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We consider forces acting on objects immersed in, or attached to, long fluctuating polymers. The
confinement of the polymer by the obstacles results in polymer-mediated forces that can be repulsive
(due to loss of entropy) or attractive (if some or all surfaces are covered by adsorbing layers). The
strength and sign of the force in general depends on the detailed shape and adsorption properties
of the obstacles, but assumes simple universal forms if characteristic length scales associated with
the objects are large. This occurs for scale-free shapes (such as a flat plate, straight wire, or cone),
when the polymer is repelled by the obstacles, or is marginally attracted to it (close to the depinning
transition where the absorption length is infinite). In such cases, the separation h between obstacles
is the only relevant macroscopic length scale, and the polymer mediated force equals A kBT/h, where
T is temperature. The amplitude A is akin to a critical exponent, depending only on geometry and
universality of the polymer system. The value of A, which we compute for simple geometries and
ideal polymers, can be positive or negative. Remarkably, we find A = 0 for ideal polymers at the
adsorption transition point, irrespective of shapes of the obstacles, i.e. at this special point there is
no polymer-mediated force between obstacles (scale-free or not).

PACS numbers: 64.60.F- 82.35.Lr 05.40.Fb

I. INTRODUCTION

A prototype of soft matter, polymers are long flexi-
ble chains that can fluctuate (whether within a cell or
in a solution) between a large number of configurations.
The presence of hard boundaries or obstacles modifies the
number and weight of allowed configurations, in turn re-
sulting in polymer mediated forces between the obstacles.
A well known example is the depletion force of polyethy-
lene glycol (PEG) which acts to bundle filaments [1].
However, whereas the relevant length scale for depletion
force is the overall size of the polymer R, here we focus
on polymer-mediated forces on separations h ≪ R. The
internal structure of a polymer is a self-similar fractal,
spanning a wide range of scales from R to a microscopic
monomer size a. To compute forces between obstacles
embedded in or attached to the polymer, we need to com-
pute modifications to the free energy due to the objects.
This is in principle a complex task involving the shapes
of the objects, and details of their interactions with the
polymer. We demonstrate that this task is considerably
eased in certain cases, yielding simple universal expres-
sions for the force.

Technological progress in manipulation of single
molecules [2–6], using probes such as atomic force mi-
croscopes (AFMs) [7], microneedles [8], optical [9, 10]
and magnetic [11] tweezers, makes it possible to mea-
sure forces exerted by polymers with high precision. The
central motivation of these experiments is to unravel spe-
cific information about shapes, bindings, and interactions
of biological molecules from force-displacement curves.
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For the important class of intrinsically unstructured pro-
teins [12], entropic forces, such as those considered in the
paper, are likely to play an important role.

In previous work we considered polymers confined by
impenetrable obstacles of scale invariant shape, such as a
polymer attached to the tip of a conical probe approach-
ing a flat surface [13–15]. The reduction in the number of
configurations of the polymer leads to a repulsive entropic
force, which we showed to depend on the (tip to surface)
separation h and the temperature T as F = A kBT/h.
The ‘universal’ amplitude A only encodes basic geomet-
rical properties, and gross features of the polymer. For
such ‘repulsive’ surfaces, the amplitude A is positive. By
considering both repulsive and attractive surfaces (as well
as by expanding the types of polymers considered), here
we demonstrate that attractive surfaces may indeed lead
to polymer-mediated attraction with negative A.

The interaction of a polymer with a surface can be
changed from repulsive to attractive, e.g. by changing
temperature or solvent quality. The competition between
energetic attraction and entropic repulsion typically leads
to a temperature dependent absorbed layer size, intro-
ducing another length into the problem. This length
scale diverges at a continuous adsorption transition point
introducing a scale-free boundary condition which is dis-
tinct from the repulsive surfaces studied previously.

In this paper we expand our formalism [13–16] from the
treatment of purely repulsive surfaces to adsorbing sur-
faces, and to mixed repulsive/adsorbing surface combina-
tions. In Section II we begin examining several polymer
types near repulsive or adsorbing flat surfaces, and show
that the size and sign of the force between a polymer and
a surface depends both on the polymer type and the sur-
face type. In Section III we demonstrate that under cer-
tain circumstances the polymer-mediated forces between
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polymer type
exponent

ν γ γ1 γa

ideal polymer at any d 1/2 1 1/2 1

SA polymer at d = 2 3/4 43/32 61/64 93/64

SA polymer at d = 3 0.588 1.157 0.697 1.304

θ-polymer at d = 2 4/7 8/7 4/7 8/7

TABLE I. Exact (simple fractions) and approximate (decimal
fractions) values of exponents of ideal, self-avoiding (SA) and
θ polymers in free space and close to repulsive or critical at-
tractive flat surfaces [17]. (The exponents are defined in the
text.)

scale-free surfaces have a universal coefficient, indepen-
dent of minute details of the polymers. The calculation of
force induced by ideal polymers, taken up in Section IV,
can be reduced to the solution of a diffusion problem
with either absorbing or reflecting boundary conditions.
A particularly interesting result is that when all embed-
ded surfaces are at the adsorption transition point, the
polymer mediated force is identically zero, independent
of shape and geometry. In Sections V and VI we consider
a number of examples of mixed repulsive/attractive ge-
ometries and demonstrate the ability to modify the force
amplitude by changing the surface geometries and types.
Finally, in the Discussion section we consider possible
generalizations of ideal polymer results to other polymer
types.

II. POLYMERS NEAR ATTRACTIVE OR

REPULSIVE FLAT SURFACES

Polymers may exist in different phases, with distinct
universal characteristics [18]. At high temperatures in a
good solvent polymers expand to maximize the number
of available configurations. Ignoring all interactions be-
tween monomers, except those imposing its connectivity
leads to configurations resembling a random walk; such
configurations will be denoted as ideal polymers. How-
ever, it is unrealistic to ignore the exclusion of monomers
from occupying the same volume in space, and the re-
sulting configurations (which are more swollen than ideal
random walks) are designated as self-avoiding polymers.
When the quality of a solvent is reduced, the tendency of
monomers to aggregate is akin to an effective short-range
attraction which eventually collapses the polymer to a
globule of finite density. The transition between good
and bad solvent regimes occurs at the so-called θ-point,
with the resulting configurations labeled as θ-polymers.
Ideal, self-avoiding and θ polymers are the three poly-

mer types considered in this work, all characterized by
(albeit distinct) universal scale-invariant properties. For
example, they are characterized by a fractal dimension
df = 1/ν, such that the typical separation between
monomers i and j along the chain scales as |i − j|ν ; the

overall polymer size R (such as the mean radius of gyra-
tion, or the end-to-end distance) grows with the number
of monomers N as R = aNν , where a is some micro-
scopic length, of the order of monomer size or persistence
length. The exponent ν depends only on polymer type,
but not on any microscopic details. It ranges from 1/2
to 3/4 depending on space dimension d and the polymer
type, as listed in Table I. This universality enables the
frequent use of simple lattice models to study real poly-
mers. E.g., ideal and self-avoiding polymers can be rep-
resented by random walks and self-avoiding walks on lat-
tices, respectively, while θ-polymers may be represented
as self-avoiding walks on a lattice with added attractive
interaction between monomers on adjacent lattice sites.
(The attractive interaction must then be tuned to exactly
match the boundary between good and bad solvents.)
The partition function of polymer types described

above is in part universal [18]. It depends on the number
of monomers as

Z = b zNNγ−1, (1)

where b and z depend on microscopic properties of the
polymer, while the power-law exponent γ depends only
on geometry and polymer type. Thus, the leading exten-

sive part of the free energy of a single polymer

F = −kBT lnZ = −kBTN ln z − kBT (γ − 1) lnN + . . .
(2)

is model dependent, while the coefficient of the sub-

leading lnN is universal. Nevertheless, we shall see
that this sub-leading term plays the important role in
polymer-mediated forces. In self-avoiding and ideal poly-
mers, the potential energy plays a minor role. In lattice
models it is completely absent, and Z coincides with the
total number of configurations N , while z is the lattice
coordination number for random walks, or effective coor-
dination number for self-avoiding walks. The free energy
is then obtained from the entropy S as F = −TS =
−kBT lnN .
If one end of a polymer is attached to an infinite im-

penetrable flat surface in d = 3, or to an infinite re-
pulsive line in d = 2, it will be excluded from half of
the space. Nevertheless, the metric exponent ν remains
unmodified, although the prefactor a in the power law
R = aNν does change. The number of available con-
figurations, and hence the partition function, is reduced
to Z1 = b1z

NNγ1−1. Note that the factor z related to
the extensive part of the free energy is unchanged, with
the reduction in states captured through the exponent
γ1 < γ (see Table I). The change in free energy

∆F1 ≡ F1 −F = kBT (γ − γ1) lnN (3)

is positive, i.e. the polymer is repelled by the wall, or, a
force towards the wall needs to be applied to bring the
polymer from infinity to the wall.
If the repulsive surface described above is covered by

an attractive layer, then a polymer attached by one end
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to the surface may decrease its energy by frequently visit-
ing the surface. In discrete models we may simply assign
an extra (Boltzmann) weight q = e−V/kBT , where V < 0
is the potential at the attractive layer, for each point
visited at the boundary. The reduction in entropy of the
polymer in this absorbed state is compensated by a bigger
gain in energy. At high temperatures (or for weakened
attractive potential) the entropy wins and the polymer
depins from the attractive layer. The free energy per
monomer in the absorbed state is lower than that of the
free polymer due to the gain in absorption energy, and
can be cast as −kBT ln za(T ) with za(T ) > z. If one
end of the polymer is held at some moderate distance h
from the surface, a typical configuration will consist of an
‘equilibrium bulk’ attached to the surface, and a strongly
stretched tail going from the surface to the point where it
is held (with a force of order of −(kBT/a) ln[za(T )/z]).
For some computations, it is more convenient to con-
sider a slightly different situation where the polymer is
anchored to the surface and pulled away by application
of a force [19–21]. In this situation, the behavior of the
polymer is different if we control the distance h versus

the pulling force applied to its end, akin to controlling
density versus pressure at a first order liquid-gas transi-
tion [19].

The transition from adsorbed to desorbed states oc-
curs at a critical (depinning) temperature Ta [22–30],
where za(Ta) = z. Exactly at Ta, the partition func-
tion of any of the polymer types mentioned [17] above
again has a simple form Za = baz

NNγa−1. Since almost
all monomers are away from the boundary (the fraction
of contacts with the boundary increases slower than N),
the dominant factor of z remains unchanged. The re-
lation between the exponent γa and the free-space γ is
not obvious, since the presence of the surface decreases
the number of available configuration, which tends to de-
crease γ, but also decreases the energy, which tends to
increase γ. By comparing γ with γa in the Table I, we
see that for self-avoiding polymers γa > γ, while for ideal
and θ polymers γa = γ. This means that

∆Fa ≡ Fa −F = kBT (γ − γa) lnN , (4)

is either negative, i.e., the polymer is attracted by the
wall, or vanishes, which makes the wall “invisible” to
the polymer that is brought into its vicinity. When T
is not at the adsorption transition point we may expect
deviations from the above relations and various crossover
effects. However, as long as the correlation length ξ char-
acterizing the transition [24] exceeds the polymer size, we
may treat the system as if it is at Ta. In the remainder of
this article we will always assume that the attractive sur-
faces are at adsorption transition point without explicitly
mentioning this condition.
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FIG. 1. (Color online) A repulsive surface decorated by a
sector with central angle 2α covered by an adsorbing layer.
The polymer is attached to the apex of the sector.

III. POLYMER-MEDIATED FORCES

BETWEEN SCALE-FREE SURFACES

The results in the previous section relied on the ob-
servation that the partition function of a polymer in free
space or near a planar surface (either repulsive or at ad-
sorption transition point) has the form in Eq. (1). This
form is a consequence of the fact that the geometries of
free space or infinite plane do not posses a characteristic
geometrical length scale, i.e., the relevant space is invari-
ant under the coordinate transformation r → λr. Simi-
larly, the polymer/surface interactions do not introduce
a length scale when they are either repulsive or attrac-
tive at adsorption transition point. The same conclusion
(hence Eq. (1)) applies to a host of other scale-free shapes
such a semi-infinite plane, a sector of a two-dimensional
plane in d = 3, a semi-infinite line, a cone of any cross sec-
tion, a wedge, or any combinations of such shapes, such
as a cone touching a plane. Scale invariance in most such
geometries is with respect to a “center” location, such as
the apex of a cone or the terminal point of semi-infinite
line. We assume that in such cases an attached polymer
is anchored to the “center” point to avoid introducing a
new length scale. The partition function of a polymer at-
tached to the central point of any scale-free shape will be
described by Eq. (1), with an exponent γ that depends
on d, the polymer phase, surface adsorption (repulsive
or attractive), and on geometric features characterizing
the shape, such as the apex angle Θ of the cone [13–15],
or the tilt angle of the cone touching a plane [16]. Fur-
thermore, we can mix surface types, by, say, attaching a
cone with attractive cover to a repulsive plane. In fact
we can have a scale-free situation when a single surface
mixes repulsive and attractive regions: E.g., consider a
repulsive plane on which a sector has been covered by an
attractive layer as in Fig. 1 (with the polymer attached
to the sector apex).
Starting from the polymer partition function in scale-

free geometries, we can compute polymer-mediated forces
between such surfaces. As an example consider a repul-
sive cone, with a polymer attached to its tip, approach-
ing, say, an attractive plane, as depicted in Fig. 2. When
the distance h between the cone and the plane is signif-
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FIG. 2. A polymer (in d = 3) attached to the tip of a repulsive
solid cone with apex angle Θ approaches a plane covered by an
attractive (blue) layer. The distance between the plane and
the tip of the cone is h. (This picture can also be interpreted
as a two-dimensional wedge approaching a line.)

icantly shorter that the polymer size R, but larger than
the microscopic scale a, h is the only relevant length scale,
while kBT is the only relevant energy scale. In such a
case, the force F transmitted by the polymer between
the surfaces is constrained to be the only dimensionally
correct combination

F = A kBT

h
. (5)

The dimensionless prefactor A (the “force amplitude”)
can be positive or negative corresponding to polymer-
mediated repulsion or attraction between the objects.
(This also follows from various polymer scaling forms [22,
31, 32].) Note that the form of the force (and indepen-
dence of R) is a consequence of the objects having a single
point of closest approach. Most of the polymer-surface
interactions appear in the neighborhood of this point,
while the remote tail of the polymer is not much influ-
enced by the constriction. Equation (5) fails in truly con-
fining geometries; e.g., if confined between parallel planes
a distance H apart, the polymer has nowhere to escape
and the total polymer-mediated force can be viewed as a
sum of forces exerted by Pincus–de Gennes blobs [33, 34]
whose size depends on H , while their number is propor-
tional to N [18], leading to a force proportional N .
Equation (5) is valid only for h ranging between a and

R. When h decreases and approaches the microscopic
size a, the force saturates at order AkBT/a, while for h
exceeding R it rapidly drops to 0. Thus, the work that
the external force needs to perform to bring the surfaces
from far away to a microscopic distance is

W =

∫ R

a

dh AkBT
h

=AkBT ln
R

a
= A νkBT lnN. (6)

(The slight uncertainty in the integration limits is not
important since it only affects an additive constant to a
term that diverges as lnN .) The same work can also be
computed from the change in free energies between the

(b)(a)

FIG. 3. (Color online) As the cone or wedge depicted in
Fig. 2 approaches the surface, it moves between two extreme
geometries: (a) When h ≫ R we have a scale-free geometry of
a polymer attached to the cone or wedge. (b) Upon touching
the surface (or at a microscopic distance a from it), we arrive
at the scale-free geometry of cone/plane.

final and initial states. Both the initial and final states
are scale-free as depicted in Fig. 3: Far away only the
cone needs to be taken into account, while at the point
where the cone touches the plane, we again have a scale-
free situation. Therefore, the partition functions in these
two extremes will have the form of Eq. (1), but with ex-
ponents γfar and γnear corresponding to the two limiting
geometries, with appropriate polymer and surface types
in dimension d. As in Eqs. (3) and (4) the free energy
difference is

∆F ≡ Fnear −Ffar = kBT (γfar − γnear) lnN. (7)

By equating this ∆F with the workW in Eq. (6) we find

A =
γfar − γnear

ν
= ηnear − ηfar . (8)

In the final step we employed the exponent identity

γ = (2− η)ν , (9)

to relate the exponent γ to the exponent η charac-
terizing the anomalous decay of density correlations
(as 1/rd−2+η). Equation (8) indicates that the force am-
plitude A is a universal quantity akin to critical expo-
nents. In the trivial case, when the polymer, held by a
very small probe (point), is moved towards a plane, γfar
coincides with γ of the free space, while γnear is γ1 or γa
for repulsive or attractive surfaces, respectively. For ex-
ample, for a self-avoiding polymer in d = 3 approaching
an attracting surface, Eq. (8) with the exponents from
Table I leads to A ≈ −0.25.
The case of purely repulsive boundaries was considered

previously for both ideal and self-avoiding polymers. The
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FIG. 4. (Color online) Ideal polymers on a (d = 2) square
lattice close to a repulsive boundary (red horizontal line de-
noted “rep”), possibly covered with an adsorbing layer (blue
horizontal line denoted “ads”). Configurations that cross or
touch the repulsive surface (such as “a”) must be discarded.
Those that do not approach either of the surfaces (such as
“b”) all have weight 1. In the presence of the attractive (ad-
sorbing) layer, configurations that touch but do not cross this

layer gain an extra weight q = e−V/kBT for every point on the
surface; the configuration “c” thus has weight q3.

latter required either numerical simulations or resorting
to expansions in ǫ = 4−d [13, 14, 35] to compute the rele-
vant exponents, while ideal polymers could be treated an-
alytically for simple (highly symmetric) geometries [13–
15], only requiring simple numerical solutions of diffusion
equations for less symmetric scale-free geometries [16].

IV. IDEAL POLYMERS NEAR REPULSIVE

AND ATTRACTIVE SURFACES

The absence of interactions between non-adjacent
monomers of an ideal polymer significantly simplifies its
treatment. For an N -step polymer on a regular lattice
with lattice constant a, such as the square lattice de-
picted in Fig. 4 with coordination number µ = 4, the par-
tition function (beginning at point r in free space) is sim-
ply the number of configurations Z(r,N ) = N (r,N ) =

µN . We will define a reduced partition function Z̃ ≡
Z/µN , which in general should scale as Z̃ ∼ Nγ−1. In

free space Z̃ = 1, and therefore γ = 1. The partition
function of a polymer of (N + 1) steps that begins at r

and ends at r′ can be calculated recursively as

Z(r, r′, N + 1) =
∑

r
′′ nn of r

′

Z(r, r′′, N), (10)

with the initial condition Z(r, r′, 0) = δr,r′ . Similarly,
the reduced partition function sarisfies

Z̃(r, r′, N + 1)− Z̃(r, r′, N)

= 1
µ

∑

r
′′

nn of r
′

[

Z̃(r, r′′, N)− Z̃(r, r′, N)
]

. (11)

For slowly varying functions, we can employ a continuum
formulation in which the left hand side is replaced with

a first derivative, while the right hand side represents
a second derivative (discrete Laplacian). Regarding the
continuous version of N as a time-like variable t, the
continuum equation for Z̃ becomes the diffusion equation
for the probability density P (r, r′, t) of a diffusing particle
that starts its motion at r and ends up at r

′ in time t,
which satifies

∂P (r, r′, t)

∂t
= D∇′2P (r, r′, t) , (12)

with initial condition P (r, r′, t = 0) = δd(r − r
′). The

prime sign on the Laplacian indicates spatial derivatives
with respect to r

′. The diffusion constant D is chosen
such that in free space the mean squared distance coin-
cides with the random walk value of 〈(r− r

′)2〉 = a2N =
2dDt in d space dimensions, and thus D = a2/2d. The
probability density P is related to the discrete probability
Z̃ by Z̃ = adP .
In free space all configurations have identical weight.

However, in the presence of a repulsive wall, such as de-
picted by the lower (red) horizontal line in Fig. 4, walks
that touch or cross that line, such as walk “a” in the fig-
ure, must be eliminated from consideration. This can be
achieved be applying Eq. (11) only to the points r above

the repulsive line, while setting Z̃(r, r′, N) = 0, whenever
r
′ is on the repulsive boundary. The continuum limit for
P will then correspond to the solution of Eq. (12) with
absorbing boundary conditions.
Since the statistical weight of every path is indepen-

dent of its direction,

Z̃(r, r′, N) = Z̃(r′, r, N), (13)

i.e. there is symmetry with respect to interchange of
the start and end points of the chain. Consequently,
in the diffusion equation (12), the prime can be re-
moved from the Laplacian. (This is the usual reci-
procity relation of the diffusion problem [36].) After
such a change, both sides of the modified Eq. (12) can
be integrated over r

′, the resulting survival probability
S(r, t) ≡

∫

P (r, r′, t)ddr′ evolving as

∂S(r, t)

∂t
= D∇2S(r, t), (14)

with absorbing boundary conditions. The initial condi-
tion for survival probability is S(r, t = 0) = 1, every-
where inside the space where the particle can diffuse,
and S(r, t) = 0 on the absorbing boundaries. This quan-
tity coincides with the total reduced partition function
Z̃(r, N). Our previous works considered a variety of cases
with scale-free repulsive boundaries [13–16, 37, 38], while
in this work we are mostly interested in attractive bound-
aries or in mixtures of the two.
When a repulsive surface is covered by an attractive

(adsorbing) layer (blue top horizontal line in Fig. 4), ev-
ery time a polymer visits that layer its statistical weight
is increased by a factor q = e−βV , where V < 0 is the
energy gain. (For q = 1 the layer has no effect, while
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q < 1 corresponds to a repulsive potential.) The parti-
tion function can now be calculated from

Z(r, r′, N + 1) = x(r)
∑

r
′′ nn of r

′

Z(r, r′′, N), (15)

where x(r) = q, for r in the adsorbing layer, and x(r) = 1,
otherwise. This equation must be supplemented with
the initial condition Z(r, r′, 0) = x(r)δr,r′ to ensure reci-
procity. The usual diffusion equation, still applicable out-
side the absorbing layer, is thus modified by the potential
near the layer. It is important to note that the region be-
low the absorbing layer is still impenetrable, and thus the
partition function is strictly zero below the surface.
The phenomenology of polymer absorption is as fol-

lows: For zero temperature (q → ∞) all monomers are
on the absorbing layer, and the partition function is dom-
inated by the energy contribution. At small, but finite,
temperatures parts of the polymer detach from the sur-
face gaining entropy. (We can assume that one end of
the polymer is always attached to the surface to avoid
discussion of the center of mass entropy.) The average
number of visits to the absorbing layer will be propor-
tional to N (n = cN , with c depending on temperature).
Despite the loss of entropy, the energy gain from such
visits leads to a partition function Za ≃ [za(T )]

N ≫ µN

in the adsorbed phase. As temperature increases and q is
reduced, there is a point where the decrease in the num-
ber of configurations due to the impenetrable boundary is
exactly compensated by the extra weight provided by the
adsorbing layer to configurations that touch the adsorb-
ing layer. From the perspective of a random walker, the
reduction in the number of possible paths by the bound-
ary is exactly made up by the extra weight of the walks
that arrive at the attractive potential (blue line) but do
not touch the absorbing boundary (red line).
The adsorption of a discrete ideal polymer was studied

by Rubin [39, 40]. He determined the transition point
qc, and demonstrated that for a planar attractive surface
Z = µN , i.e. γa = 1. Comparing the behavior of an
ideal polymer at Ta, to a random walk (diffusion) with
reflecting boundary conditions, Rubin concluded that for
large N these two problems coincide, although subtle
differences remain for small N . Clearly, in the pres-
ence of reflecting boundaries the survival probability of
a diffusing particle is always S(r, t) = 1, which corre-
sponds to a polymer at the adsorption transition point
with Z̃(r, N) = 1.
The universal aspects of Rubin’s results can be cap-

tured in the continuum limit, taking advantage of the
mapping between configurations of the ideal random
walks (path integral), and quantum mechanics of a par-
ticle in a potential [41]. In particular the (ideal) poly-
mer adsorption problem is mapped to a quantum parti-
cle in a one-dimensional potential of an attractive well
adjacent to an impenetrable barrier. Depending on the
strength of attraction, such a potential may or may not
admit a bound state. The bound state (corresponding to
the absorbed polymer) has a wave-function decaying as

ψ(z) ∼ e−λz away from the potential; its energy (∝ −λ2)
designating the gain in polymer free energy upon adsorp-
tion. As the potential is weakened, λ vanishes (linearly in
Ta − T ) indicative of the adsorption transition point. At
coarse-grained level, the combination of barrier and po-
tential can be expressed as the mixed (Robin) boundary
condition ψ′ +λψ = 0. Under further coarse-graining, at
scales larger than λ−1 (irrespective of its sign), this re-
quirement becomes equivalent to the Dirichlet boundary
condition ψ = 0, while for λ = 0 (an unstable fixed point
under coarse-graining), it is the Neumann boundary con-
dition ψ′ = 0. From the perspective of random walks,
ψ = 0 corresponds to absorbing boundaries, ψ′ = 0 to
reflecting boundaries; both limits are scale-invariant (i.e.
such boundaries do not introduce a new length scale to
the polymer problem.)
The above considerations lead to the following inter-

esting result: If all the confining boundaries and inclu-
sions immersed in a long ideal polymer are at adsorption
transition point, and thus in the corresponding diffusion
problem all barriers are reflective, then the trivial solu-
tion of Eq. (14) is S(r, t) = 1 for any t. As this does not
depend on the positions of the various obstacles, there
can be no polymer-mediated force between them! Note
that this is true for arbitrary shapes, and the boundaries
do not need to be scale-free. (In the particular case of
scale-free surfaces, we note the result γa = 1 for future
reference.)
Analytical solutions of Eqs. (12,14) are available for a

number of simple shapes [42]. For scale-free shapes it
is convenient to choose a coordinate system centered on
the center of symmetry (such as the tip of a cone). The
dimensionless survival probability S can only depend on
the dimensionless vector w = r/

√
Dt. Thus, S(r, t) =

H(w), and Eq. (14) reduces to

∇2
w
H +

1

2
w · ~∇wH = 0, (16)

where the subscript w indicates derivatives with respect
to components ofw. In terms of these dimensionless vari-
ables, either the function H or its normal derivative van-
ish on the absorbing or reflecting surfaces respectively.
For some geometries, the solution to Eq. (16) can be ex-
pressed in terms of a radial distance w, and a combina-
tion of angular variables, such as the polar angle θ and
(d − 2) azimuthal angles (φ, ψ, · · · ). For w ≪ 1, i.e. for
long times t, the distance dependence is expected to be
a simple power law wηΨ(θ, φ, . . . ). In this limit, the sec-
ond term in Eq. (16) becomes negligible, and the problem
reduces to solving the Laplace equation

∇2
w
(wηΨ) = 0. (17)

For small fixed r we have S ∼ t−η/2, and comparing it
with the expected Z̃ ∼ Nγ−1, we find that η = 2(1− γ),
i.e. it is the same exponent η that appears in Eq. (9) for
any polymer type.
Thus obtaining the exponent γ, and the related force

amplitude, is reduced to finding η in the solution of
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α

FIG. 5. (Color online) A two-dimensional wedge of inner angle
2α, with a polymer anchored close to its tip. The top side of
the wedge is repulsive, while the bottom side is at adsorption
transition point.

Eq. (17) with appropriate boundary conditions. If all
boundaries are attractive we already know the solution,
corresponding to γa = 1. If all surfaces are repulsive, the
solution to absorbing conditions of the diffusion equation
will need to vanish on the boundaries. Problems of this
type have been solved for a variety of geometries in the
past [13–16, 37, 43]. In the following Sections we consider
several examples of mixed boundaries.

V. TWO-DIMENSIONAL IDEAL POLYMERS

NEAR MIXED BOUNDARIES

In a d = 2 scale-free geometry the (Laplace) Eq. (17)
simplifies to Ψ′′ + η2Ψ = 0, where prime denotes the
derivative of Ψ with respect to the angle θ. This equation
is solved by linear combinations of sin(ηθ) and cos(ηθ).
For repulsive or attractive boundaries of the polymer
problem, we must use boundary conditions of vanishing
Ψ or vanishing derivative Ψ′, respectively. This should be
viewed as an eigenvalue equation, and the primary goal
is finding the correct value of η. This equation (comple-
mented by the boundary conditions) has many eigenso-
lutions. Since Ψ determines the probability or partition
function, its sign cannot change, and consequently we are
interested in the “ground state” that corresponds to the
lowest value of η.
As an example, consider an ideal polymer anchored

close to the central angle 2α of a two dimensional
wedge with mixed (repulsive/attractive) boundaries as
depicted in Fig. 5. If the angle θ′ is measured from
the lower boundary, then the appropriate solution is
Ψ = cos(πθ′/4α), i.e.,

η =
π

4α
or γ = 1− π

8α
, (18)

For two repulsive boundaries the eigenfunction is Ψ =
sin(πθ′/2α), corresponding to

η =
π

2α
or γ = 1− π

4α
. (19)

0 0.2 0.4 0.6 0.8 1

α/π
0

1

2

3

4

η

FIG. 6. (Color online) The solid line depicts the exponent η
for a mixed repulsive/attractive wedge as depicted in Fig. 5,
with opening angle 2α. For comparison, the dotted line de-
picts η for a wedge with two repulsive boundaries.

θ

α

Θ
r

FIG. 7. (Color online) Coordinates for wedge (in d = 2) or
circular cone (in d = 3). The apex angle of a cone/wedge that
excludes the polymer is denoted by Θ, and its compliment by
α = π−Θ. The coordinate angle θ will be measured from the
axis of the cone/wedge.

Figure 6 depicts the α-dependence of η both for mixed
and for purely repulsive boundaries. Note, that in both
cases the exponent diverges in the limit of α → 0, captur-
ing the vanishing of the available states. Equation (18)
with 2α = π, is the same as Eq. (19) for 2α = 2π,
both representing a single repulsive semi-infinite line with
η = 1/2. This means that in d = 2 the presence of such
obstruction does limit the behavior of an ideal polymer.
(An obstructed line only has marginal effects in d = 3.)
It is interesting to note that while the mixed wedge is
equivalent to a repulsive wedge of twice the angle, it can
explore configurations not accessible to the repulsive case
with 2α > 2π, i.e. beyond what would be possible in
d = 2.

The above results for d = 2 are also applicable to
wedges in any dimension d, since the function Ψ is in-
dependent of coordinates parallel to the edge. In partic-
ular, in d = 3 the 2α = π case of Eq. (18) corresponds to
a plane half of which is repulsive while the other half is
attractive, with γ = 3/4.

The above expressions for η enable us to compute the
force amplitude A in the situation depicted in Fig. 2 in
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(a) (b)

FIG. 8. (Color online) Two variants of cone-plane polymer-
mediated setups with mixed boundary conditions: In d = 3
we can have (a) an attractive cone and repulsive plane, or (b)
repulsive cone and attractive plane. In d = 2 these drawing
can be viewed as a wedge approaching a line.

d = 2, when a wedge with a polymer attached to it ap-
proaches an excluded half space. We simply need to find
the exponents in the two extreme situations, when the
wedge is either far away, or is touching the line. Antic-
ipating the generalization from the wedge in d = 2 to
the cone of opening angle Θ in d = 3 in the next sec-
tion, we shall use the notation depicted in Fig. 7. The
isolated cone in Fig. 3a has purely repulsive boundaries
and is solved by Eq. (19) giving ηfar = π/[2(π − Θ)],
while the touching of cone and plate in Fig. 3b is de-
scribed by mixed boundary situation and Eq. (18) results
in ηnear = π/(π − 2Θ). (We have set α → π − Θ for the
repulsive wedge, and α → π/4−Θ/2 in the mixed case.)
This results in the force amplitude

A =
π2

2(π − 2Θ)(π −Θ)
. (20)

Note that A is always positive, even in the limit of a
“needle-like” wedge with Θ → 0. In the reversed sit-
uation where the cone is attractive, while the plane is
repulsive, η = 0 in the remote configurations but retains
the same value as before when the plane and cone are in
contact, leading to

A =
π

π − 2Θ
. (21)

This amplitude is larger than in the previous example,
and in the Θ → 0 limit is the same as a polymer that is
brought to the vicinity of a repulsive surface while held
at an endpoint without a wedge.

VI. THREE-DIMENSIONAL IDEAL POLYMERS

NEAR MIXED BOUNDARIES

In the presence of azimuthal symmetry in three di-
mensions, as with cones of circular cross section, or such
a cone touching a plane and perpendicular to it, the
Laplace Eq. (16) simplifies. With Ψ depending only on
the polar angle θ as illustrated in Fig. 7, it takes the form

(1− u2)
d2Ψ

du2
− 2µ

dΨ

du
+ η(η + 1)Ψ = 0, (22)

0.0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

Q
Π

A

FIG. 9. (Color online) The force amplitude for a three-
dimensional cone with apex angle Θ approaching a plane.
The top curve corresponds to an attractive cone and repul-
sive plane, while the bottom curve is for a repulsive cone and
attractive plane.

where u ≡ cos θ. We seek a regular eigensolution Ψ(θ)
that vanishes on repulsive boundaries or has a vanishing
derivative on attractive boundaries. The general solution
to this equation is given by regular (rather than associ-
ated) Legendre functions

Ψ(θ) = a1Pη(u) + a2Qη(u). (23)

Note that Pη(1) = 1 for any η, while Pη(−1) diverges for
noninteger η. Similarly, Qη(±1) is divergent. The linear
combination in Eq. (23) can be made regular at -1 by a
proper choice of a1/a2. In Refs. [13–15] we described the
analytical solutions of this equation for purely repulsive
cones, or such cones touching a repulsive plane. (Geome-
tries without azimuthal symmetry can be easily handled
numerically [16].)
In many cases, the regularization procedure can be

avoided by a convenient choice of functions. For the ge-
ometry depicted in Fig. 7, the solution must be regular
for Θ ≤ θ ≤ π. Instead of using combinations of Pη and
Qη, we can simply use Pη(− cos θ), which will be regular
at cos θ = −1. The value of η for a repulsive cone is then
determined by requiring

Pη(− cosΘ) = 0. (24)

Since Ψ cannot change sign in the physically permitted
region, the smallest possible η must be chosen. This pro-
cedure is described in detail in Refs. [13–15]. An attrac-
tive boundary requires ∂Ψ/∂θ to vanish at θ = Θ. This,
as in all cases of purely attractive boundaries, is trivially
achieved by Ψ = constant, and η = 0.
Calculation of η for the situation when the cone

touches a plane (as in Fig. 3b) is simplified by noting
that for non-integer η, Pη(u) and Pη(−u) are linearly
independent and both solve Eq. (22) [44]. Thus for non-
integer η, Eq. (23) can be replaced by

Ψ(θ) = Pη(cos θ)± Pη(− cos θ). (25)
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FIG. 10. (Color online) Exponent γ for an ideal polymer at-
tached to a repulsive surface decorated by an attractive sector
with the central angle 2α, as depicted in Fig. 1. The adsorb-
ing sector is assumed to be at the adsorption transition point.
Open squares depict results of direct numerical estimation of
γ, while the full circles represent the exactly known values.

The − and + signs enforce vanishing of Ψ or its deriva-
tive at θ = π/2, respectively, corresponding to a repulsive
or attractive plane. The remaining boundary condition
at θ = Θ can be implemented by proper choice of the
exponent η(Θ), which can be obtained numerically. New
results pertain to the mixed boundary setups depicted
in Fig. 8. (The case of all attractive boundaries is triv-
ial, while that of repulsive boundaries was considered in
[13–15].) From knowledge of the values of η in situations
depicted in Fig. 8, we can use Eq. (8) to determine the
force amplitudes. Figure 9 depicts the force amplitude
for the two cases as a function of cone apex angle Θ.
Similarly, to analogous solution in d = 2 the force am-
plitude for repulsive plane and attractive cone is larger
than that for the reversed situation.
For a less symmetric setup in d = 3, the Laplace equa-

tion Eq. (17) will depend on two angular variables, and
implementation of boundary conditions may prove diffi-
cult. Fortunately, a direct numerical implementation of
Eq. (15), typically only requires a few thousand iterations

for a good estimate of γ from the dependence of Z̃ on N .
As an example we considered a repulsive plane decorated
by an attractive sector of opening angle 2α as depicted in
Fig. 1, and results from a numerical estimation are shown
in Fig. 10. For α = 0 we naturally recover γ = 1/2, as
for a purely repulsive plane, while γ = 1 for α = π, cor-
responds to a purely attractive plane. For intermediate
angles, the critical exponent simply interpolates between
these two limiting values. At α = π/2 the plane is di-
vided into repulsive and attractive halves, with γ = 3/4
as we found in an equivalent geometry in d = 2.

VII. DISCUSSION

In this work we considered several cases of polymer-
mediated interactions between repulsive or attractive sur-

faces. While the loss of entropy leads to a repulsive force
between impenetrable obstacles, the gain in energy may
cause an attractive force for absorbing surfaces. If the
confining objects do not introduce a length scale, which
is the case for impenetrable obstacles, and surfaces at
the adsorption transition point, the entropic force is di-
mensionally constrained to the form A kBT/h where h is
a characteristic distance between the scale-free surfaces.
The amplitude A depends on geometry and universal-
ity class of the polymer system (ideal, self-avoiding, or θ
polymer).
A hypothetical setup, such as in Fig. 8, involves a

long polymer (or several polymers) of length Na at-
tached to the tip of a cone at a separation h from a
plane. For an adsorbing surface before the desorption
transition, a typical configuration will consist of a nearly
straight segment of the polymer stretched from the cone
tip to the surface, followed by a much longer segment ab-
sorbed to the surface. This situation will hold as long as
Na≫ h and Na≫ ξ, where ξ is a characteristic segment
size that diverges close to adsorption transition point as
ξ ∝ (T − Ta)

−1/φ [22, 24]. The free energy difference
between adsorbed and free polymers vanishes at the ad-
sorption transition point as ∆Fa ∼ −NkBT (a/ξ). The
adsorbed polymer also fluctuates away from the surface,
forming a layer of thickness ℓ ∝ ξν that also diverges at
the adsorption transition point. Equation (5) should ap-
ply only in the separation range ξ ≫ h ≫ ℓ, where the
short and long-scale cutoffs are immaterial. On shorter
scales, the force should saturate, presumably to order
of kBT/ℓ, while at large scales, the polymer should be
stretched, with the force reduced to kBT/ξ, correspond-
ing to the loss of free energy per unit length. We thus
expect the following sequence of crossovers for the force

F =











−kBT
ξ if h≫ ξ

AkBT
ξ if ξ ≫ h≫ ℓ

∼ ±kBT
ℓ if h≪ ℓ

. (26)

(The amplitude A, and the sign of the force, is deter-
mined by surface and polymer types.) Closer still to the
transition, such that ξ ∼ Na, additional crossovers are
expected that are not discussed here.
For separations of order of 0.1µm at room temperature,

the entropic force is of order 0.1pN. Forces of such mag-
nitude are now measurable by a host of single molecule
manipulation techniques [2–6], e.g. by atomic force mi-
croscopes (AFMs) [7], microneedles [8], optical [9, 10] and
magnetic [11] tweezers. With a good AFM tip, distances
can be measured to accuracy of a few nanometers [6, 45],
with forces of order of 1 pN measured in nearly biolog-
ical conditions [46, 47]. We note that these accuracies
fall within the range of entropic forces for fluctuating,
featureless polymers described above.
While we considered here the case of a single polymer,

related fluctuation-induced forces are also expected in the
case of dense melts of long polymers. Such forces have
been proposed (dubbed anti-Casimir forces) for dense



10

polymer melts between parallel plates [48, 49]. For the
scale free geometries that we propose, these forces should
have the general forms proposed in this paper, albeit with
different universal amplitudes.
Finally, we note the interesting observation about the

lack of polymer mediated forces for any number of objects
(scale-free or not) immersed in ideal polymers, as long as
all surfaces are at the special adsorption transition point.
Compensation of the loss of entropy by marginally at-
tractive energies renders such obstacles invisible to ideal
polymers, in a situation similar to index matching of col-
loids by a fluid of the same dielectric constant. (The
van der Waals interaction vanishes in such a case.) It is
tempting to imagine that such a situation can also oc-
cur for objects in a self-avoiding polymer. However, the

results (γa > γ1) in Table I indicate that A < 0 for a
self-avoiding polymer near a plane at adsorption transi-
tion point. Nonetheless, by appropriate coatings of the
surfaces (as in Fig. 1) it should be possible to reduce the
force prefactor to A = 0. Thus there is indeed hope for
engineering (at least scale-free) obstacles that are force-
free in a self-avoiding polymer solution.
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