) solutions are possible, what are their

properties, how they depend on the interplay of the properties of the participating individual oscilla-

tors and the network connectivity, and what are the mechanisms that govern the transition between the

large amplitude and localized patterns. All this is necessary to understand how these types of patterns

emerge in larger networks. Further research is needed to clarify these points, to examine how cluster

patterns arise in these larger networks out of “non-cluster” initial conditions, and what are their stability

properties [123].

In this paper we have considered a specific type of global coupling motivated by previous work.

Other studies have considered global feedback from the activator variable onto itself, rather than from

the inhibitor onto the activator [69,124–127]. More research is needed to establish if and under what con-

ditions localized patterns are possible in these networks and, if they exist, to characterize the similarities
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and differences between the patterns generated by the two types of global feedback.

An alternative scenario to the one we present here would involve the presence of bistability in the

individual oscillators [108]. In this case, the role of the network connectivity would be to separate

the oscillators into clusters by causing each oscillator to choose between the stationary solutions of the

individual oscillators. This will require the presence of bistability between two oscillatory regimes.

Alternatively, the localized solutions would involve one oscillatory and one silent cluster.

An additional goal of this study was to explore the effects of the interplay between the two competing

types of coupling: global inhibition and diffusion (see Appendix B). Global inhibition tends to create

clusters. Diffusion is local and tends to cause oscillators to synchronized in-phase. Indeed, when the

two clusters have equal size and the oscillators are initially in the LAO regime, the addition of diffusion

cause them to synchronize in-phase either in the LAO or SAO regimes depending on the Dv/γ ratio.

However, when the cluster sizes were different, the addition of diffusion induced localized or MMO

network patterns that were either synchronized in-phase or not depending also on the Dv/γ ratio. Even

when the resulting patterns are synchronized in-phase, they do not resemble the patterns in the absence

of diffusion.

We emphasize that the diffusive type of coupling we used in this paper is not realistic and does not

reflect the diffusive effects between oscillators in each cluster in the original system. The question of

how oscillators in each clusters are held together and how the different cluster sizes are generated as the

result of the interplay of global coupling and diffusion remains open.

Network patterns can be generated by various mechanisms. On one extreme, these patterns can be

imposed by the network connectivity with little or no participation of the individual oscillators. Our

results highlight the richness of the patterns generated by the interplay of the network connectivity and

the intrinsic properties of the individual oscillators.
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A Dynamics of the linear regimes

The dynamics of eqs. (1)-(3) in each linear regime are governed by a system of the form

{

v′ = η v − w,
w′ = ǫ [αv − w ],

(13)

where the fixed-point (v̄, w̄) (virtual or actual) has been translated to the origin and η represents the slope

of the corresponding linear piece. The coordinates of the fixed-point (v̄, w̄) for each regime are given by

v̄ =
κλ− η v̂ + ŵ

κ α− η
and w̄ = κ

λ η − αη v̂ + α ŵ

κα− η
(14)

where f(v) is described by η (v− v̂)+ŵ. Note that here we are using the same notation for the translated

system (13) and the original system.

The case κ = 1 corresponds to the uncoupled system, while the case κ = 1+ σ γ corresponds to the

autonomous part of the globally coupled system (7). The effects of Dv are included in the parameter η.

The eigenvalues for each fixed-point are given by

r1,2 =
η − ǫ ±

√

(η + ǫ)2 − 4 κ ǫ α

2
. (15)

The fixed-points for linear regime (13) are stable if η < ǫ and unstable if η > ǫ. They are foci if

| η + ǫ | < 2
√
κ ǫ α (16)

and nodes otherwise. Since α ≥ 0 and κ > 0, saddles are possible only for α = 0. We refer the

reader to [77] for a more detailed discussion for the case κ = 1. The global feedback parameter γ > 0
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affects both the location of the fixed-points and the eigenvalues. For large enough values of γ a node can

transition into a focus.

B Interplay of diffusion (local) and global coupling

B.1 The canard phenomenon can be induced by the diffusion autonomous com-

ponent

Global feedback and diffusion have opposite effects. While global feedback favors the generation of

phase-locked clusters (Fig. 6), diffusion favors in-phase synchronization (Fig. 13-a). In the next sections

we investigate the combined effect of global coupling and diffusion. Here, we look at the effects of the

diffusion coefficient Dv on the dynamics of the autonomous part of system (10). This is not a realistic

situation, but, as for the effects of γ on the one-cluster systems discussed in Section 3.2, it provides

information about the dynamics of the autonomous part of each oscillator.

Increasing values of Dv decrease the slopes (η) of the linear pieces L2 and L3. From (16) this

can cause the transition of the actual fixed-point in R2 from a node to a focus, therefore favoring the

occurrence of the canard phenomenon. This is illustrated in Fig. 12 for the same parameter values as in

Fig. 4 and γ = 0. (The baseline v-nullclines for Dv = 0 in panels a, b and c, are as in Figs. 4-a1, -b1,

and -c1, respectively.)
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Figure 12: (Color online) The canard phenomenon induced by diffusion in bulk oscillatory systems. Parameter values are

as in Fig. 4. The baseline v-nullcline for γ = 0 (dashed-red) is as in Fig. 1 and is presented for reference. The solid-red v-nullcline

corresponds to the actual values of γ used in each panel. For the w-nullcline we used the following parameter values: (a) α = 4,

ǫ = 0.1, λ = 0.7, βL = −0.05 and βR = 0.05. (b) α = 4, ǫ = 0.1, λ = 0.7, βL = −1 and βR = 1. (c) α = 4, ǫ = 0.01,

λ = 0.08, βL = −1 and βR = 1.
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B.2 Interplay of diffusion and global feedback for equal-size clusters: in-phase

synchronization and the canard phenomenon

Here and in the next section we investigate the patterns that result from the interplay of global coupling

and diffusion. For visualization purposes, in Figs. 13 and 14 we present the patterns for the globally

coupled system in the absence of diffusion to the left of the dashed-gray line. In a separate set of

simulations we have checked that the patterns for both γ > 0 and Dv > 0 (right of the dashed-gray line)

remain unchanged when global feedback and diffusion are activated simultaneously (not shown).

For relative low Dv/γ ratios, the system shows antiphase patterns (Fig. 13). As this ratio increases,

the two oscillators synchronize in-phase (Fig. 13-c). In-phase patterns are also obtained for γ = 0.3
and Dv = 0.15 (not shown) for which Dv/γ = 0.5. For larger values of γ, but similar Dv/γ ratios,

the two oscillators exhibit in-phase SAOs. The increase in Dv does not always cause the transition from

LAOs to SAOs since once the two oscillators synchronize in-phase they behave as a single cluster and

the diffusive effects are negligible. Therefore, the transition from LAOs to SAOs in these cases depends

on whether whether γ > γc or not. For example, for γ = 0.3 and values of Dv larger than the one in

Fig. 13-c the patterns remain in the LAO regime in contrast to the patterns in Fig. 13-d).
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Figure 13: (Color online) Interplay of global coupling and diffusion in a two-cluster network for representative values of

γ. We used the following parameter values: α = 4, ǫ = 0.01, λ = 0.08, σ1 = 0.5, σ2 = 0.5, βL = βR = 0.05. The dashed-gray

line indicates the time at which diffusion was activated.

B.3 Interplay of diffusion and global feedback for clusters with different size:

Diffusion-induced localized and MMO patterns

In Fig. 14-a1 we illustrate the diffusion-induced localized patterns for the same parameter values as in

Fig. 10-b and a relatively low Dv/γ ratio. In the absence of diffusion, the system exhibits phase-locked

LAOs and localization is induced by increasing values of γ (Fig. 10-b). Similar patterns were obtained

for other values of γ and low Dv/γ ratios.

As Dv increases, different types of MMO patterns emerge (Fig. 14-a2 to -a5), which combine the

two competing effects of global coupling and diffusion. These patterns include in-phase MMO patterns

with different ratios of SAOs and LAOs per cycle (e.g., Fig. 14-a2 and -a5) and MMO patterns where
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the LAOs in both oscillators are phase-locked (e.g., Fig. 14-a3 and -a4). As Dv increases further, the

system exhibits in-phase SAOs.

In Fig. 14-b we show some representative patterns for low Dv/γ ratios. Fig. 14-b1 shows a transition

from localized to in-phase MMO patterns (similar to this in Fig. 14 -a5) that combine the features of both

oscillators when Dv = 0. The in-phase MMOs have a lower LAO frequency than the localized pattern

for Dv = 0. Fig. 14-b2 also shows a transition between localized and in-phase MMOs. However, these

MMOs have less SAOs per cycle and a higher LAO frequency than for Dv = 0. Finally, in Fig. 14-b3

there is a transition between two types of localized patterns with different ratios of SAOs per cycle and

a lower frequency. In all cases, there is relatively abrupt transition between these patterns and SAO

patterns, often not synchronized in-phase (not shown). These transitions sometimes involve irregular

patterns for very small ranges of Dv
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Figure 14: (Color online) Interplay of global coupling and diffusion in a two-cluster network for representative values of γ

and a sigmoid-like w-nullcline. (a) λ = 0.4. (b) λ = 0.08. We used the following parameter values: α = 4 , ǫ = 0.01, σ1 = 0.2,

σ2 = 0.8 and βL = βR = 0.05. The dashed-gray line indicates the time at which diffusion was activated.
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