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We study the coupling of a Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP) equation to a sep-
arate, advection-only transport process. We find that an infinitesimal coupling can cause a finite
change in the speed and shape of the reaction front, indicating the fragility of the FKPP model with
respect to such a perturbation. The front dynamics can be mapped to an effective FKPP equation
only at sufficiently fast diffusion or large coupling strength. We also discover conditions when the
front width diverges, and when its speed is insensitive to the coupling. At zero diffusion in our
mean-field description, the downwind front speed goes to a finite value as the coupling goes to zero.

I. INTRODUCTION

The Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP)
equation, originally introduced to describe the popula-
tion dynamics of the spread of advantageous genes [1]
has found applications in a very wide range of contexts
that include ecology [2], epidemiology [2], population
biology [3], chemical kinetics [4], extreme-value statis-
tics [5], disordered systems [6], and even high energy
physics [7]. It describes reaction-diffusion processes in-
volving saturation-limited growth and diffusion, and ad-
mits front-like solutions - known as Fisher waves - that
invade a linearly-unstable state.

Often, reaction-diffusion processes are coupled to an
additional advective process. In some models, an ad-
vective term is added to the FKPP equation, such that
reactions, advection and diffusion occur simultaneously.
This can give rise to rich phenomenology - for instance,
when disorder is involved [3, 8], or when reactions re-
lease heat [9], causing the coupling between the concen-
tration of reacting species and the advective flow field.
In other instances, however, advection takes place in a
separate competing transport channel, often associated
with a flow over a substrate on which reaction-diffusion
processes take place. Examples include heterogeneous
catalysis on surfaces under flow [10, 11], population ecol-
ogy in streams [12, 13], microbial population dynamics
in the digestive tract [14, 15], and the long-range aerial
spread of fungal plant pathogens - the original motivation
for this work [16–18]. In all of these examples, there is a
reaction-diffusion region, such as a catalytic substrate or
a biological growth layer, and an advection region along-
side it - with adsorption and desorption taking material
on and off the growth layer - as depicted schematically
in Fig. 1. In this paper we study this specific scenario

∗ obk5@cornell.edu

whereby advection competes with a separate reaction-
diffusion process.

As we demonstrate, the presence of a competing trans-
port mechanism causes the results of the FKPP model
to be fragile if diffusion is slow-enough - giving a finite
change in results due to an infinitesimal coupling. We
thus identify a perturbation that causes predictions of a
reaction-diffusion model to fail. At fast-enough diffusion
or large-enough desorption rate, it is possible to map the
coupled process to an effective FKPP equation with an
advective term and suitably adjusted parameters.

II. THEORETICAL FRAMEWORK

Let ρ(x, t) and σ(x, t) denote the number density in
the advective and reactive layers respectively. The advec-
tive layer has an imposed velocity field v. Then, ignor-
ing finite-number fluctuations (mean-field description),
the spatio-temporal dynamics of ρ(x, t) and σ(x, t) will
evolve from initial conditions ρ(x, 0) > 0 and σ(x, 0) > 0
according to

dρ

dt
= −∇ · (vρ) + ασ − βρ, (1)

dσ

dt
= δf(σ)− ασ + βρ+D∇2σ. (2)

We discuss the validity of this mean-field description be-
low. In contrast to the FKPP model with an advective

FIG. 1. (Color online) Reaction-diffusion process coupled to
advection.
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term, here any one particle either reacts and diffuses or
advects within a small time interval ∆t. Here α > 0 and
β > 0 are rates of mass transfer between the two layers,
and δ is a characteristic reaction rate - all with dimen-
sions

[
time−1

]
. In this paper we focus on one reactant,

so Eqs. (1)-(2) are specific to growth-type reactions, and
the reaction layer will be called the growth layer (GL).
The function f(σ) is a dimensionless growth rate. D is a
diffusion constant on the GL.

We focus in this paper on one dimension with a con-
stant advective velocity v0. We assume f(σ) is a concave
and smooth function that admits one unstable state at
σ = 0, where df/dσ = 1 and f = 0, and a stable state
at σ = σmax. In some cases we will use a logistic model
as a concrete example: f(σ) = σ(1 − σ/σmax). Since
our main objective is to study the role of coupling of the
FKPP equation to an independent advective process, this
class of f(σ) is a natural choice, because it is also usually
employed in the FKPP equation.

A natural length scale is v0/δ - the distance traveled by
the advective layer (AL) per characteristic growth time.
Rescaling x by v0/δ, t by 1/δ, and σ, ρ by σmax, we
are left with three parameters: a ≡ α/δ, b ≡ β/δ and
D =

(
δD/v2

0

)
, with speed and growth rate both becom-

ing 1 in these units (i.e. speed is now in units of v0); we
will continue to use the letters ρ, σ, x, t and f . Un-
less otherwise specified, calculations will be done with
Eqs. (1)-(2) non-dimensionalized in this way.

It will prove useful to first study the D = 0 case, and
then consider the effect of diffusion.

III. ZERO DIFFUSION

We first describe the qualitative picture. Consider a
patch of GL around position x0. It produces new mass,
and loses mass to the AL at rate a. Once there, the
mass is swept along at speed 1 by the advection. All the
while, mass is continuously shed onto the parts of the GL
at x > x0 with rate b. The returned mass resumes growth
at these new locations of the GL, while at the same time
continuing re-desorbtion back onto the AL, and so on.

In the zero-diffusion case, without the deposition of
new mass from the AL, the dynamics on the GL un-
folds independently at each x following an initial condi-
tion (IC). The advective layer effectively couples different
locations of the growth layer. The dynamics of the GL
at each x is driven by the AL, which itself is a result
of accumulation of the upstream GL density. The state
σ = 0, ρ = 0 is linearly unstable to perturbations over a
low wavevector range (see Appendix B). The nonlinear-
ity limits the growth. Thus, an IC that decays to 0 as
x→ ±∞ leads to traveling fronts.

Typical σ(x) profiles are depicted in Fig. 2; ρ(x) is
qualitatively similar. Here the advective velocity is di-
rected rightward. We will only consider ICs with a finite
support; its left edge set at x = 0. Fig. 2 depicts profiles
at various times, evolving from a δ-function IC at x = 0,
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FIG. 2. (Color online) Evolution of the GL profile from a
δ-function IC with a logistic growth model and no diffusion.
(a): a = 0.5, b = 1 at t = 5, 10, 15, 20, 25 and 30. (b), a = 2,
b = 1, same ts. In both cases, the IC launches uniformly
translating fronts (UTF). Early transients are not shown.

but qualitatively similar picture holds for all ICs with
a finite support. Depending on parameters, the profiles
have one or two moving fronts.

If the desorption rate is slower than the growth rate
(a < 1), there is an asymptotically stationary part of
the profile left behind a single front propagating in the
advective direction. It is depicted as a thick dashed
part of the profile in Fig. 2(a) (section “I. Stationary
Wake”), while the moving front is depicted as the thick
solid curve (section “II. Moving Front”). Stationary pro-
files are discussed in Appendix D. When aσ > f(σ) for
any 0 < σ < 1 - regardless of the convexity of f(σ) -
there are two moving fronts - one leading (“downwind”)
and one trailing (“upwind”), with a plateau in between
- Fig. 2(b). Note that in the absence of diffusion and for
ICs with a finite support, a front can not propagate back-
wards, since there is no mechanism that allows movement
against the advective direction. On the other hand, in the
presence of diffusion, upwind front can propagate either
backwards, forwards, or stall - we explore this in Section
IV. Also, because the D = 0 model is hyperbolic, ICs
with initially finite support will always lead to density
profiles that also have a finite support.

We now study the long-time behavior of moving fronts;
transients will not be addressed. We define the front
speed s as the speed of x(t) that satisfies ρ(x, t) = c0,
with c0 > 0, i.e. the speed at some reference density c0.
In many systems, s is determined by the growth of the
leading edge of the profile where the linear approximation
is valid [19]. Such fronts are called “pulled”. We proceed
with this assumption - it will be validated by the com-
parison with numerical solutions of Eqs. (1)-(2). So, we
let f(σ)→ σ in Eqs. (1)-(2), solve the resulting equation,
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and compute s. Due to the linearity of the equation, the
resulting speed is independent of the value of c0. The
speed defined by σ(x, t) = c0 is identical, since ρ and σ
are both governed by the same dispersion relation, and
the same pair of ICs.

For the physically important IC σ0(x) = Mδ(x) and
ρ0(x) = 0 (profiles evolving from this IC are denoted
by ∗), we can obtain a long-time asymptotically exact
solution to the linearized equations:

ρ∗(x, t) =

{
aMe−κ(x−wt)I0

(
2
√
ab
√
x(t− x)

)
, 0 < x < t

0, otherwise

κ = 1− a+ b, w = (1− a)/(1− a+ b) (3)

To obtain this, we found the dispersion relation of the
linearized equations, computed the Fourier integral on a
contour in the complex plane around a branch cut, and
approximated the result by the modified Bessel function
I0 for t > (ab)−1/2. Details, and σ∗(x, t) are in Appendix

B. Using I0(z) ∼ ez√
2πz

for large z, the front speeds are

given by

s∗± =

(
1 +

b

(1±
√
a)2

)−1

(4)

for a ≥ 1. The +/− represent the downwind/upwind
profiles respectively. For a ≤ 1, s∗− = 0 (upwind front
does not move with zero diffusion and a ≤ 1), but Eq. (4)
applies for s∗+. Note: when a = 0, Eq. (4) does not apply,
since ρ∗ = 0 and σ∗ = 0 for x > 0; when only b = 0, then
only σ∗ = 0 for x > 0 (Appendix B).

The characteristic front width is 1/|λ∗±|, where

λ∗± =
1 + a+ b± 2

√
a

1±
√
a

, (5)

is the negative of the spatial growth rate of tails of the
solution in Eq. (3) at c0 � 1. Defined this way, the
decaying downwind front has λ∗+ > 0, while the growing
upwind front has λ∗− < 0 for a > 1. For a < 1, the upwind
front is not moving and λ∗− becomes meaningless. The
value of c0 may affect the time to attain s∗± and λ∗±, but
not their values. Eq. (4) and (5) can also be obtained
by the saddle-point method (Appendix C), which only
requires that the Fourier Transform of the IC does not
contain poles. Therefore, our results for λ∗± and s∗± apply
to any IC with a finite support.

The finite speed of the downwind front as couplings
approach (but 6=) zero, see Fig. 3, is the key prediction
of the mean-field theory when D = 0. The match with
numerical calculations [20] supports the validity of the
pulled front assumption.

The prediction that s∗+ → const 6= 0 as a→ 0 at fixed
b is most surprising. A parcel of mass that enters the
AL - for however brief a period of time - will travel with
speed 1 downstream, and because this is a continuum
theory, there will always be mass present in the AL. So,
the seeding process advances with speed 1. The speed of
the front is defined at a constant density contour, so in
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FIG. 3. (Color online) (a): front speeds vs. the interlayer
coupling a = b = g for a δ-function IC in the GL. Upper
curve (red) - downwind front speed s∗+, lower curve (blue) -
upwind front speed s∗−. For g < 1 there is a stationary profile
behind the downwind front. Solid dots are from the numerical
solution of Eqs. (1)-(2). (b): front speeds vs. a at b = 1. Now
s∗+ → (1 + b)−1 as a → 0. The first two dots are at a = 0.01
and a = 0.1.

general it is less than 1. As a→ 0, the AL density ρ→ 0,
but the speed remains finite.

At sufficiently small a, the particle density in the
AL becomes so small that the continuum theory breaks
down. Our predictions will not apply when the number
of particles within a region of AL of the width of the
feature size, i.e. front width, becomes ∼ O(1). In phys-
ical units, the maximum number of particles in the AL
within ∆x is (a/b)σmax∆x. Therefore, mean-field theory

predictions will hold as long as a
b �

δλ(a,b)
σmaxv0

, where σmax

is the carrying capacity on the GL per unit length. Oth-
erwise, a stochastic treatment is needed. This threshold
can be extremely small due to large σmax. For example,
in applications to fungal pathogen transport by wind, we

estimate in Appendix F that δλ(a,b)
σmaxv0

∼ O(10−14), and
we argue there that realistic atmospheric mixing ensures
that a/b is indeed much greater.

The phenomenon of a finite front speed in the limit of
an infinitesimal exchange rate has been reported in other
models of invasion dynamics. Lewis and Schmitz [21],
for instance, considered a model of a population of indi-
viduals with two states - a diffusive state without repro-
duction, and an immobile state during which organisms
reproduce. They also found that the invasion front speed
approaches a finite value as the switching rate between
the two states goes to zero. Another model was consid-
ered by Cook (see description in [2], Ch. 13) describing
individuals who are always either stationary or diffusing,
with each sub-population reproducing according to a rate
that depends on the total population. This model also
exhibits a similar effect.

Before moving on to the model with diffusion we briefly
consider another limit. When a = b ≡ g → ∞, the time
spent by a typical particle on the GL is much smaller
than the growth time, so the speed is determined by the
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fraction of time spent in the AL. Thus, s∗ → 1/2 as
g → ∞. When a 6= b, s∗± → (1 + b/a)−1 as a → ∞ (see
also the discussion of the zero growth case in Appendix
B 2).

In deriving results in Eqs. (4)-(5), no time-invariance of
a front shape had to be assumed, only that it is “pulled”.
We see, however, that the decay rate in Eq. (5) is indeed
a constant. If one seeks a uniformly-translating front
(UTF) solution for ρ and σ that depends on x−st, there
is a continuous family of solutions, each characterized by
a decay rate λ for a given s (details in Appendix A). The
solution (λ∗±, s

∗
±) obtained above is one point in this fam-

ily. This suggests that the front evolves to a UTF form.
The resulting UTF shapes match numerically-obtained
profile shapes.

IV. DIFFUSION - A COMPETING
TRANSPORT MECHANISM

Although we could not solve the linearized equations
when D 6= 0, progress can be made with a UTF ansatz,
which is justified numerically in Appendix A 4. Letting
σ(x, t) = σ̃(x− st) and ρ(x, t) = a

b ρ̃(x− st) - assumed to
be valid in the vicinity of the front, linearizing the result-
ing equation around (ρ̃ = 0, σ̃ = 0), and substituting an
eigen-solution ρ̃ = Ae−λz, σ̃ = Be−λz (λ > 0 describes
the downwind front, and λ < 0, describes the upwind
front), we obtain the following equation that relates the
decay rate of the leading edge with speed s:

sλ = (1− a) +
ab

b+ (s− 1)λ
+Dλ2 (6)

The front “vicinity” can be defined by |x−xfront| . 1/λ,
and xfront is a characteristic point on the front, such as
the inflection point.

The resulting s(λ) has multiple branches. The the-
ory of pulled fronts [19] predicts that for ICs that decay

faster than e−λ
∗
+x, with λ∗+ > 0 the minimum point of

largest branch of s(λ) (“steeply decaying” ICs), the se-
lected decay rate of the downwind front will evolve to
be λ∗+, and its speed will be s∗+ = s(λ∗+) [22] (this was
indeed so in the D = 0 case). The resulting s∗+(a, b,D)
is displayed in Fig. 4a. Equivalently, the maximum of
the lowest branch for λ < 0 describes the selected state
(λ∗−, s

∗
−) of the upwind front resulting from steeply grow-

ing ICs, Fig. 4b. We now study the properties of each
front resulting from steep ICs, including a δ-function IC.
We maintain a, b 6= 0, unless otherwise stated. The de-
tails of the calculations for the following discussion can
be found in Appendix A. We first discuss the downwind
front.

A. Downwind front

1. Fragility of the FKPP model

The first key finding is the fragility of the FKPP model
with respect to the perturbation by an independent ad-
vective mechanism. It turns out that as both a and
b → 0, s∗+ → 1 for 0 ≤ D ≤ 1/4, see Appendix A 2 e.
On the other hand, the front speed on the GL decoupled
from the AL, i.e. the front speed in the FKPP model,
is the well-known Fisher speed [3], given in the physical

units by sF = 2
√
Dδ = 2v0

√
D, or 2

√
D in dimension-

less units. This speed goes to zero as D → 0. Thus,
an infinitesimal coupling of the FKPP model to an ad-
vective layer yields a finite change in the front speed.
This effect takes place for 0 ≤ D < 1/4, see Fig. 4a,
although the magnitude of the finite change due to an
infinitesimal coupling decreases to zero as D approaches
1/4. We will come back to the discussion of the range
of D over which there is fragility, after discussing the
crossover phenomenon. Note that D = 1/4 is such D at
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FIG. 4. (Color online) The dimensionless speed of the down-
wind (a), and upwind (b) fronts vs. D for several coupling
values. The symbols were obtained by numerical solutions of
Eqs. (1)-(2), while continuous curves are theory - see main

text. Dashed curves are ±2
√
D - FKPP speed in units of

v0. We demonstrate in Appendix A 2 e that for a/b = const,
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for any D as b→∞.
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which the Fisher speed equals the advective speed.
Similarly, the decay rate of the front also undergoes

a finite change under an infinitesimal coupling from the
FKPP decay rate 1/

√
D to

(
1−
√

1− 4D
)
/ (2D) for 0 ≤

D ≤ 1/4, see Appendix A 2 e.
Thus, we find that the FKPP model is fragile with

respect to the coupling to the AL, i.e. such perturbation
is singular [23].

Whereas the FKPP model is fragile with respect to
the coupling to the AL, the D = 0 model is not fragile
with respect to the addition of the diffusion term on the
GL. Adding diffusion in the GL does not change s∗+ dis-
continuously for any combination of coupling values, and
s∗+ remains finite as D becomes non-zero - see Fig. 4a.
We show directly with perturbation theory in Appendix
A 2 b, that when the Fisher speed of the GL is much less
than the advective speed (i.e. when D � 1/4),

s∗+ ≈ s∗+ (D = 0) +
b

1 +
√
a
D. (7)

The same can be said about the decay rate, which is given
by

λ∗+ ≈ λ∗+(D = 0) + cD, (8)

where c is given in Appendix A 2 b. Thus, at small diffu-
sion, the front speed and shape are given approximately
by the speed and shape if only the advective mechanism
was operating; the advective mechanism dominates at
small D and finite a and b. Moreover, we just saw that
this speed does not go to zero as either a or b→ 0, which
again leads to the idea of fragility with respect to the
coupling.

The reason why s∗+ is continuous with an infinitesimal
perturbation by D may be viewed as a consequence of
the finite speed in the diffusion-free model (for any a,b 6=
0). As D → 0, the diffusive-only transport mechanism
(zero coupling) is infinitely slower than the advective-
only mechanism (zero D) [24]. When both are present,
the advection dominates.

At this stage we would like to draw the reader’s at-
tention to an important point. Note that if an ad-
vective term −v1

∂σ
∂x with constant v1 were present in

Eq. (2), it can be removed by changing the reference
frame, while modifying v0 in Eq. (1) (we have focused
on v = v0 = const in this paper). In other words, it is
not possible to remove an advective term from the model
entirely - only to move it from one layer to another. In
contrast, if the same constant velocity advective term
was present in the FKPP model, the same transforma-
tion would remove this term. Thus, whereas the effect of
an advective term with a constant velocity on the front
speed is purely additive in the basic FKPP model, this
is not the case in our model, since an advective term
can not be removed by a simple Gallilean transforma-
tion. Therefore, there is a genuine competition between
the two transport mechanisms. Coupling opens up an
alternative “transport channel”.

The fragility effect is an example of the consequence
of this competition. For D < 1/4, the Fisher speed is
lower than the advective speed, and for D > 1/4, it is
greater. So, it appears that in the limit of both a and
b being infinitesimal, the downwind front speed is given
by the greater of the speeds due to either of the two
mechanisms considered separately, see Fig. 4a. But this
will not always be the case, as we will see when examining
another route to fragility below.

2. Effective FKPP description at large D

The linear dependence of s∗+ on D at small D, demon-
strated in Eq. (7), indicates that our model can not be

mapped to an FKPP model - which exhibits the ∼
√
D

scaling. On the other hand, at large D it is possible to
map our model to an FKPP model, and there exists an
asymptotic behavior

s∗+ ∼ veff + 2
√
Deff , (9)

where Deff ∝ D. We recognize this to be s∗+ of the model
σ̇ = −veffσ

′+Deffσ
′′+f(σ), which is just an FKPP model

with advection.
To discover this asymptotic behavior of s∗+, and to ob-

tain the dependence of veff and Deff on parameters, we
noticed that the relevant branch of s(λ) approaches s(λ)
of the basic FKPP model as λ → ∞, and that both
solutions also behave as λ−1 at small λ. Now, FKPP
λ∗± = ± 1√

D , so we considered an ansatz:

λ∗± = ±c1(a, b)√
D

+
c2(a, b)

D
+ ..., (10)

which allows us to solve for the coefficients ci order-by-
order that makes such λ∗± an extremum of the relevant
branch of s(λ). It is important to stress that this is an
asymptotic ansatz for a large-D regime. When we stop at
the leading term, and substitute this into the appropriate
branch of s(λ), we get the result in Eq. (9). Including

the next term in Eq. (10) would introduce a O(1/
√
D)-

correction to Eq. (9). The details can be found in Ap-
pendix A 2 a.

The resulting Deff → D and veff → 0 when a → 0 at
b = const or b→∞ at a = const, i.e. particles are forced
to stay on the GL and the predictions match those of
the FKPP model without advection. On the other hand,
Deff → 0 and veff → 1 as a → ∞ at b = const or b → 0
at a = const > 1, i.e. particles are forced to stay on the
AL.

Generally, the functions Deff and veff have a compli-
cated dependence on parameters a and b. However, suf-
ficiently far from (a = 1, b = 0), c1 ≈ 1, which gives

Deff ≈

[
2− a− b+

√
(a+ b)2 + 4(1 + b− a)

]2
16

D,(11)

veff ≈
1

2
+

a− b− 2

2
√

(a+ b)2 + 4(1 + b− a)
. (12)
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A more accurate approximation can be found in Ap-
pendix A 2 a. The role of the special point (a = 1, b =
0) will become clear as we discuss the crossover phe-
nomenon.

3. Crossovers and anomalous front width

Thus far, we have found that at small D the downwind
front properties are dominated by the AL, while at a
large D, this front behaves as in the FKPP model with
advection, with an effective veff and Deff . There is a
crossover between these two asymptotic regimes at some
intermediate D. At a and b� 1, this crossover is sharp,
and takes place at D = 1/4 (sharp means the width of
the crossover region is very small, i.e. the asymptotics on
both sides remain valid right up to the crossover point;
it does not refer to the discontinuity of derivatives). In
order for the crossover to penetrate to a given value of D
when D � 1/4, the parameter b has to scale as D−1/2;
this also applies to the upwind front. In other words,
at a fixed D, the FKPP-like regime can be reached by
increasing b. Details on the crossover can be found in
Appendix A 2 e.

For a generic set of a and b, the characteristic crossover
point takes place at some finite D. However, there exists
one special parameter combination when this crossover
point diverges, and thus, there is no mapping to the
FKPP-like behavior at any finite D. It turns out that
when a = 1, c1 ∼ b1/4 for small b, so c1 → 0 as b → 0.
The leading order behavior of λ∗+ becomes∼ 1/D. When-

ever λ∗+ does not scale like ∼ 1/
√
D, s∗+ will not scale like

∼
√
D. At any fixed nonzero a and b, increasing D even-

tually causes the first term in Eq. (10) to be the leading
term, and Eq. (9) becomes valid. At a = 1, the closer b
is to zero, the larger this crossover D is, and it diverges
as b−1/2 at a = 1.

The results outlined in the last paragraph arise from
the following analysis. As b is decreased at a = 1, λ∗+
crosses over from scaling like ∼ b1/4D−1/2 to saturating
at ∼ D−1 (we can talk about a crossover D at fixed b or a
crossover b at fixed D - it refers to the crossover between
the same pair of regimes). Thus, there is an anomalous
growth - but not divergence - of the front width

(
∝ 1/λ∗+

)
as b is decreased below this crossover. Equating the above
two scaling regimes, we see that the crossover b decreases
as ∼ D−2 when D is increased, and thus the crossover
D grows as b−1/2 at small b. We remind the reader that
this concerns the asymptotic theory for large D. More
details and numerical verification of these ideas can be
found in Appendices A 2 a and A 2 e.

In summary of the crossover phenomenon, the space of
parameters D, a, b can be subdivided into a region where
the front behaves in the FKPP-like manner - for example
s∗+ ∼

√
D, and a region where it does not. The surface of

the crossover D vs. a, and b can be complicated. At a = 1
and small b, the slice of this crossover surface is given
by Dcrossover ∝ b−1/2 (or equivalently, bcrossover ∝ D−2).

The exact pre-factor is somewhat ambiguous and de-
pends on a definition of a crossover point. The FKPP-like
behavior can be found above this “crossover curve” - at
large D and b - where λ∗+ ∼ b1/4D−1/2, and the non-
FKPP behavior can be found below this curve, where
λ∗+ = D−1. The characteristic front width is 1/λ∗+. Thus
by decreasing b at fixed D, the front width grows until
reaching some constant value as we go past this crossover
boundary. In the original variables, this trajectory in
the D-b space is followed if b is lowered by decreasing β
at fixed δ, D and v0. If this boundary is crossed along
some other curve in the D-b space (at a = 1), the front
width may instead decrease. For example, if b is lowered
by increasing δ, while holding D, v0, and β fixed, then
D will not be constant, and we follow along the curve
D(b) = Dβ

v20b
. As we cross the crossover boundary to en-

ter the FKPP regime λ∗+ ∼ b1/4D−1/2, we see that D
increases in such a way that the front width actually de-
creases as ∼ δ−1/4 in the physical length units (such as
meters). Similar thinking can be applied to the upwind
front discussion in Section IV B.

4. Fragility revisited

Before moving on to discuss the phenomenology for the
upwind front, we briefly return to the subject of fragility.
We saw above that when both a and b are changed from
zero (i.e., it is a perturbation from the FKPP model) to
an infinitesimal value, the downwind front speed and de-
cay rate change by a finite amount, as long as D < 1/4,
which is just the crossover point when both a � 1 and
b � 1. There exists another route for breaking predic-
tions of the FKPP model by an infinitesimal perturba-
tion. Consider a finite value of b, but a = 0. If the
IC is nonzero only on the GL, ρ will be zero, so this
is also equivalent to the FKPP model. If we now let
a be infinitesimal, s∗+ has a finite difference from 2

√
D

for D < 1
4(1+b) , which is the new crossover point. This

is discussed in AppendixA 2 e. Thus again, the FKPP
model is fragile with respect to this type of coupling to
the independent advective process as long as D is below
the crossover. This crossover is also sharp, in the sense
stated above. It is important to point out that for D
below this value, the speed of the front is a function of
D - see AppendixA 2 e, and also the small-a curve in the
inset of Fig. 4a, where it is clear that s∗+ is a function of

D before it merges unto 2
√
D. Thus, it is no longer the

case that the speed is simply the greater of the speeds due
to either of the two mechanisms considered separately -
diffusion only (FKPP), or advection only (D = 0 model).
On the other hand, s∗+(D) is a continuous function that
starts at (1 + b)−1 at D = 0 (when a → 0) and goes to

2
√
D at the crossover point, after which it is given by

2
√
D. So, the larger is the value of D, the more we de-

part from the D = 0 result, while the magnitude of the
finite change due to the infinitesimal coupling becomes
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smaller, and vanishes at the crossover point. Hence, there
is a trade-off between the magnitude of the finite change
in the speed due to an infinitesimal coupling (fragility),
and the importance of the cooperation between the two
transport mechanisms.

B. Upwind Front and Divergent Front Width

Similar phenomena happen for the upwind front -
where the two transport mechanisms are opposing, but
there are some notable differences. Fig. 4b can serve as
a reference for this discussion. Following the similar pro-
cedure as described above, we find that there is a large
D asymptotic form

s∗− ∼ veff − 2
√
Deff , (13)

except at (a = 1, b→ 0), with identical c1(a, b), Deff(a, b)
and veff(a, b) as for the downwind front. This is s∗− of
the model σ̇ = −veffσ

′ + Deffσ
′′ + f(σ). At a = 1,

s∗− ≈ − 3b1/3D2/3

22/3 at small D before crossing over into

∼ −
√
D behavior. As was the case with the down-

wind front, this crossover D again diverges as b−1/2 when
b → 0. Equivalently, the crossover b decreases as D−2

in the asymptotically-large D limit. However, now the
second term in the series in Eq. (10) does not protect
λ∗− from remaining finite. Using a different method for
finding λ∗−, we learned that λ∗− crosses over from the

∼ b1/4D−1/2 to ∼ (b/D)1/3 scaling as b decreases. Thus,
the upwind front width diverges at a = 1 as ∼ b−1/3

when b → 0 at a fixed D, and (a = 1, b = 0) is a critical
point.

As with the downwind front, adding diffusion to the
GL also does not change s∗− discontinuously - see Fig. 4b.
Advection alone can not propagate the upwind front for
a < 1, so diffusion is essential for front movement. For

a slightly below 1 and D � (1−a)3

27b2 , s∗− ∼ −2
√

1− a
√
D.

For a > 1 and in the absence of diffusion, the front prop-
agates in the direction of the wind, so s∗− is positive. For
small D, it is given by

s∗− ≈ s∗−(D = 0)− b√
a− 1

D. (14)

Details concerning the small-D regime can be found in
Appendix A 2 b. As D is increased further, the direction
of the propagation reverses for D > Dstall - see Appendix
A 2 c. Exactly at Dstall this front does not move. Dstall

increases with a and decreases with b. For small a−1 > 0,
Dstall = (a− 1)3/(8b2). Using Eqs. (11)-(13) we see that

at large a and b, Dstall ∼
(
a
2b

)2
, so when a/b = const,

Dstall has a limiting value.
A prominent feature of Fig. 4(a) is the intersection at

D = 1/4, where s∗+ is coupling-independent. This can
happen if aρ = bσ for all x (see Eqs. (1)-(2)), which is
only possible at D = 1/4, when Fisher speed = advective
speed. To see that aρ does equal to bσ at D = 1/4, we

can show that for ICs that evolve to a UTF, s∗+ = 1 for
any a or b only when D = 1/4. Then it follows from one
of the equations for the UTF profile that aρ = bσ (see
Eq. (A1)) [25]. The point D = 1/4 can be thought of as
a robust operating condition of the catalyst.

V. DISCUSSION

We have considered in this paper a model in which a
reaction-diffusion process is coupled to an independent
advective process. In contrast to a reaction-diffusion
model with a constant-velocity advective term - where
the role of advection on the speed of the reaction front
is purely additive - here diffusion and advection by a
constant velocity do not take place simultaneously. This
leads to a competition between the two transport mech-
anisms.

We found that the mapping to an effective FKPP
model with advection is generally possible only at large
desorption rates or at fast diffusion. We also saw that
there is a complicated crossover phenomenology from the
FKPP-like regime to a non-FKPP-like regime. Most im-
portantly, we found that the FKPP model can be fragile
with respect to the coupling to an independent advec-
tive process - giving a finite change in front properties
from an infinitesimal coupling. This happens as long as
D is between zero and a certain value, which depends on
the way in which this coupling was realized. Moreover,
we found a critical point, approaching which causes di-
vergence of the upwind front width, and an anomalous
growth of the downwind front width. It also deserves to
note that coupling of the FKPP to the AL renormalizes
even a very large D, so the AL can never be ignored!

Fragility was uncovered in this work through the dis-
cussion of a finite change due to an infinitesimal pertur-
bation as a certain parameter is increased from below.
However, there is an alternative view of fragility that does
not require infinitesimal perturbations, and may instead
be viewed as the limiting behavior as this parameter is
increased from above. Consider, for instance, the case
of a = b = g. For g = 0.1 there exists some function
s∗+ (D). Lowering g to 0.01, will cause some change in
s∗+ (D). Lowering g to 0.001 will cause a smaller change
in s∗+ (D), and so on, until there is some limiting function
that is different from the case of g = 0.

The coupling to the AL introduces two effects. First
it takes particles out of the reactive substrate for some
characteristic time. Second, it advects them, and causes
the competition between the two transport mechanisms.
To understand the relative role of these two effects in
causing the rich phenomenology, we considered a model
with the advection removed from the AL. Thus, in this
alternative model, particles are either participating in the
reaction-diffusion process, or they do nothing over some
characteristic time - the AL now acts like an immobile
storage space. This is described in Appendix A 3. We
found that in this model, both the upwind and the down-
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wind front widths diverge as ∼ b−1/4 at small b when
a = 1 and D is arbitrary. There is no symmetry break-
ing by advection, so both fronts are mirror images of each
other. However, front speeds behave as s∗± ∝

√
D for any

D, so there is no fragility, and no crossover between the
FKPP-like and the non-FKPP-like regime. These find-
ings are understandable - with zero coupling, the model
is FKPP, and with an infinitesimal coupling, the front
speed is still limited by diffusion - as D goes to zero, so
must the front speed. Infinitesimal coupling can not lead
to a finite speed change because there is no other mech-
anism to overtake the transport, i.e. there is no opening
of an alternative transport channel.

These findings force us to conclude that the fragility
and complex crossover phenomenology found here are re-
sults of the competition between two transport mecha-
nisms. On the other hand, the diverging front width at
(a = 1, b → 0) is a result of particles temporarily leav-
ing the reactive substrate. We thus speculate that this
is a less generic effect, and may not survive if reactions
are introduced into the AL. However, the first two find-
ings - especially the fragility of reaction-diffusion predic-
tions - are a generic consequence of competing transport

mechanisms, and similar effects may take place when a
reaction-diffusion process is expanded in a way that in-
volves a competing advective transport channel. [2], [10]-
[18], [26].
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Appendix A: Uniformly Translating Fronts (UTF)

Substituting the UTF ansatz σ(x, t) = σ̃(x− st) and ρ(x, t) = a
b ρ̃(x− st) into Eqs. (1)-(2) of the main text, yields

(1− s)dρ̃
dz

= −bρ̃+ bσ̃, (A1)

−sdσ̃
dz

= f(σ̃)− aσ̃ + aρ̃+Dd
2σ̃

dz2
, (A2)

where z = x− st. This is a three-dimensional dynamical system in coordinates σ̃, ρ̃, and ũ = dσ̃
dz , and has fixed points

at (σ̃ = 0, ρ̃ = 0, ũ = 0) and (σ̃ = 1, ρ̃ = 1, ũ = 0), which are respectively stable and unstable (note: t decreases with
increasing z). Only the heteroclinic solution connecting the two goes from z = −∞ to z = +∞, so ρ(x) or σ(x) will
have a sigmoidal shape. Thus, if an IC evolves to a UTF, it will be a front-like solution. The existence of stationary
solutions, such as section I in Fig. 2(a) of the main text, implies that a UTF cannot exist for all x and t, so a UTF
describes the vicinity of a moving front, defined more precisely below.

Solutions of nonlinear Eqs. (A1)-(A2) are parametrized by s, which determines the phase portrait in the (ρ̃, σ̃)
space. It is customary to characterize solutions by the eigenvalues around the state (0, 0), which describes the tail of
a UTF. Instead of expressing the eigenvalues as functions of s, we follow the standard convention [27] and express
s as a function of -eigenvalue ≡ λ. It is easiest to do this by linearizing Eqs. (A1)-(A2) around (σ̃ = 0, ρ̃ = 0), and
substituting an eigen-solution ρ̃ = Ae−λz, σ̃ = Be−λz. The result is

sλ = (1− a) +
ab

b+ (s− 1)λ
+Dλ2 (A3)

There are two solutions, which we label s1(λ) and s2(λ). We devote the rest of this section to the study of equation
Eq. (A3).

1. Zero diffusion.

When D = 0, s1(λ) and s2(λ) are given explicitly by

s1,2(λ) =
1− a− b+ λ±

√
(λ− 1 + a− b)2 + 4ab

2λ
, (A4)
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with s1 is the + solution and s2 is the − solution. These relations give the speed as a function of the decay rate of
the solution. This is plotted in Fig. 5. Note that positive λ describe a downwind front - it decays with increasing x,
while the negative λ describe the upwind front, which grows with increasing x.
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FIG. 5. (Color online) Typical structure of the branches s1(λ) - red solid curve, and s2(λ) - blue dotted curve. Here a < 1 in
panel (a) and a > 1 in panel (b). The points (λ∗+, s

∗
+) and (λ∗−, s

∗
−) are also noted. The qualitative picture remains for any

b > 0. The value of λ∗− goes to −∞ as a→ 1 from above, and stays at −∞ for a < 1, corresponding to a lack of propagation
of the upwind front for a < 1. There is a horizontal asymptote always taking place at s = 1.

Profile shapes computed as heteroclinic trajectories of the system in Eqs. (A1)-(A2) are displayed in Fig. 18
(Appendix E 3) for two sets of parameters.

The question of the selected (λ, s) from a given IC is a problem in front selection. In this work we focused on
ICs with a finite support, including a δ-function. The extremal points of s(λ) take place precisely at the locations
predicted by Eqs. (4)-(5) in the main text, (λ∗±, s

∗
±), derived in Appendix B without requiring a UTF assumption;

that prediction remains true for any IC with a finite support (see Appendix C below). The reason that the extrema
of s(λ) are located at these (λ∗±, s

∗
±) is not coincidental, but is consistent with the general theory of fronts [27] in the

long-time asymptotic regime.

The review on front propagation [27] states that sufficiently steep ICs will select the leading front (i.e. decaying with
increasing x) with a characteristic decay rate being the λ > 0 at which the minimum point of the top-most branch
of s(λ) occurs, and the speed is given by s at that λ. The exception - corresponding to “pushed” fronts - occurs
when there exists a nonlinear solution that at low density matches exactly the eigen-solution with the non-minimum
eigenvalue, but this is a rather special case.

The discussion in [27] was based on the leading front (i.e. decaying with increasing x). However, the trailing front
propagating with a certain speed s becomes a leading front propagating with the speed −s, i.e. λ→ −λ and s→ −s,
upon the spatial mirror-reflection. Therefore, steep ICs will select the trailing front with a characteristic growth rate
being the λ < 0 at which the maximum point of the bottom-most branch of s(λ) occurs. As already mentioned,
our study of the upwind front for D = 0 confirmed this. For D 6= 0 this has also been verified against numerical
simulations of the model, and supported by saddle-point calculations in Appendix C.

The notation (s∗, λ∗) will now be used in two ways - denoting the position of the extrema of s(λ), as well the
properties of the selected state.

Having defined the characteristic width of the front by the eigenvalues λ, we can say what the “vicinity” of the
front is: it is a region of |x − xfront| . 1/|λ|, where xfront can be defined, for example, as the inflection point of
ρ(x, t) or σ(x, t), although the precise definition is unimportant.

We can also heuristically argue that a front converges to a UTF. The speed and decay rate of the leading edge of
a solution to Eqs. (1)-(2) of the main text, is selected by the IC. However, if the initial evolution leads to a UTF,
the front width of the full, nonlinear profile can be estimated from the eigenvalue λ(s) of solutions to Eqs. (A1)-
(A2) around the attractor at (0, 0). Although these are obtained from the linearization of Eqs. (A1)-(A2), they are
properties of the solutions of the full, nonlinear profile. On the other hand, we have obtained the speeds s∗± and the
widths λ∗± (Eqs. (4)-(5) of the main text) for a specific IC without assuming a UTF. As already mentioned, these
(λ∗±, s

∗
±, ) lie on the λ(s) curve produced by the UTF assumption. Although not a rigorous proof, it is an argument

for the solution to approach a UTF.
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2. Non-zero diffusion.

Below we plot s(λ) curves when D 6= 0; Fig. 6 is for a < 1 and Fig. 7 is for a > 1. These figures do not all have the
same scale - they are meant to demonstrate qualitative changes in the structure of s(λ) as parameters a and D vary
(the parameter b was set to 1 in these figures). These plots are meant to demonstrate the evolution of the branches of
s(λ) from the D = 0 case, seen in Fig. 5. The black dashed curve represents Dλ+λ−1 = sFK(λ) of the single-variable

FKPP model φ̇ = f(φ) +D d2φ
dx2 . The selected downwind speed that appears in Fig. 4a of the main text is taken from

the minimum of the top solid (red) curve for λ > 0, whereas the selected upwind speed that appears in Fig. 4b of the
main text is taken form the maximum of the bottom solid (also red) curve for λ < 0.

We next study the extrema of s1(λ) analytically in the regime of large and small D. We will continue to use the
extremal points of s(λ) to predict the selected states (λ∗±, s

∗
±) from a compact IC. When D 6= 0, s1(λ) and s2(λ) are
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FIG. 6. (Color online) Typical structure of the branches of s(λ) when a < 1 and D 6= 0. Red solid curve is s1(λ) , and blue
dotted curve is s2(λ). The black dashed curve represents Dλ+ λ−1 from the FKPP model. In panel (b), D was chosen to be
greater than in panel (a).
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FIG. 7. (Color online) Typical structure of the branches of s(λ) when a > 1 and D 6= 0. Red solid curve is s1(λ) , and blue
dotted curve is s2(λ). The black dashed curve represents Dλ+ λ−1 from the FKPP model. In panel (b), D was chosen to be
greater than in panel (a).

given explicitly by

s1,2(λ) =
(
1− a− b+ λ+Dλ2 ±

√
ψ
)
/ (2λ) (A5)

where ψ = a2 + 2a
(
b−Dλ2 + λ− 1

)
+ (1 + b+ λ(Dλ− 1))2

with s1 is the + solution and s2 is the − solution. The solution s1(λ) describes the aforementioned solid red branch
in Figs. 6-7, i.e. is the largest solid branch for λ > 0 and the lowest solid branch for λ < 0. We are interested in the
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minimum of this branch for λ > 0 and maximum for λ < 0. We have

ds1

dλ
=

(
λ(2Dλ− 1)(−a+ b+ λ(Dλ− 1) + 1)√

ψ
−
√
ψ + a+ b+Dλ2 − 1

)
/
(
2λ2
)
. (A6)

Over the next several pages we discuss asymptotic scaling behaviors and their crossovers for λ∗± and s∗±, separating
the discussion into large-D and small-D regimes, as defined below.

a. Large D.

We would like to find λ∗ that satisfy ds1
dλ = 0. For a purely FKPP model, the solutions are λ∗± = ± 1√

D . Note that

λ−1 +Dλ is the asymptote of the full solution in Eq. (A5) at large λ, and they both vary like ∼ λ−1 at small λ (and
finite a, b), so the positions of the extrema of λ−1 + Dλ should serve as a first guess for the positions of extrema in
the full problem. In fact, we noticed numerically that the extrema in the full problem at large D usually do lie very
close to the extrema of the FKPP model. This suggests an ansatz

λ∗± = ± c1√
D

+
c2
D

+ ... (A7)

The ∼ D−1/2 leading behavior of both λ∗+ and λ∗− at large D has been verified from the numerically computed
extrema of s1(λ) from Eq. (A5). The coefficients c1, c2, etc. can be found iteratively - first seek the coefficient of the
first term, by substituting λ∗ = ± c1√

D into Eq. (A6), expanding in 1√
D , and solving for c1 that eliminates the D0 term

in this expansion. By doing this, we find a c1 that makes this ansatz asymptotically-exact as D →∞, i.e. it will give
us a large-D-approximation to λ∗ for arbitrary a and b. We may then repeat this with the second term in Eq. (A7)
included, and seek c2 that eliminates the D−1/2 term - it will improve the asymptotic approximation to the true λ∗,
and make it more accurate down to smaller D, and so on. This method will work as long as λ∗ does not become
infinite for any parameter values (and thus, none of the cis become infinite for any parameter values), but we know
this because as we just mentioned, Dλ is the asymptote of the full solution in Eq. (A5) at large λ, i.e. there is a tail
of s1(λ) that is independent of a and b.

When this procedure was implemented, the following solution for c1 was found with the help of Mathematica

c1(a, b) =

√
(2 + a+ b)2 − (1 + 2a+ 2b)χ1/3(a, b) + χ2/3(a, b)

3χ1/3(a, b)
, (A8)

where χ(a, b) = a3 + 3a2(2 + b) + (2 + b)3 + 3a(b− 1)(b+ 5)− 27a+ 6i
√

3
√
a4 + 3a3(2 + b) + a(2 + b)3 + 3a2(b− 1)(b+ 5).

So at the lowest order in 1√
D , the coordinates of the two extrema, λ∗+ and λ∗−, remain symmetric about 0. In contrast,

c2 is identical for both fronts, so overall λ∗+ and λ∗− are slightly asymmetrical about 0. We plot c1 versus a for several
values of b in Fig. 8.

There is a prominent dip at a = 1 when b becomes small. The value of c1 → 0 as b → 0 at a = 1. At small b,

c1(a = 1, b) =
√

2
31/4 b

1/4
(

1− 5
12
√

3
b1/2 + ...

)
. This suggests that λ∗± will go to zero - or equivalently, the width of the

front will diverge - at a = 1 as b→ 0. However, the corrections to c1/
√
D may protect λ∗± from reaching zero.

The correction term c2/D does improve the match with the exact solution of λ∗± as c1 gets smaller, but this
improvement is perturbative - at a given b, it becomes worse with smaller D, so more and more terms in the series
are needed. To understand the behavior of λ∗+ and λ∗− at (a = 1, b → 0), the following perturbative analysis will be
used. We Taylor expand the right hand side of Eq. (A6) around a = 1, b = 0 to first order in b (see the comment
about the singular limit in [28]). For λ < 0, result - at arbitrary D is

ds1

dλ
=

1

2λ2

[
4b− 6bDλ+ 2Dλ3 − 4D2λ4 + 2D3λ5

λ(1− λD)2
+O(b2)

]
We seek a set of λs for which the right hand side of this equation equals 0. These zeros (or roots) are the zeros of

the numerator when the latter do not include 0 and 1/D, which is true whenever b is not strictly zero. The negative
roots approach 0 as b→ 0. As b deviates from 0 slightly, the roots that approach 0 will take place at very small and
negative λ, and are given asymptotically by the solution to 4b+ 2Dλ3 = 0. All the other terms become less relevant
as b and λ approach 0. The only real solution is

λ∗− = −
(

2b

D

)1/3

. (A9)
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FIG. 8. (Color online) c1 versus a for several values of b. From top to bottom: 10 (blue), 1 (green), 10−2 (magenta), 10−7

(red).

This analysis did not rely on the largeness of D. As a result, this same solution will appear in the small-D regime.
For positive λ, there is a different approximation to the right hand side of Eq. (A6) at small b (see the comment about
the singular limit in [28]). A similar analysis would lead us to conclude that λ∗+ → 2

3D for D comparable to 1 or
greater. Both of these conclusions - concerning λ∗− and λ∗+ - were confirmed by the comparison with the numerically
computed extrema of s1(λ) from Eq. (A5), see Fig. 9.

The situation at a = 1 is summarized as follows, with Fig. 9 serving as a useful reference. For any fixed value of b,
there exists a large-enough D when λ∗± is approximated well by ±c1(a = 1, b)D−1/2; higher order terms in Eq. (A7
) become irrelevant. This expression is asymptotically exact at any b as D → ∞, but it holds approximately down
to a certain crossover value of D. This crossover is a function of b. Whenever λ∗± ∼ D−1/2, we may refer to this
as the “large-D” scaling behavior, and this terminology applies for any a and b (we use the “∼” notation to denote
asymptotic behavior).

Holding D fixed and decreasing b much below 1, λ∗+ enters the ∼
√

2b1/4

31/4 D−1/2 asymptotic behavior - as long as D
is bigger than the crossover value at that b. But as b is decreased even further, the D−1/2 scaling eventually breaks
down, and λ∗+ crosses over to saturate at 2

3D . For D � 1, when ±c1(a, b)D−1/2 does not apply, λ∗+ also reaches a

constant value as b → 0 (see Fig. 9), but it is not given by 2
3D . The crossover from ∼

√
2b1/4

31/4 D−1/2 to ∼ 2
3D
−1 as

b → 0 at large D, physically represents an anomalous widening of the front. In contrast, λ∗− experiences a crossover

from ∼ −
√

2b1/4

31/4 D−1/2 to ∼ −
(

2b
D
)1/3

. This represents a true divergence of the front width as b → 0. Because the

small-b behavior of λ∗− is ∼ −
(

2b
D
)1/3

for any D (see Fig. 9; the derivation of this formula did not rely on the largeness
of D), this divergence of the upwind front as b→ 0 at a = 1 happens for any D.

On the other hand, holding b fixed and decreasing D from infinity, leads to a crossover from the large-D regime
with λ∗± ∼ ±c1(a = 1, b)D−1/2 to the small-D regime where this D−1/2 scaling breaks down. If the fixed value of

b� 1, we cross over from λ∗± ∼
√

2b1/4

31/4 D−1/2 to λ∗+ ∼ 2
3D or λ∗− ∼ −

(
2b
D
)1/3

, and this crossover D scales as b−1/2 for

both fronts. We discuss the crossover from the D−1/2 scaling regime as D is varied at fixed b � 1 in Sec. A 2 e. In
a sense, this is a less interesting crossover regime, because only the point (a = 1, b = 0) is a critical point - here the
crossover is pushed to infinite D, and the upwind front width diverges. As explained in Sec. A 2 e, the crossover point
actually goes to zero as b→∞ for any a.

Thus, as b→ 0, the regime when λ∗±(D) ∼ ±D−1/2, onsets at larger and larger D. This picture is made especially

clear in the middle column of Fig. 11. We note that the phenomenon of the crossover from D−1/2 regime is not unique
to a = 1, but only at a = 1 the width of the upwind front diverges; when a 6= 1, λ∗− and λ∗+ reach a constant value as
b → 0 - front widths do not diverge. This crossover for a 6= 1 is discussed in Sec. A 2 e. We discuss implications of
this crossover on the behavior of s∗± with D below.
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FIG. 9. (Color online)
√
Dλ∗± versus b at a = 1. The dots represent an exact numerical solution to λ∗± that satisfy ds1/dλ = 0:

in panel (a) for D = 10, 20, 100 and 1000, from top to bottom, and in panel (b) for D = 1, 10, 100 and 1000, from bottom to

top. The thick red curve represents λ∗± from Eq. (A7) with only the first term. It has a small-b asymptotic tail
√

2b1/4

31/4 ; the

solid black segment has a slope 1/4 on the log-log scale. The thin green curves in panel (a) represent λ∗+ from Eq. (A7) with
the second term included for D = 100, and 1000, indicating that corrections improve the results in the right direction. The

magenta lines panel (b) represent the −
(

2b
D

)1/3
asymptotic limit to λ∗− at small b.

We found a divergent upwind front width for any D at a = 1 as b→ 0, and an anomalously long downwind front at
the same conditions. There are no diverging length scales in the FKPP model at finite D. The diffusion-free model
displays nothing pathological at a = 1, as b → 0 for the downwind front, and has no propagating upwind front for
a = 1 (see Fig. 3(a) in the main text). Expanding expression for λ∗− from Eq. (5) around (a = 1, b = 0) we get − 2b

a−1 .
So, the upwind front in the D = 0 model grows as b → 0 at fixed a > 1, but it goes to zero as a → 1 at fixed b.
Additional insight about diverging front widths comes from the model without advection in the AL, which is studied
in Section A 3 below. That model predicts both upwind and downwind front widths to diverge at a = 1 as ∼ b−1/4;
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the equivalent of Eq. (A7) has only one term, with no corrections to protect from or change the scaling of divergence
of the front width as b→ 0.

From all said, it appears that the properties of front widths in the D = 0 model around the special point (a =
1, b = 0) are not related to the case with zero diffusion, but instead are more related to the case with zero advection.

The anomalous growth of the front width is somewhat reminiscent of resonance - with |a − 1| akin to detuning,
and b akin to damping. At this stage, however, this is only a metaphor.

In returning to the discussion of a general a 6= 1, we remind the reader that the expansion in Eq. (A7) is only meant

for large D. Therefore, Fig. 8 represents approximations to
∣∣λ∗±∣∣√D only at large D. As D is decreased, λ∗+ and λ∗−

versus a will change, but in different ways. At D = 1/4, λ∗+ = 1/
√
D = 2 for all a and b. For D � 1/4, the plot

of λ∗+ versus a would resemble the solution to Eq. (5) in the main text up until a certain crossover value of a, when

the increase of λ∗+ slows down, and eventually saturates at 1/
√
D. This crossover point grows larger with smaller D.

Therefore, at any finite a, there is a continuous change in λ∗± as D is tuned up from 0.
On the other hand, there is nothing special about λ∗− at D = 1/4. Also, the D = 0 system has a diverging λ∗−

as a approaches 1 from above - see Eq. (5) in the main text (as a reminder, in the D 6= 0 model, the upwind front
propagates against advection when a < 1, whereas it stands still when D = 0). At non-zero D, λ∗− stays finite, even
at a = 1. Close to a = 1, the divergence is replaced by a rapidly growing |λ∗−| as a decreases past 1, but this growth

slows down at smaller a, and λ∗− eventually saturates at −1/
√
D as a → 0. For a > 1, λ∗− from Eq. (5) in the main

text becomes closer and closer to the true λ∗− as D → 0 up until a certain large crossover value of a. At this point the

growth in λ∗− versus a slows down, and it eventually saturates at −1/
√
D - similar to what happens with λ∗+. Again,

this crossover point grows larger with smaller D. We shall examine the small-D behavior of both fronts below.
When c1 6= 0, i.e. in the exception of (a = 1, b → 0), we may substitute λ∗± = ± c1√

D into s1 from Eq. (A5), and

expand the numerator in 1√
D . We would obtain:

s∗± = veff ± 2
√
Deff +O

(
1√
D

)
(A10)

where veff =
1

2
+

−1 + a− b− c21
2
√
−2a+ a2 + 2ab− 2ac21 + (1 + b+ c21)2

, (A11)

and Deff =

(
1− a− b+ c21 +

√
−2a+ a2 + 2ab− 2ac21 + (1 + b+ c21)2

4c1

)2

D, (A12)

and c1 is given in Eq. (A8). The expressions in Eqs. (A11)-(A12) are cumbersome, but we notice from Fig. 8 that
sufficiently far from (a = 1, b = 0), c1 can be approximated by 1, corresponding to the FKPP λ∗±. This leads to much
simpler formulas for s∗±, quoted in the main text as Eqs. (11)-(12). We plot Deff/D and veff obtained using both of
these methods in Fig. 10.
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FIG. 10. (Color online) Deff/D vs. a in panel (a) and veff vs. a in panel (b). We used Eqs. (A11)-(A12) and either c1 from
Eq. (A8) (red, solid curve) or the simpler approximations obtained by setting c1 = 1 - which gives Eqs. (11)-(12) in the main
text (blue, dashed curves). The results are shown for b = 10−5 (bigger discrepancy), and b = 0.5 (smaller discrepancy).

Fig. 11 compares s∗± from Eqs. (A11)-(A12) with s∗± obtained with the numerically computed extrema of s1(λ)
from Eq. (A5). For mathematically-typical parameters, i.e. away from the (a = 1, b = 0) point, such asymptotic
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theory works remarkably well, even for D comparable to 1/4. The simpler theory based on setting c1 = 1 has a larger
exclusion region around (a = 1, b = 0) where it does not perform well. It is important to point out that veff is the
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FIG. 11. (Color online). Comparison of s∗± obtained from the exact minimum of s1(λ) (thick blue dots, closely spaced) with
the large-D asymptotic Eq. (A10) where veff and Deff are given respectively by Eqs. (A11)-(A12) and using c1 from Eq. (A8)
(solid black) or with simpler approximations obtained by setting c1 = 1, resulting in Eqs. (11)-(12) in the main text (dashed
red). With the exception of (a = 1, b = 0.01), (a = 3, b = 1), and (a = 3, b = 0.01), these two analytical approximations are
indistinguishable. Also, note the scale on the bottom, right panel. Here the column (a) on the left is for b = 1 and column (b)
on the right is for b = 0.01.

offset of the large-D asymptotic s∗±, and is not meant to represent s∗± at D = 0, which will be predicted by the D = 0
model (see also next section). For example, s∗± at D = 0 will be zero for a ≤ 1.

As expected from the discussion above, the comparison of s∗± (D) based on the extrema of s1(λ) with the asymptotic
theory based only on the first term in Eq. (A7) is worst at a = 1 as b becomes small. However, at any finite b, the



16

approximation λ∗± ≈ c1/
√
D, and the resulting expression for s∗±, will always become asymptotically-accurate at

sufficiently large D. This was clearly seen in Fig. 9 - as D grows,
√
Dλ∗± → c1(a = 1, b) at any finite b (and a). On

the other hand, as D is lowered at fixed b, the ±c1/
√
D behavior of λ∗± ceases to hold. When b� 1, it crosses over to

λ∗+ ∼ 2
3D and λ∗− ∼ −

(
2b
D
)1/3

(at a = 1). The crossover away from a = 1 and small b parameter region is discussed in
Sec A 2 e. In all cases, the speed s∗± is obtained by substituting λ∗± into Eq. (A5). Additional intuition can be gained
from the study of small D limit, to which we now turn.

b. Small D.

The main goal of this subsection is to derive the behavior of s∗± versus D as D → 0, and to show when this behavior
is linear in D. The linear behavior will indicate that the FKPP-type of behavior does not extend to zero D. At the
end we will synthesize the information from this and the previous subsections to establish the lower limits in D for
the breakdown of the FKPP-type behavior.

When D = 0, Eq. (A5) turns into Eq. (A4). The appearance of new D-terms in Eq. (A5) does not change the
positions of extrema discontinuously - if they take place at finite values in the D = 0 problem (the smaller is the D,
the larger the λ should be in order for the effect of new terms to take place).

This is true for λ∗+, so we can study its change due to the appearance of diffusion perturbatively - by tracking the
change in the position of λ∗+. We follow the following procedure. First, substitute the ansatz (see Eq. (5) in the main
text):

λ∗+ =
1 + a+ b+ 2

√
a

1 +
√
a

+ cD.

into Eq. (A6), and Taylor-expand the resulting expression to linear order in D, giving an expression of the form AD
(as expected, there is no D0 term). Next, we solve for c that makes this A zero. The result is

c =
(1 + a+ b+ 2

√
a)

2

(1 +
√
a)

2

(2 + (3− a− b)
√
a)

2 (1 +
√
a)

2 .

We then substitute the ansatz for λ∗+ with this c into Eq. (A5) and again expand in D to first order. We get

s∗+ =

(
1 +

b

(1 +
√
a)

2

)−1

+

(
b√
a+ 1

)
D + ... (A13)

The first term unsurprisingly matches s∗+ from the D = 0 model (see Eq. (4) in the main text). The correction is the
quantity we seek - the slope of s∗+ versus D - see Fig. 4a in the main text. This demonstrates that unless b goes to
infinity - when particles spend essentially all of the time on the GL - s∗+ scales like an integer power of D instead of

the
√
D scaling from the FKPP model.

With λ∗−, the situation is less straightforward, as the position of the maximum at negative λ moves to −∞ as a→ 1
from above when D = 0. So the approach by tracking the maximum of s1(λ) (for λ < 0) as D is turned up from zero
while a crosses 1 (see Figs. 5-7) will not work - there is no maximum in the D = 0 problem for a < 1, whereas it
exists in the D 6= 0 system. Instead, we Taylor-expand the right hand side of Eq. (A6) in D around 0 and find the
leading-order asymptotic expression at large negative λ. The magnitude of λ has to be large, because that is where
the zeros are located at small D and a close to 1. The resulting equation for λ∗− is a simple cubic:

0 = (a− 1) +
2ab

λ
+ λ2D. (A14)

Negative λ that satisfies Eq. (A14) is the λ∗− we seek. Note that the first term merely offsets the function in the

y-direction, so the solution for λ is a smooth function of a. When a = 1, the solution is simple: λ∗− = −
(

2b
D
)1/3

. We
have already seen this very formula in the discussion of the large-D regime. We have argued that this asymptotic is
valid below a crossover which separates this small-D regime and the large-D regime when λ∗− ∼ −c1(a = 1, b)D−1/2

(and that this crossover ∼ b−1/2 for b� 1). To get s∗− in this regime we substitute this into Eq. (A5), which gives a

rather cumbersome expression. An Expansion in D1/3, has the following leading-order term:

s∗−(a = 1) = −3b1/3D2/3

22/3
. (A15)
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The result in Eq. (A15) was confirmed by the comparison with the numerically-obtained maximum of the exact s1(λ)

for λ < 0. This numerical solution also confirmed λ∗− = −
(

2b
D
)1/3

. Echoing our findings at large D, the upwind front
width diverges as b→ 0 at a = 1. This is not so for λ∗+ (see above).

We also see from Eq. (A14) that when D = 0, λ∗− = −2b
a−1 + .... This is in fact the leading-order term in the expansion

of λ∗−(D = 0) = 1+a+b−2
√
a

1−
√
a

(see Eq. (5) in the main text) around a = 1.

Next, we are going to set ε = a − 1 in the first term of Eq. (A14), and approximate a by 1 in the second term
(Eq. (A14) is not exact - it is a consequence of a low-order expansion, so keeping higher order terms in subsequent
calculations is pointless). Thus, we seek a solution to

ε+
2b

λ
+ λ2D = 0.

From the structure of the function of λ on the left hand side, and the fact that b and D are always positive, we see
that there can be at most one negative root. It helps to rewrite this in a standard form for a cubic equation,

λ3 +
( ε
D

)
λ+

(
2b

D

)
= 0. (A16)

The solution for positive ε is

(
b

D

)1/3


(
−1 +

√
1 +

( ε

3b2/3D1/3

)3
)1/3

−
(

ε
3b2/3D1/3

)(
−1 +

√
1 +

(
ε

3b2/3D1/3

)3)1/3

 , (A17)

which is real and negative over that domain, so it is indeed λ∗− when ε > 0. We are working in the neighborhood of
small ε and D. Evidently, ε

3b2/3D1/3 is a natural measure of prevalence of each of these parameters. One can easily

show that when D � ε3

27b2 , λ∗− saturates to − 2b
ε , and when D � ε3

27b2 , λ∗− ∼ −
(

2b
D
)1/3

. These two limits match the

expressions that we have just discussed separately. As D is increased further, the −
(

2b
D
)1/3

behavior of λ∗− eventually

meets a second crossover and gives way to the ∼ c1(1 + ε, b)D−1/2 asymptotic behavior. We have shown that the
function c1(a, b) goes to a finite value as b→ 0 when a 6= 1, so this suggests that both crossovers continues to increase,
in contradiction to the expectation that λ∗± ∼ D−1/2 at large-enough D when a 6= 1 (see the previous subsection
on Large D). However, the calculations here are based on an expansion around D = 0, and will break down at

large-enough D. Thus, in practice - as verified by the numerical calculations of Eq. (A6) - the crossover to the
√
D

scaling behavior does not continue to increase as b is lowered, if ε 6= 0.
It is also worth mentioning that empirically, the expression in Eq. (A17) is well approximated by

−
((

ε
2b

)2
+
(D

2b

)2/3)−1/2

. The expression [...] appearing in Eq. (A17) is not real and negative for ε < 0, so will need

to choose another solution there; the two solutions must join in a continuous fashion, since as already mentioned, λ∗−
changes smoothly as ε crosses zero. We first study the positive ε case.

As was the case with λ∗−, we are interested in the functional behavior of s∗− versus very small D, primarily to
demonstrate that a correction to s∗− at D = 0 is proportional to an integer power of D, and therefore, strongly departs
from any FKPP-like predictions. To do this, we expand the [...] quantity in Eq. (A17) to the first two terms in small

ε
3b2/3D1/3 , and get

λ∗− = −2b

ε

(
1− 4b2D

ε3

)
. (A18)

The leading-order term is − 2b
ε as can be seen. When this expression is substituted into Eq. (A5), and the result

is expanded in ε and D, we get s∗− =
(
ε2

4b +O(ε3)
)
−
(

2b
ε +O(ε0)

)
D. The calculation presented in this subsection

was based on an expansion in ε = a − 1 and D. Therefore, we can not hope to capture the D0 term fully. Now,
s1 in Eq. (A5) upon which this perturbative analysis is based, reduces when D = 0, to s1 in Eq. (A4) for which

s∗− =
(

1 + b
(1−
√

1+ε)2

)−1

(Eq. (4) in the main text). Moreover the leading term in the ε-expansion of this quantity is

indeed ε2

4b (the cubic terms also agree).
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The slope − 2b
a−1 in the expression for s∗− versus D was derived with the assumption that a − 1 > 0 is small. Had

we used the procedure used for λ∗+ (Eq. (A13)), we would find that the slope is − b√
a−1

, which does not rely on the

smallness a− 1. However, the two results become equivalent when a− 1� 1. Therefore, we can conclude that

s∗− =

(
1 +

b

(1−
√
a)2

)−1

−
(

b√
a− 1

)
D + ... (A19)

This result agrees with s∗− computed numerically from the exact maximum of s1(λ) from Eq. (A5) for λ < 0. The
D-correction is the quantity we seek - the slope of s∗− versus D at zero D. This slope goes to infinity as ε→ 0, since

at ε = 0, s∗− ∼ −D1/3, which has an infinite slope at zero D.
We now address the negative ε case (i.e. a < 1). In this domain of ε, the following is the root of Eq. (A16) that is

real and negative:

(
b

D

)1/3

(−1)2/3

(
−1 +

√
1 +

( ε

3b2/3D1/3

)3
)1/3

+
(−1)1/3

(
ε

3b2/3D1/3

)(
−1 +

√
1 +

(
ε

3b2/3D1/3

)3)1/3

 , (A20)

One can show that when D � ε3

27b2 , λ∗− ∼
√
−ε
D1/2 , and when D � ε3

27b2 , λ∗− ∼ −
(

2b
D
)1/3

as before. Again, at larger

D there is a second crossover to the ∼ c1(1 + ε, b)D−1/2 asymptotic behavior. The position of the first crossover

scales like ε3, and at ε = 0, the
(

2b
D
)1/3

asymptotic extends all the way to D = 0. Interestingly, there is a D−1/2

scaling on both sides of the D−1/3 scaling, which disappears altogether with large-enough ε, when the two crossovers

meet. In D � ε3

27b2 regime - the very first scaling behavior around D = 0 before the first crossover - the speed will

behave as s∗− ∼ −2
√

1− a
√
D. This result also agrees with the low−D tail of s∗− computed numerically from the

exact maximum of s1(λ) from Eq. (A5) for a < 1.
If, instead of b being fixed, it was some given fraction of a, i.e. b = ra = r(1 + ε) (for example, r = 1 in Fig. 4

in the main text), all of the above results for λ∗− and s∗− that are given as series in ε (or a − 1) would hold at the
leading-order in ε by replacing b→ r.

c. Stalling condition for the upwind front.

Equation (A19) lets us derive Dstall. We can see that for a− 1 > 0,

Dstall ≈
(a− 1)3

8b2
. (A21)

As a increases, the position of Dstall also increases. Eventually, it enters the regime where large-D theory should
apply, so Dstall will come from the condition veff = 2

√
Deff (recall that Deff is proportional to D). Using the simpler

formulas, Eq. (11)-(12) from the main text, we predict

Dstall =

(
1 + a−b−2√

a2+2a(b−2)+(b+2)2

)2

(
2− a− b+

√
a2 + 2a(b− 2) + (b+ 2)2

)2 . (A22)

This agrees well with Dstall obtained from the more exact Eqs. (A11)-(A12), except for b very close to 0 and a close to
1 (although, the latter is also an approximation that works worst in these conditions). At large a and b, both results
have the following leading-order behavior:

Dstall =
( a

2b

)2

. (A23)

This shows that when a and b are both varied in such a way so as to keep their ratio constant, Dstall will have this
limiting value. For example, when a = b, Dstall will approach 1/4 that we see in Fig. 4b in the main text.
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d. Common intersection point at D = 1/4.

When D = 1/4, λ∗+ = 2 solves Eq. (A6) for any a and b. Substituting these values into Eq. (A5) gives the speed of
1, for any a and b. More details can be found in our “Large-D” discussion.

e. Crossover into the
√
D behavior

We have discussed this crossover at length for a = 1, but not for general parameters. This crossover is important
because it addresses the question under what conditions the behavior of the model becomes FKPP-like. This is a
challenging topic, because a crossover can be defined in multiple ways, each predicting a somewhat different crossover
D. Moreover, in addition to the characteristic position of the crossover itself, the width of the crossover region is an
additional quantity that characterizes crossover physics. The following discussion will consider crossovers in different
regions of (a, b) space, from which an overall picture should emerge. We will show that the crossover surface, as a
function of a and b, is complicated - reflecting the richness of the phenomenology that arises when advection and
diffusion are in competition - something that does not happen in a basic reaction-diffusion model with an advective
term.

We first discuss the downwind front. When both a� 1 and b� 1 there is a sharp crossover at D = 1/4, such that

s∗+ → 1 for D < 1/4 and s∗ → 2
√
D for D > 1/4 as both a → 0 and b → 0. As stated in the main text, the word

sharp refers to the smallness of the width of the crossover region - thus, the asymptotics on both sides remain valid
right up to the crossover point; it does not refer to the discontinuity of derivatives, although in this particular case
of a, b→ 0 the derivative of s∗+ (D) is indeed discontinuous at D = 1/4. To see the existence of a sharp crossover at
D = 1/4, note that when a = 0 and b = 0, Eq. (A3) predicts two branches: s = 1 and s = 1/λ+Dλ. The minimum

value of the latter is 2
√
D. These two branches will intersect for D < 1/4, and the intersection points take place at

λ = (1 ±
√

1− 4D)/2D. On the other hand, as a → 0, b → 0, the choice of branches is such that in between these
two intersection points, s1 is given by 1, and otherwise, it is given by 1/λ + Dλ. They key to these calculations is
the remark about singular limits in [28]. Making a and b nonzero will create a gap between the branches, but as
a, b→ 0, the gap is very small, and thus, for D < 1/4, s∗+ ≈ 1 (recall, that the selected speed for the downwind front
takes place at the minimum value of the top branch). Therefore, when a � 1 and b � 1, s∗+ ≈ 1 for D < 1/4, and

s∗+ ≈ 2
√
D for D > 1/4, i.e. the crossover to the

√
D behavior is very sharp, and takes place at D = 1/4. This is the

regime when the mechanism that gives the biggest speed dominates. By a similar argument, when only a is small,
the crossover will take place at D = (4(1 + b))−1. For D somewhat below this value,

s∗+ ≈ 1− 2bD
1−

√
1− 4D(1 + b)

, (A24)

while for D somewhat above this value, s∗+ ≈ 2
√
D - the FKPP result. Also, for D somewhat below this value,

λ∗+ ≈
1−

√
1− 4D(1 + b)

2D
(A25)

while for D somewhat above this value, λ∗+ ≈ 1√
D - the FKPP result. Note that as b is also made small, the prediction

of Eq. (A24) goes to 1 - the result discussed above, and the prediction of Eq. (A25) goes to
(
1−
√

1− 4D
)
/ (2D).

The transition between these behaviors takes place in a very narrow region of D, i.e. it is also a sharp crossover.
The width of the transition region goes to zero as a → 0. As b increases, there is a greater tendency for the GL to
dominate - particles spend less and less time in the AL, and we expect the crossover to shift to lower and lower D.
We will examine the regime of large b below.

Another approach to estimating the crossover is by examining the intersection of the small-D limit given by s∗± =
1

1+ b

(1±
√
a)2
± bD√

a±1
(see the previous subsection, where this result is derived; note that at a = 0, these are the first

two terms in the Taylor expansion of s∗+ from the previous paragraph) with the large-D limit veff ± 2
√
Deff , where the

parameter dependence for Deff and veff given by Eqs. (A11)-(A12). For example, recall that in the large-D asymptotic,
Deff → D and veff → 0 as a → 0 for any b (see also Fig. 10). Such asymptotic matching argument also suggests a
sharp crossover for small a and b, as well as the lowering of the crossover point as b grows. This method of estimating
the crossover may fail for b somewhat above a certain value that depends on a, since these two asymptotics may
not actually intersect. However, it can be used to gain a qualitative understanding of how the crossover varies with
parameters in the neighborhood of the (a, b) = (0, 0) corner. This is shown in Fig. 12.
In the previous paragraph, we used a different definition of a crossover, and applied it to a� 1. Taking this alternative
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FIG. 12. (Color online) Crossover defined from the intersection of 1

1+ b

(1±
√
a)2
± bD√

a±1
and veff ± 2

√
Deff .

definition, and setting a = 0, will not produce the identical result - it will lie somewhat below (4(1 + b))−1. The
prediction based on Eq. (A24) is more accurate, because this result was obtained by a non-perturbative method that
gives an exact a∗+ (D) for D all the way up to the crossover value in the limit of a → 0. But, whereas the previous
definition will work very well for a� 1, the current definition can be extended to values larger than 1.

When a � 1, the slope of s∗+(D) at D = 0 is small when b �
√
a. In this regime, Deff → 0 and veff → 1. A

log-log plot of the numerically-obtained s∗+ reveals that the crossover moves to lower D as a increases. However, this
crossover is not very meaningful, because s∗+ grows very slowly, and remains ≈ 1 until a very large D (see inset in
Fig. 4a in the main text). As b increases, eventually becoming �

√
a, the crossover moves to an even smaller value

of D, as expected physically.
In summary, the crossover D into the FKPP regime for the downwind front → 1/4 when a� 1 and b� 1. Moving

away from this corner in parameter space, the crossover will decrease with increasing b and increases with increasing
a, but when a is large, increasing a at fixed b leads to s∗+ that is essentially 1 until a very large D. When b increases
at fixed a, or at co-varying a while their ratio a/b is fixed, the crossover decreases as b−2 (see below). As discussed
in the previous section, the crossover diverges at a = 1 as b → 0 - indicating an extreme departure from the FKPP
behavior. When both a and b grow much beyond 1, the crossover decreases. Evidently, the crossover surface is quite
complicated. The breaking of the Gallilean invariance due to addition of a separate competing transport channel
breaks the applicability of a reaction-diffusion picture of front propagation in a non-trivial way.

We briefly discuss the upwind front. As stated above, when a < 1, the diffusive mechanism is essential for
propagating the front. Therefore, with the exception of a small region of (a, b) parameter space, s∗− will scale as

−
√
D when a < 1. For a� 1, all of the downwind front conclusions hold - we know this from the numerical study of

s∗−, the asymptotic matching argument and the large-b analysis that we will now describe.

The following large-b holds for any a, including a = 1. As b→∞, both λ∗± and s∗± approach FKPP values. Letting

b = 1/ε, λ∗± = ±1√
D + c′ε2, substituting into Eq. (A6) for s1 and expanding in ε, we obtain(

8a+
2a

D
± 8a√
D
± 4c′

√
D
)
ε2 = 0

We solve for c′, and have

λ∗± = ± 1√
D
∓
a
(

1∓ 4
√
D + 4D

)
2b2D3/2

(A26)

(if instead we guessed that a correction term is O(1/b), the resulting c′ will have to be 0). As b → ∞ at fixed D,
the FKPP result dominates. The second term in Eq. (A26) is a correction valid at finite, but large b. As b is further
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decreased, this result begins to break down. Equating the two terms suggests that at a given D, the correction
becomes important when b is

b =

√
2a

(
1∓ 1√

4D

)2

.

So, at a fixed D, there exists a characteristic b below which the FKPP scaling of λ∗± begins to break down. For

D � 1/4, this crossover b scales like D−1/2. Equivalently, holding the value of b fixed, there is a crossover value of D,
below which the FKPP scaling begins to break down. This crossover D scales like b−2 at large b and D � 1/4.

Substituting Eq. (A26) into Eq. (A5), and Taylor-expanding in 1/b we find.

s∗± = ±
√
D +

a∓ 2a
√
D

b
. (A27)

Again, for the FKPP result to start to break down at a given a and D � 1/4, b has to scale as D−1/2.
A similar procedure with a = rb, b� 1 will give

s∗± =
r

1 + r
± 2
√
D

1 + r
. (A28)

This will hold for all D as b→∞.

3. A model without advection

In order to clarify the origin of the richness of the phenomenology discovered above, including diverging front widths
and complex crossover phenomenology, we chose to consider a model that has two layers, but does not have advection
in the AL. This will turn out to be a very insightful exercise. Thus, we start with the equivalent of Eqs. (A1)-(A2),
which now reads

−sdρ̃
dz

= −bρ̃+ bσ̃, (A29)

−sdσ̃
dz

= f(σ̃)− aσ̃ + aρ̃+Dd
2σ̃

dz2
. (A30)

Then, the equivalent of Eq. (A3) becomes

sλ = (1− a) +
ab

b+ sλ
+Dλ2. (A31)

From this, the equivalent of Eq. (A5) is

s1,2(λ) =
1− a− b+Dλ2 ±

√
a2 + 2a (b−Dλ2 − 1) + (b+Dλ2 + 1)

2

2λ
. (A32)

Now, s1 is the relevant branch, as before. We notice that if we now define µ = λ
√
D, we have

s1(λ) =
1− a− b+ µ2 +

√
a2 + 2a (b− µ2 − 1) + (b+ µ2 + 1)

2

2µ

√
D. (A33)

This means that all the extremum points of s1,2, are functions of only a and b, or

λ∗± =
µ∗±(a, b)
√
D

, (A34)

where µ∗+ refers to µ that minimizes s1(µ) for µ > 0 and µ∗− refers to µ that maximizes s1(µ) for µ < 0. So we learn

three very important facts. First, λ∗± are no longer given as a series in powers of 1√
D , but there is only one term,

where µ∗± can be found exactly. Second, s∗± ∝
√
D for all D, and therefore, there will not be the complicated crossover
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phenomenon. Third - this also indicates that there will be no fragility phenomena either, which is expected, since
there is no alternative “transport channel” that competes with the diffusive transport channel.

We can to find µ∗±(a, b) in a straightforward way by taking the derivative of s1 with respect to mu, and solving
for it’s zeros. The result will consist of complicated expressions. There are two real µs, which are symmetric about
zero. The important finding is that there will also be a dip at a = 1, and this dip goes to zero as b → 0. At small

b, µ(a = 1, b) ∼
√

2
31/4 b

1/4. Now this asymptotic expression is valid to arbitrarily small nonzero b - there will not be a
crossover to a different scaling or to a constant value as it happened in the presence of advection.

There is another way to view the absence of fragility in the advection-free model. Consider the advective model in
the original variables. At fixed v0 and small D, the downwind speed will be given approximately by s∗+ = v0

1+ β

(
√
δ+
√
α)2

.

In contrast, the FKPP speed is given by 2
√
δD. Thus, an infinitesimal coupling the FKPP model to the AL will cause

a finite change in the speed, indicating fragility. However, the magnitude of this finite change decreases with v0, and
when v0 becomes zero, the coupling of the FKPP model to the AL - which now acts as a storage only layer - ceases
to cause fragility.
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4. Numerical investigation of the validity of the UTF assumption for D 6= 0 case.

Our derivation of the front speed and decay or growth rate of the front in the zero diffusion case does not have to rely
on the UTF assumption - only the pulled nature of the front. For instance, the derivation of those results presented
in the main text uses a direct solution described in the next section, B, and does not invoke a UTF assumption; there
is also an alternative method discussed in Section C. Nevertheless, we do address the validity of UTF profiles briefly
in discussing the numerical method in Section E 3.

On the other hand, when dealing with a D 6= 0 case, we did assume that ρ(x, t) = ρ(x− st) and σ(x, t) = σ(x− st),
and used the ideas from the theory of pulled fronts to extract the speed - which matches front speeds from the
numerical solutions of (the dimensionless version of) Eqs. (1)-(2) with a logistic growth model. To further verify the
validity of a UTF ansatz we plot, in Figs. 13-15, front shapes obtained from the numerical solution of these equations
at two different times. The shapes of fronts remain virtually identical, so within the precision of our numerical method,
the stationarity of front shapes appears justified.

The parameter values used in these figures were chosen because they sample different types of dynamical behaviors
found. These are: the counter-wind motion of the upwind front (exhibited at a = 3, b = 1.5,D = 0.1, Fig. 15) and
windward motion (exhibited at the other two parameters); an FKPP-like regime of s∗+ ∼ veff + 2

√
Deff behavior of

the downwind front motion (exhibited at a = 0.075, b = 0.1,D = 1, Fig. 14), and a non-FKPP-like regime (exhibited
at the other two parameters).
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FIG. 13. Upwind (left column) and downwind (right column) fronts at t = 176 (thick, black), and at t = 96 (thin, white).
Shown are profiles for both ρ (top row) and σ (bottom row). The parameters used were a = 0.075, b = 0.1, d = 0.1.
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FIG. 15. (Color online) Upwind (left column) and downwind (right column) fronts at t = 176 (thick, black), and at t = 96
(thin, white). Shown are profiles for both ρ (top row) and σ (bottom row). The parameters used were a = 3.0, b = 1.5, d = 0.1.
Additionally, we show the heteroclinic solution of Eqs.(A1)-(A2) rescaled back to ρ and σ variables, that represents a UTF
profile of ρ for both fronts (red, dashed curves). A shooting method was employed. We were not able to get a solution to
come closer to the fixed point with ρ = 2, σ = 1, because of a strong divergence of trajectories due to the effect of a repelling
manifold around that fixed point.

Appendix B: Full solution of the linearized model with zero diffusion

In this section we study the linearized problem. An exact solution to a δ-function IC will be given. The linearization
of the non-dimensionalized Eqs. (1)-(2) of the main text around the unstable state ρ = σ = 0, gives

∂ρ

∂t
= −∂ρ

∂x
+ aσ − bρ (B1)

∂σ

∂t
= (1− a)σ + bρ. (B2)

We solve the problem by a Fourier Transform method. Let

ρ = Aρ(k)eiω(k)te−ikx (B3)

σ = Aσ(k)eiω(k)te−ikx (B4)

The ω(k) and ~A(k) satisfy the following eigen-problem:

ω

(
Aρ
Aσ

)
=

(
k + ib −ia
−ib i(a− 1)

)(
Aρ
Aσ

)
(B5)

The eigenvalues are given by

ω =
k − i(1− a− b)

2
+

1

2

√
(k + i(1− a+ b))

2 − 4ab. (B6)



26

We now define the two branches. The square root term can be expressed as

1
2

√
(k − k1)(k − k2), (B7)

where k1 = −i(1− a+ b)− 2
√
ab,

k2 = −i(1− a+ b) + 2
√
ab,

These k = k1 and k = k2 are branch points. We have the freedom in how we place the branch cut - a construction that
ensures single-valuedness. Let k − k1 = ρ1e

iφ1 and k − k2 = ρ2e
iφ2 , Fig. 17. We define each φ to be in [−π, π]. With

this definition of angles, a path along a loop that encloses both branch points will not encounter multi-valuedness,
but a path around each single branch point will encounter a discontinuity of the exponential factor along a segment
between k1 and k2. Therefore, with this definition of φs, the branch cut is a straight segment located between k1 and
k2. Then

“ + ”branch of the
√

“− ”branch of the
√

∆− −∆+

Immediately above the cut i
2

√
ρ1ρ2 − i

2

√
ρ1ρ2 −i√ρ1ρ2

Immediately below the cut − i
2

√
ρ1ρ2

i
2

√
ρ1ρ2 i

√
ρ1ρ2

(B8)

Had we chosen a different definition of φs, the definition of a cut (and of branches) would also change. We will denote
the two branches by ±.

Unless a = 1 + b, a branch cut is not located on the real axis. When a = 1 + b, the portion of the real axis from
k = −

√
ab to k =

√
ab still belongs to either one or the other branch. Thus, in plotting a dispersion relation versus

the real k, no branch is crossed. A typical plot of a dispersion relation - ω± versus (a real) k, is shown in Fig. 16. The
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FIG. 16. (Color online) (a): Re(ω) vs. k. (b): Im(ω) vs. k. Here the parameters were a = 1.2, b = 0.5.

“+” branch of the Im[ω(k)] curve is always positive. For a < 1, the “−” branch is entirely negative, and for a > 1, it
is negative only over a range of |k| below a certain value. Since the growth rate of a k-mode is given by e−Im[ω(k)]t,
this indicates that all modes are unstable for a < 1, but large k modes become stable when a > 1. Physically, a > 1
means the rate of biotic mass production is less than the rate of leaving into the advective layer (AL). Thus, as a
becomes larger and larger, biotic particles (such a spores) spend less and less time on the growth layer (GL). In the
limit of infinite a they do not spend any time on the GL, and do not contribute to the growth, so σ = ρ = 0 becomes
a stable state. In fact, the whole “−” branch becomes marginally-stable (zero). Similarly, if a > 1 and b goes to zero,
the state σ = ρ = 0 also approaches marginality. The lowest value of the “−” branch is

−Im[ω−(k = 0)] =
1− a− b

2
+

1

2

√
(1− a+ b)

2
+ 4ab. (B9)

It is the inverse of the characteristic time scale for the growth of the most unstable (k = 0) mode. Notice that this
equals λs1(λ) at λ = 0, where s1 is the + solution in Eq. (A4).
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The corresponding eigenvectors are given by(
A±ρ
A±σ

)
=

 C±√
a2−∆2

±
iC±∆±√
a2−∆2

±

 , (B10)

where ∆± ≡ ω±(k)− k − ib

The C± are sign factors, and they will cancel out with sign factors in Fourier coefficients below. The general solution
is an an integral over all k of a linear combination of these two solutions:(

ρ(x, t)
σ(x, t)

)
=

1

2π

∫ ∞
−∞

(
α̃(k) ~A+(k)eiω+(k)t + β̃(k) ~A−(k)eiω−(k)t

)
e−ikx dk. (B11)

The coefficients α̃(k) and β̃(k) are determined from the ICs. Let the Fourier Transform of the IC be ρ̃0(k) and σ̃0(k).
Then

ρ̃0(k) = α̃(k)A+
ρ (k) + β̃(k)A−ρ (k),

σ̃0(k) = α̃(k)A+
σ (k) + β̃(k)A−σ (k).

Solving for α̃(k) and β̃(k), and substituting into Eq. (B11) we end up with

ρ(x, t) =
1

2π

∫ ∞
−∞

(ρ̃0∆− + iaσ̃0)eiω+t − (ρ̃0∆+ + iaσ̃0)eiω−t

∆− −∆+
e−ikx dk (B12)

and ρ̃0, σ̃0, ∆± and ω± are functions of k, as defined above. There is also (a more complicated) expression for σ(x, t),
but it is easier to extract σ using Eq. (B1) if we know ρ. The integral for ρ can be re-written as

ρ(x, t) = ρAL(x, t) + ρGL(x, t) (B13)

ρAL(x, t) =
1

2π

∫ ∞
−∞

ρ̃0(k)

(
∆−e

iω+t −∆+e
iω−t

∆− −∆+

)
e−ikx dk = ρ+

AL − ρ
−
AL, (B14)

ρGL(x, t) =
ia

2π

∫ ∞
−∞

σ̃0(k)

(
eiω+t − eiω−t

∆− −∆+

)
e−ikx dk = ρ+

GL − ρ
−
GL. (B15)

Here ρAL is a contribution to ρ(x, t) from the IC in the AL, and ρGL is a contribution to ρ(x, t) from the IC on the
GL. In this paper we will only be concerned with ICs on the GL. Therefore, to lighten the notation, the subscript
“GL” in ρGL will be dropped, unless stated explicitly.

We will consider a special point-source initial distribution,

σ0(x) = Mδ(x), (B16)

that has a fourier transform given by M in all of k-space. An exact solution will be given for this type of IC. We will
also consider an exponentially-localized ICs

σ0(x) =
Mµ

2
e−µ|x−x0|. (B17)

x0 can be set to 0 without loss of generality, since in this problem the coefficients a and b are homogeneous. The
fourier transform of such an IC is

σ̃0(k) =
M

1 + (k/µ)
2 . (B18)

The solution with this IC in the limit µ → ∞ should be identical to the solution with δ-function IC. The behavior
of other IC that have a finite, but non-point support should approach the behavior of solutions with a δ-function
IC at distances much greater than the extent of this support. Since the main interest of this paper concerns with
long-range transport, we will not make explicit calculations for other compact IC. We remark that ICs with power
law tails gives rise to accelerating wave-fronts, while gaussian ICs behave as a point-sources.

The integrals in Eqs. (B14) and (B15) are taken along the real line in k-space, but close the contour (which is
possible, since the branch cuts are finite segments with our definition of branches of the square root) we have to
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discuss the behavior of ω± as |k| → ∞. There are two branches of ω and they differ by a sign. Thus, as |k| gets large,
ω± ∼ k

2 ±
k
2 +O( 1

k ). So ω+ ∼ k, and

eiω+te−ikt ∼ eik(t−x)

at large |k|. Evidently, the contour of the ρ+-integral will have to be closed in the lower half-plane for x > t and in
the upper half-plane for x < t. The ω− branch does not have an important k-dependence at large |k|, so

eiω−te−ikx ∼ e−ikx

at large |k|. The contour of the ρ−-integral will have to be closed in the lower half-plane for x > 0 and in the upper
half-plane for x < 0. Table I summarizes the contours.

x < 0 0 < x < t x > t
ρ+-integral Above Above Below
ρ−-integral Above Below Below

TABLE I. Summary of integration contours

The two types of features of the integrand that these contours may enclose are: poles at k = ±iλ that are present
only for exponential ICs, but not compact ICs, and a branch cut segment that is present for any IC, Fig. 17. Its
center is located at position −i(1− a+ b), so it will be located in the upper half-plane for a > 1 + b and in the lower
half-plane for a < 1 + b. A semi-circular contour may be shrunk to enclose only these features. Thus, if a contour
encloses a pole and a branch cut, there will be a pole contribution and a branch cut contribution.
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FIG. 17. (a) Features in the k-space: dashed - branch cut, crosses - poles. (b) Cartoon of a contour around the branch cut.
The contour lies infinitesimally close to the cut.

With these considerations in mind, the total integral (this is in fact true for either ρGL or ρAL) is summarized in
Table II below. Here the pole+ and pole− refers to the position of the pole - the one in the upper half-plane or in the
lower half-plane respectively; same for a branch cut. It will turn out that the branch cut contributions for either x < 0
or x > t will cancel and only poles contribute to the solution in these regions. Thus, if we start with a localized IC
(when there are no poles), ρ (and σ) will be zero in these regions, as expected, since the wind cannot carry material
backwards, and material also cannot arrive to a point x faster than the wind (which has speed 1 in these units). Note:
when a = 1 + b the branch cut segment lies right on the real axis. However, we may move the original contour off
the real-axis by an infinitesimal amount, close the contour as specified above, and shrink it to enclose the branch cut
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x < 0 0 < x < t x > t

a < 1 + b ρ+-pole+ − ρ−-pole+ ρ+-pole+ − (ρ−-pole− + ρ−-BC−)
(ρ+-BC− + ρ+-pole−)
−(ρ−-BC− + ρ−-pole−)

a > 1 + b
(ρ+-BC+ + ρ+-pole+)
−(ρ−-BC+ + ρ−-pole+)

(ρ+-BC+ + ρ+-pole+)− ρ−-pole− ρ+-pole− − ρ−-pole−

TABLE II. Total ρ for different regions of space.

segment and the pole. Alternatively, we may treat the case a = 1 + b as a limit, because it is unique - as we will see,
the resulting limit for ρ and σ is the same, whether the limit approaches 1 + b from above or from below.

The contour around the cut consists of a straight line segment right above the cut, the straight line segment right
below the cut, and two infinitesimal semi-circles around each end of the cut. It is easy to show that their contributions
goes to zero in the limit as the radius of these semi-circles go to zero. The directions of integration above and below
the cut are opposing each other, but these pieces do not cancel because because the value of both branches of ω differs
right above and right below the cut, as specified in Eq. (B8). Then

ρ+-BC− =
ia

2π

∫ k2

k1

M

1 + (k/µ)2
e−ikxei

[k−i(1−a−b)]t
2 e−

t
2

√
ρ1ρ2

−i√ρ1ρ2
dk +

ia

2π

∫ k2

k1

M

1 + (k/µ)2
e−ikxei

[k−i(1−a−b)]t
2 e

t
2

√
ρ1ρ2

−i√ρ1ρ2
dk,

(B19)

ρ−-BC− =
ia

2π

∫ k2

k1

M

1 + (k/µ)2
e−ikxei

[k−i(1−a−b)]t
2 e

t
2

√
ρ1ρ2

−i√ρ1ρ2
dk +

ia

2π

∫ k2

k1

M

1 + (k/µ)2
e−ikxei

[k−i(1−a−b)]t
2 e−

t
2

√
ρ1ρ2

−i√ρ1ρ2
dk.

(B20)

If the branch cut is above the real axis, the integrals gain a minus sign, since the contour is oriented in the opposite
direction, i.e. ρ+-BC+ = −ρ+-BC− and ρ−-BC+ = −ρ−-BC−. We see immediately that ρ+-BC± = ρ−-BC±. All
these considerations allow us to simplify Table II as follows:

Region-I : x < 0 Region-II : 0 < x < t Region-III : x > t
Any a or b ρ+-pole+ − ρ−-pole+ (ρ+-pole+ − ρ−-pole−)− ρ−-BC− ρ+-pole− − ρ−-pole−

TABLE III. Total ρ for different regions of space.

Only poles contribute outside of 0 < x < t, as expected. Letting k = kc + lξ, where kc = −i(1− a+ b) and l = 2
√
ab

- half of the width of the branch cut, we have

−ρ−-BC− =
aMe−κ(x−wt)

2π

∫ 1

−1

e−iAξe−B
√

1−ξ2√
1− ξ2

dξ

1 +
(
kc+lξ
µ

)2 +

∫ 1

−1

e−iAξeB
√

1−ξ2√
1− ξ2

dξ

1 +
(
kc+lξ
µ

)2

 (B21)

κ = 1− a+ b

w =
1− a

1− a+ b

A = 2
√
ab

(
x− t

2

)
B = t

√
ab (B22)

We now confront the integrals in Eq. (B21). The parameter B becomes greater than 1 for t > 1/
√
ab, after which

time the second integral becomes rapidly dominant. Now, let ξ = sin y. Then, the remaining integral is

I =

∫ π/2

−π/2

e−iA sin yeB cos y

1 +
(
kc+l sin y

µ

)2 dy. (B23)

We may extend the limits of integration to [−π, π] with very little error, because cos y is negative in this extra region,
and the exponent contains a large positive B. Then, using the trigonometric identity we have

I ≈
∫ π

−π

e
√
B2−A2 cos (y−y0)

1 +
(
kc+l sin y

µ

)2 dy (B24)
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where sin y0 =
−iA√
B2 −A2

, and cos y0 =
B√

B2 −A2

The factor in the exponent is √
B2 −A2 = 2

√
ab
√
x(t− x). (B25)

a. Point IC in the GL

For a δ-function IC, there are no pole contributions. Furthermore, the denominator in the integrand in Eq. (B23)
or (B24) will be simply 1. In this special case the answer turns out to be

I = 2πI0

(
2
√
ab
√
x(t− x)

)
, (B26)

where I0 is the modified Bessel function of the first kind. And thus,

ρ(x, t) = −ρ−-BC− ≈ aMe−κ(x−wt)I0

(
2
√
ab
√
x(t− x)

)
. (B27)

(see Eq. (B21)). Although this is technically an approximation, it works very well for all but the very early times

(� 1/
√
ab). We can substitute this result into Eqs. (B1)-(B2) and obtain

σ(x, t) ≈
√
abMe−κ(x−wt)I1

(
2
√
ab
√
x(t− x)

) t− x√
x(t− x)

. (B28)

1. Propagation speed and decay rates of tails

We can extract the speed of the propagation as well as the decay rate of solution tails. First, we use the asymptotic
approximation for both I0(z) and I1(z) ∼ ez√

2πz
, so both ρ(x, t) and σ(x, t) have the following exponential behavior

in x and t:

ρ(x, t), σ(x, t) ∼ e−κ(x−wt)+2
√
ab
√
x(t−x) (B29)

We will now solve for xc(t) - the movement of the intersection of ρ(x, t) with a contour of constant value c. First
ignoring the non-exponential factors, we have

2abt+ κ(c+ κtw)± 2
√
ab (abt2 − (c+ κt(w − 1))(c+ κtw))

4ab+ κ2

In the long time limit we get

xc(t) =
t

1 + b

(1±
√
a)

2

(B30)

The value of c enters into the corrections that grow slower than c; it affects the time required to develop this
asymptotic behavior linear in time. Had we included the non-exponential prefactor, there would be a logarithmic in
time correction to xc(t). Thus, the sped will still relax to the above value.

We can now switch to the co-moving variables x = t
1+ b

(1±
√
a)2

+z. Ignoring the non-exponential prefactor, the result

is

ρ(z, t), σ(z, t) ∼ e−λ
∗
±z∓

√
a(λ±)3

4bt z2+..., (B31)

with λ∗± being given by Eq. (5) from the main text. Thus, in the long-time limit, the leading-order term is e−λ
∗
±z - a

function of x− s∗±t. We also see the power-law relaxation to both speed and the stationary tail shape, in agreement
with the general theory of fronts [27]. Thus, we reproduced the formula for the front speed s∗± (Eq. (4) in the main
text) and the exponential contribution to the shape of the density tails (Eq. (5) in the main text) - both of which we
obtained by other methods (see the previous and the following sections).
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2. Zero growth case

We now address an important special case of zero growth, which describes the movement of non-reproducing passive
scalar, such as dust. In terms of physical parameters, this is described by

∂ρ

∂t
= −v0

∂ρ

∂x
+ ασ − βρ (B32)

∂σ

∂t
= (1− α)σ + βρ. (B33)

We can retrace the entire derivation involving the contour integration, which now represents the exact solution. For
example,

ρ ≈ Mα

v0
e

(
α−β
v0

)
(x− αv0

α−β t)I0

(
2
√
αβ

v0

√
x (v0t− x)

)
. (B34)

We will find the identical result if we switch Eq. (B27) to physical variables. This solution describes a pulse, the
width of which grows as

√
t - so it has no defined stationary limit. Note that if we take Eq. (5) and switch to physical

units, we get a profile width that grows as 1/
√
δ when δ → 0. This reflects the fact that at δ = 0, ρ and σ become a

permanently transient solution - the tails do not reach a stationary shape. The speed of the profile peak is v0
1+β/α -

exactly the prediction of the general formula for either front if δ → 0. The magnitude of the peak decays as 1/t. In
the vicinity of the peak, the solution is

ρ ≈ αM

2v0
√
πt

√
α+ β

αβ
exp

(
− (α+ β)3ξ2

4αβv2
0t

)
, (B35)

where ξ = x−xpeak. The total mass under this profile is conserved - it is given by M
1+βα . Similarly to the speed, this is

simply related to the fraction of the time spent in the advective layer. We can also obtain this number by integrating
Eqs. (B32)-(B33) over all space, and imposing the constraint that the sum of the mass in both layers is a constant.

Appendix C: Alternative derivation of speeds and decay lengths using the saddle-point method

We here show how to find the speed of pulled density fronts using a saddle point approximation, as an alternate
technique. The motivation for doing this is to corroborate the results derived in the main paper. This technique was
taken from a comprehensive review on front propagation by W. von Saarloos [27]. We first recite the derivation of
the technique, and then apply it to our problem.

1. Method Summary

Consider a solution of the full, nonlinear equation propagating into the zero-density linearly-unstable state. The
smallness of the density in the leading part of the propagating profile suggests that dynamics of those regions, along
with their properties (speed, decay rate, etc.) may be extracted from the linearized equations of motion. This is not
always true, because these leading tails are matched to the part of the density profile where the nonlinearities do
become important. However, in many cases this idea is correct. A front of the nonlinear partial differential equation
(PDE) is said to be pulled, if its speed - defined by the speed measured at a constant density - is identical to the
speed under the linearized dynamics.

In light of this, we consider a scalar field φ(x, t), whose dynamics is determined by a translationally invariant linear
PDE, obtained by linearizing the full equation of motion around the state φ = 0, and express this solution as a Fourier
Transform:

φ(x, t) =
1

2π

∫ ∞
−∞

dkφ̄0(k)e−i
(
kx−ω(k)t

)
. (C1)

Here, ω(k) is the dispersion relation, which can be found, for instance, by substituting the Fourier ansatz ei(kx−ωt)

into the governing linear equations. We assume φ = 0 is a linearly unstable solution, i.e. the amplitude of some of the
Fourier modes grow in time under the linearized equations. From Eq. (C1), these are the modes with wavenumber k
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for which Im ω(k) > 0. Because these mode are unstable, a typical localized IC will give rise to a disturbance that
grows and spreads out in time under the linearized dynamics. We define the speed of the profile to be the asymptotic
speed of the point of constant contour:

s0 = lim
t→∞

dxc0
dt

, (C2)

where φ(xc0 , t) = c0. The resulting speed is independent of the value of c0 due to linearity of the governing PDE. In
general, disturbances could propagate to the left and to the right. The method outlined here is general, and we would
need to distinguish between multiple solutions for the speed.

The speed s0 can be determined self-consistently by making the following key observation: it is the speed of such a
reference frame, from which the density profile looks stationary after the transients decay. Let z denote the coordinate
in the co-moving frame: z = x− s0t. Then

φ(z, t) =
1

2π

∫ ∞
−∞

dkφ̄0(k)e−i
[
(kx−ks0t)−

(
ω(k)t−s0kt

)]
=

1

2π

∫ ∞
−∞

dkφ̄0(k)e−ikz+it
[
ω(k)−s0k

]
. (C3)

If φ̄0 is analytic everywhere in the complex plane, we can compute this integral when t is large using a saddle point
approximation - finding the k∗ at which the term ω(k)−s0k has a saddle point, and expanding that term to quadratic
order (the function ω(k) is also assumed to be analytic in the vicinity of its extrema, so this extrema can only be
saddles). This k∗ is given by

d

dk

[
ω(k)− s0k

]
k∗

= 0. (C4)

This leads to our first expression for the speed s0,

s0 =
dω

dk

∣∣∣
k∗
. (C5)

The integrand in Eq. (C3) will be proportional to: e−ik
∗zeit

(
ω(k∗)−s0k∗

)
. From our earlier observation, we require

that φ(z) neither grows nor decays. The means that,

Im
[
ω(k∗)− s0k

∗
]

= 0, (C6)

which leads to our second expression for s0,

s0 = ω∗i /k
∗
i . (C7)

Here the r and i subscripts denote real and imaginary part of complex quantities. We can find k∗ by equating
Eqs. (C6) and (C7), and then substitute this back into Eq. (C7) to obtain our desired expression for s.

dω

dk

∣∣∣
k∗

= ω∗i /k
∗
i ⇒ Find k∗ (C8)

s = ω∗i /k
∗
i ⇒ Find s (C9)

We can also compute an approximation to the wave profile φ. Expanding the term ω(k)− s0k in Eq. (C3) to second
order around k∗ and taking into account Eqs. (C4) and (C6), results in the following saddle-point approximation:

φ(z, t) ≈ 1

2π
φ̄0(k∗)e−ik

∗z

∫ ∞
−∞

dke

[
it(ω∗r−s0k

∗
r )−Dt(∆k)2

]
=

1√
4πDt

φ̄0(k∗)e−i(k
∗
rz−ω

∗
r t+s0k

∗
r t)ek

∗
i ze

−z2
4Dt , (C10)

where ∆k = k − k∗ and D = −(i/2)ω′′(k∗). We must also prohibit oscillatory solutions, since the density cannot
be negative. Therefore, we require that (kr, ωr, Di) = (0, 0, 0). This result will help us to eliminate certain solutions
when s0 is multivalued. The resulting non-oscillatory expression can be written as

φ(z, t) ≈ 1√
4πD

φ̄0(k∗)ek
∗
i z− 1

2 ln t− z2

4Drt . (C11)
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Aside from the logarithmic error, which is a consequence of a Gaussian approximation of the integrand, this function
becomes time-independent at large times, as planned. One must also check that Dr > 0, for physically-meaningful
solutions. The sign of k∗i helps us to distinguish between the downwind and upwind flanks of the solution of the linear
equation (these are respectively the analogues of the downwind and upwind fronts, which are properties of solutions
of the parent nonlinear equation). For the downwind flank, we require k∗i < 0, so that the profile is exponentially
decaying for increasing x. For the upwind flank, we require k∗i > 0, so that the profile is exponentially increasing for
increasing x.

Eqs. (C8), (C9), (C10) summarize our results. They allow us to determine the properties of the tail of a pulled
front, including its front speed s, and the growth or decay rate k∗i . The only requirement for their use is the dispersion
relation ω(k) and analyticity of φ̄0(k).

In summary:

1. Find dispersion relation ω(k): Substitute φ(x, t) = e−i
(
kx−ω(k)t

)
into linearized PDE.

2. Find k∗: dω
dk

∣∣∣
k∗

= ω∗i /k
∗
i

3. Find speed s0 = ω∗i /k
∗
i , and decay (for the downwind flank) or growth (for the upwind flank) rate k∗i .

4. Enforce (ω∗r , k
∗
r , Dr) = (0, 0, 0) for non-oscillating solution.

Multiple solutions for k∗ are possible, stemming from the fact that the method is not restricted to a specific IC, as
long as the Fourier Transform of the IC is an entire function in k-space.

2. Application to our problem

We now apply these results to our problem. The front speed will depend on the three parameters: s0(a, b,D). We
first solve the D = 0 case, and then consider the more realistic situation when D 6= 0. The ∗ will be dropped.

a. Without Diffusion

The dispersion relation ω(k) has already been found for this case - see Eqs. (B3)-(B6). It satisfies

ω2 − iω(a+ b− ik − 1) + b− ik(1− a) = 0. (C12)

We can follow the procedure advertised above: find (kr, ki) of the saddle point, and compute ω at this k. However,
ω is a multi-valued function, and this would require keeping track of the branches. On the other hand, note that
Eqs. (C12) and (C8) constitute a set of four algebraic equations in the variables (ωi, ωr, kr, ki). From Eq. (C9), we
can substitute ωi = s0ki, to obtain a set of equations in the variables (s0, ωr, kr, ki, ). There are six solutions, two of
which have (kr = 0 = ωr). These are

Solution s0 ki D

1 1
1+ b

(1−
√
a)2
− 1+a+b−2

√
a

1−
√
a

(
√
a−1)

3
b

√
a(1+a+b−2

√
a)

3

2 1
1+ b

(1+
√
a)2
− 1+a+b+2

√
a

1+
√
a

(
√
a+1)

3
b

√
a(1+a+b+2

√
a)

3

(C13)

We identify the two speeds as those of the upwind and downwind fronts, s±, cf. Eq. (4) in the main text. The leading
term in the spatial profile is given by φ ∼ ekiz ≡ e−λz. The corresponding λ also match with Eq. (5) of the main
text. The D also matches the predictions of Eq. (B31).

To be consistent, we require that k
(2)
i < 0 for s

(2)
0 to correspond to the speed of the downwind flank. Inspecting

the table above, we see that this is indeed the case. We similarly require that k
(1)
i > 0 for s

(1)
0 to be the speed of

the upwind flank. Here the situation is not as clear-cut. One can show that k
(1)
i > 0 only when a > 1. This is

consistent with our observation in the main text that the upwind flank moves only when a > 1. But for a < 1,

k
(2)
i < 0, indicating that s

(2)
0 is another possible wave speed for the downwind flank. Here the sign of D helps to

select the branch: D(1) is negative for a < 1, so this is an unphysical solution, and we must select s(2) as the speed
of the downwind flank for any a.
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b. With Diffusion

We repeat the same procedure as before. With the inclusion of diffusion, the dispersion relation is now satisfied by

ω2 − iω
(
a+ b+Dk2 − ik − 1

)
− ik

(
1− a−Dk2

)
− bDk2 + b = 0. (C14)

As before, this determines a set of four algebraic equations in the variables (s0, ωr, kr, ki). By imposing (ωr, kr) = (0, 0),
we get four solutions for the speed (s(1), s(2), s(3), s(4)), which are all functions of the parameters (a, b,D). The
expressions are complicated, involving roots of 6th degree polynomials.

The first of these solutions has k
(1)
i > 0, for all parameter ranges, indicating s(1) corresponds to the speed of the

upwind flank. From plotting this solution, we find it corresponds exactly to the solution plotted in Fig. 4b of the
main text. The remaining three solutions never have ki > 0, so they refer to the downwind flank. Unlike in the D = 0
case, the constraint that D is positive and real does not narrow down the candidates to a single solution. We point
out, however, that the values of −ki match the values of λ at which the extrema of the s(λ) take place for λ > 0 (see
Fig. 6 and 7). According to [27] - for pulled fronts, ICs with a compact support will select the λ at which the branch
of s(λ) with the largest speed has a minimum.

Appendix D: Properties of stationary backgrounds in the D = 0 model for a ≤ 1.

We briefly discuss the stationary wake, such as section I in Fig. 2(a), and conditions for its existence. Setting to
zero the time derivatives in (non-dimensionalized) Eqs. (1)-(2) with zero diffusion, gives the following equation for
σst(x):

dσst
dx

= bf(σst)

(
a− df

dσst

)−1

, (D1)

while ρst(x) follows from from Eq. (2). When an IC is 0 for x < 0, the boundary condition for this equation, σ(x = 0)
is given by a σ0 that satisfies f(σ0) = aσ0. This follows from ρx=0 → 0 for large times, and from Eq. (2).

If σ0 > 0, there exists a stationary solution that approaches 1 over a characteristic length given by (d − a)/bd,

where d = df
dσ

∣∣∣
σ=1

(d = −1 for logistic case). This is true for all concave f(σ). On the other hand, if σ0 = 0 there is

no non-zero stationary state for σ(x) and ρ(x), since f(0) = 0. This happens for all concave f(σ) when a > 1 or more
generally, when the transfer rate from σ to ρ exceeds the growth rate (aσ > f(σ)) at any 0 < σ < 1 (and the IC has
a finite support). The mass is swept by the AL downwind; σ(x, t) and ρ(x, t) become pulse waves. The two fronts of
the pulse propagate with different speeds, as discussed in the main text.

Appendix E: Numerical Method

1. Preliminary calculations

Before discussing the method, it will be useful to prove that the model without diffusion does not admit shocks.
This is important, because it makes the use of special numerical methods, that otherwise must be employed to keep
track of the movement of shock waves, unnecessary. The dimensionless version of Eqs. (1)-(2) from the main text can
be converted to a single second-order equation for either σ or ρ. For example,

∂2σ

∂t2
+

∂2σ

∂t∂x
+
∂σ

∂t

(
a+ b− 1 + 2σ

)
+
∂σ

∂x

(
a− 1 + 2σ

)
= 2f(σ) (E1)

A similar equation can be derived for ρ. In both cases, they have the form

∂2φ

∂t2
+

∂2φ

∂x∂t
= F

(
φ,
∂φ

∂t
,
∂φ

∂x

)
(E2)

From this, it can be easily shown [29] that characteristics x(t) obey(
dx

dt

)2

−
(
dx

dt

)
= 0. (E3)

The two pairs of families of characteristics are thus x = c1 and x = t+c2, where c1 and c2 are arbitrary real constants.
Evidently, characteristics in each family do not intersect each other, proving the absence of shocks.
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2. Outline of the numerical methods and parameters used

We used the first-order time-differencing scheme

∂φ

∂t

∣∣∣∣
xm,tn

→ φ(xm, tn+1)− φ(xm, tn)

∆t
, (E4)

and an upwind spatial differencing scheme:

∂φ

∂x

∣∣∣∣
xm,tn

→ φ(xm, tn)− φ(xm−1, tn)

∆x
, (E5)

With this discretization, our equations become

ρ(xm, tn+1) = ρ(xm, tn)
(

1− b∆t−∆t/∆x
)

+ σ(xm, tn)a∆t+ ρ(xm−1, tn)∆t/∆x. (E6)

σ(xm, tn+1) = σ(xm, tn)
(

1− a∆t
)

+ f
(
σ(xm, tn)

)
∆t+ ρ(xm, tn)b∆t+

D∆t

(∆x)2

[
σ(xm+1, tn)− 2σ(xm, tn) + σ(xm−1, tn)

]
,

(E7)

where xm = x0 +m∆x, and tn = t0 + n∆t. Thus, this is an explicit method, i.e. it uses known data at time-step tn
to march a solution forward in time to tn+1.

The integration took place over a finite spatial interval, with an initial condition placed in the center. At the
extreme left and extreme right points of this spatial interval, we set the values of ρ and σ to zero (these points were
not included in any plots or analyses). For D = 0 case, the value of ρ and σ at the right boundary is irrelevant, since
information does not propagate backwards with our scheme. The existence of the boundary condition on the left is
irrelevant as long as IC has a finite support (and zero to the left of the this support region), and the left edge of this
support is at least one grid point away from the left edge of the spatial interval. Conversely, the boundary condition
used on the left is equivalent to setting the left edge to a localized initial condition. For D 6= 0, information does
propagate backwards, so the value of ρ and σ at the right boundary does matter, but we chose the space-time region
in such a way that neither front ever came close to either boundary given the placement of the initial profile.

In order for this scheme to be stable, we require ∆t/∆x < 1 for the case with D = 0 or D∆t/(∆x)2 < 1 when D
is finite (Courant condition, [30]). To ensure these criteria were met, we chose ∆t = min {0.25 ∆x, 0.25 (∆x)2/D}.
Instabilities were never observed. Front speeds (and in some select cases, profile shapes) exhibited convergence when
∆x was made progressively smaller. The results stated in Fig. 4 of the main text were obtained with ∆x = 0.025,
which is � physical characteristic length represented by 1/|λ±| from Eq. (5) of the main text. The results stated in
Fig. 3 were obtained with ∆x = 0.005, with the exception for the upwind data in the left panel, where ∆x = 0.01.

To find the speed of the wavefronts described by ρ(x, t) and σ(x, t), we tracked the position of the constant contour
xC , which is defined through ρ(xC , t) = C (Note, since ρ and σ have the same speed, we need only consider ρ or σ in
our calculations). For example, to extract the speed of the downwind front, we used the following routine:

• At every time step tn, find position of maximum ρ(x, t), which we call xmax.

• Extract all ρ(xm, tn) to the right of this maximum: ρ̂(xm, tn) ≡ ρ(xm > xmax, tn). This function ρ̂ is now
unimodal.

• Then xC(tn) = min |ρ̂(x, tn)− C|

This results in a list xC(tn), which after initial transients, describes a straight line. The wave speed s is the slope of
this line. We ran the calculations over a long time (t = 800 for the results stated in Fig. 4 of the main text), and
discarded the first 50% of the data to remove transient behavior.

3. The role of numerical diffusion in long-time asymptotic solutions

It is known that our differencing scheme is also a lowest-order approximation to an equation with a small diffusion
term, even if D = 0 [30]. To underline the smallness of the role of any effective higher derivative terms on long-time
asymptotic results, we show in Fig. 18 two plots of the profile shape for D = 0 and compare them with the analytical
front shape obtained from the UTF ansatz.
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FIG. 18. (Color online) Comparison of the heteroclinic solution of Eqs. (A1)-(A2) - UTF profile (thin black curve), with the
numerical solution of the dimensionless version of Eqs. (1)-(2) of the main text (thick, red curve) at a given value of time,
shifted to closely match the UTF profile (thus, the numerical values of the x-axis do not correspond to the actual position of
the front from the evaluation of Eqs. (1)-(2)). (a) a = 2, b = 1. (b) a = 0.1, b = 0.1. The insets: time evolution, logarithmic
scale.

Appendix F: Application to fungal pathogen transport

This work was motivated by the problem of wind-driven transport of fungal pathogens on continental scales.
Wind mediated fungal pathogen spread is a process involving production of spores, lifting, horizontal transport, and
deposition [31–35].

In recent years, “reaction-dispersal” models [36] have been considered in the context of dispersal of biota, such
as seeds and insects [37]. Such treatment describes random walks on multiple scales, and may be applicable over
distances where the highly turbulent atmospheric boundary layer [38] (ABL) - the lowest level of the atmosphere - is
the dominant mechanism of dispersal. However, the ABL tends to return the passive scalar back to the ground over
the scale of its largest eddies, i.e. its own thickness of O(1) km, so it is inefficient at much longer range transport.
The Free Atmosphere (FA) located above the ABL emerges as a competing transport mechanism over longer length
scales. The FA is less random than the ABL, contains persistent advective currents, and can carry passive scalar -
including micro-organisms - across continents [39] with characteristic speeds of O(10) km/hr [40]. Reaction-dispersal
models do not capture the role of the FA. We were motivated to (i) investigate the validity of ignoring advective
transport channels that lie above the ABL and (ii) develop a theory of spatio-temporal dynamics of long-range biotic
transport.

The main insight about the pathogen transport gained from our work is that the advective layer - such as the free
atmosphere - can not be ignored, even for very small rates of flow of mass into this advective layer. To make further
statements, it helps to estimate our parameters a, b and D. We know that a � 1 because for a given amount of
spores produced on the ground in a given time interval, most will return to the ground within 100 meters [41], so
only a very small fraction will leave the ABL, which has the width of the order of several kilometers [38]. The rate b
is generally higher due to gravitational settling, but in the strong turbulence limit, both rates will be comparable (as
in a pot on the boiler). To estimate the dimensionless diffusion D, recall that it is given by δD

v20
. Here v0 is the speed

of the free atmosphere, and it is of the order of 10 km/hr. We interpret D to be the eddy diffusion coefficient [42] of
the small-scale turbulence that returns most particles to the ground within the aforementioned 100 meter radius from
the source. That is, this random transport is accommodated by much smaller eddies than those that contribute to
the interlayer transport. The eddy diffusion coefficient D is expected to scale as ∼ uL, where u is the characteristic
instantaneous velocity in the turbulence, and L is the scale of the eddy, i.e. 0.1 km in this case. For the speed scale
we can use the friction velocity that determines the velocity scale in the surface-level turbulence, about 0.4 m/s [43].
So D ∼ O(10−1) km2/hr.

Finally, we need a growth rate, δ. According to [44], a 5% disease severity amounts to 50 spore-producing postules
per plant tiller. At this 5% disease severity, a plot will yield approximately two trillion spore/hectare/24-h [44], i.e.
2× 108 spores per m2 per day. If there are O(100) plants per m2 (for example, wheat plants), the production rate is
4 × 105 spores per postule per day. If each new spore were to lead to a fungus that produced only one postule, this
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would imply a multiplication rate of 4× 105 spores per day produced from a single spore. In this paper we assumed
a logistic growth model, which reduces to exponential growth at low densities. Thus, an exponential growth model,

would thus give 4× 105 = eδ×24 hr, giving δ ∼ O(0.1) hr−1. All together, this gives D ∼ O
(
10−4

)
.

Evidently, the problem is completely dominated by the advection. Moreover, for parameters a and b both � 1,
our theory predicts the speed is ∼ O(advective speed), or propagation of a front by hundreds of kms per day. This
suggests that this model is insufficient for the purpose of the application to fungal pathogen transport, because
invasion fronts for observed pathogens, such as Wheat Stem Rust are expected to propagate tens of kms per day
[45]. Moreover, these numbers are based on the observations of incidences of disease symptoms on plants, not of
spore densities. We are currently augmenting a model to include both the fungal density (immobile), and spore
density (mobile), in addition to the effects of latency. Our current calculations show that spore death, for instance -
a very well-known and important effect [45], can decrease the front speeds dramatically. However, this discussion, in
addition to the discussion of other biological specializations of the present theory will appear in a separate publication.

In the main text we argued that the mean-field description will hold when

a

b
� δλ(a, b)

σmaxv0
, (F1)

where σmax is the carrying capacity on the GL per unit length. In application of the fungal pathogen problem, right
hand side of this equation is exceptionally small because of the largeness of the carrying capacity. We already know
that λ → 1 when a, b � 1. From the discussion above, we see that the order of magnitude of the carrying capacity
will be billions of spores per m2. Using 109 m−2 × 1 m for σmax (in our model, the densities are per length) we
arrive at our estimate of 10−14 for the ratio of a/b above which the mean-field model should hold. In other words, the
mean-field theory is expected to hold if a� 10−14b. Now, in the “pot on the boiler” limit when turbulence completely
dominates vertical transport, we will have a = b, whereas in the limit of no turbulence (only gravitational settling),

a = 0, while b > 0. We estimate roughly that a/b ∼ e
− vs
vT , where vs is the settling velocity (∼ 0.01 m/s [44]) and

vT is velocity in the largest eddies that span the whole of the ABL (i.e. ≈ 1km). It is known that the time scale for
this large-scale turn-over time is on the order of 1 hr. Putting this together, we expect that a/b ≈ 0.97. Thus, we are
safely in the mean-field regime.
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