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Trophallaxis, the regurgitation and mouth to mouth transfer of liquid food between members of
eusocial insect societies, is an important process that allows the fast and efficient dissemination of
food in the colony. Trophallactic systems are typically treated as a network of agent interactions.
This approach, though valuable, does not easily lend itself to analytic predictions. In this work we
consider a simple trophallactic system of randomly interacting agents with finite carrying capacity,
and calculate analytically and via a series of simulations the global food intake rate for the whole
colony as well as observables describing how uniformly the food is distributed within the nest. Our
model and predictions provide a useful benchmark to assess to what level the observed food uptake
rates and efficiency in food distribution is due to stochastic effects or specific trophallactic strategies
by the ant colony. Our work also serves as a stepping stone to describing the collective properties
of more complex trophallactic systems, such as those including division of labor between foragers
and workers.

I. INTRODUCTION

Cooperation and division of labor are the hallmarks
of eusocial insect societies such as those of bees, wasps,
ants and termites. At the individual level, ants display
a rather limited behavioral repertoire [1]. With a brain
as small as one tenth of a cubic millimeter, the indi-
vidual ant can only make elementary decisions based on
local stimuli that confer very small amounts of informa-
tion [2]. However, despite the apparent simplicity of their
individual members and the absence of central control,
insect societies as a whole exhibit a surprising degree of
complexity and can perform complicated tasks such as
foraging, food dissemination, brood and nest care that
would be inconceivable for a single individual [1].
Trophallaxis, the mouth to mouth transfer of liquid

food, is considered one of the most central features of eu-
sociality in insects [3]. In ants, it is the main method of
liquid food dissemination within the colony. In addition,
trophallaxis can mediate a uniform colony odor [4] and
confer social immunity against pathogens [5]. Ants pos-
sess two stomachs connected in series, the crop, or stor-
age stomach and the digestion stomach. Forager ants will
exit the nest to collect food which is temporarily stored
in their crop. When the forager returns to the nest,
she disseminates her crop contents through regurgitation
and mouth to mouth feeding to other, non-foraging ants,
which in turn disseminate the food further. Trophallaxis
is relevant not only to eusocial insects, but also for other
eusocial animals such as bats [6]. Beyond its importance
for understanding distributed processes in a biological
setting, it can provide intuition for engineering applica-
tions, such as information or electrical power sharing in
swarms of search and rescue robots [7–10].
Because of its importance both in biology and en-

gineering, trophallaxis in general, and in ants in par-
ticular, has attracted a lot of attention in the recent
years [11]. A number of new techniques to precisely mea-

sure the movement and location of individuals [12], the
food flow [13, 14], or the exact location and food trans-
ferred at each trophallactic event simultaneously [15]
have been developed. On the theoretical and compu-
tational side, significant progress has been made by us-
ing tools from network theory to describe the network of
trophallactic interactions in the colony [16–20].

While this approach has yielded remarkable success,
providing invaluable insight into the food dissemination
process and the strategies ants employ to achieve it, the
quantitative study of very basic trophallactic properties
is still in its infancy. Time scales of food distribution and
saturation and their relation to parameters such as the
colony size are unknown.

In our work, we attempt to fill this gap. Our goal is
to understand the collective properties of food dispersion
in the simplest possible model where the ants inside the
nest move at random, pick their partners for food dis-
semination at random, and only transfer a fixed percent-
age of their crop content. We thus consider a very simple
agent-based model of trophallaxis that captures the main
features of the process in real ant colonies, such as finite
nest size and finite crop capacity, but does not assume
any specific details. Our model therefore intentionally
does not include a dissemination strategy of the ants,
information transfer between ants, a realistic behavioral
model, a realistic model for the ants’ motion and inter-
action with walls, or division of labor (e.g. foragers that
venture outside the nest versus workers that stay inside).

Although we do not consider the movement of the ants
explicitly, it is implicitly taken into account in the two
setups we consider: (i) a well mixed colony, where the
ants move fast enough to be able to visit and interact
with ants at all areas of the nest with equal probability
at all times, and (ii) a nest with spatial fidelity zones [21],
where the ants prefer to be localized in small overlapping
areas and only interact with other ants that are present
in their areas.
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Even in this basic form, the model exhibits a number
of interesting properties that reproduce some of the be-
haviors seen in real ant colonies. Due to its simplicity,
our model allows for analytic predictions in some limits,
which provide laws of the food dissemination efficiency
as a function of the parameters that dictate the individ-
ual ant interactions. These predictions can be viewed
as benchmarks to compare to the behaviors of real ant
colonies, and to assess to what extent the observed per-
formance is due to complex strategies and information
transfer between the donor-receiver pair, and how much
they stem from the collective properties of a stochastic
system.

Despite the simplicity of our approach, the two models
considered here do not generally reduce to a simple re-
alization of the diffusion equation, as one might naively
predict. Due to the finite system size and nonlineari-
ties introduced by finite crop capacities, they are analyt-
ically intractable. Since we are interested in the process
of transferring food into a nest until saturation, they are
also inherently nonequilibrium. Though we are not inter-
ested in the transfer of agents per se but in the transfer of
food through potentially moving agents, our work is re-
lated to some methodologies from nonequilibrium trans-
port systems [22].

The work also bears some connection to epidemic
models, such as the ones found in [23–25]. However,
whereas disease spreading models are usually locally non-
conservative in the quantity spread (the disease can pass
from one agent to the next without the original donor
agent getting cured of the disease), trophallaxis is a
conservative process. The agents only distribute the
food they carry and cannot locally generate food. Also,
the boundary conditions of a trophallactic system are
typically different than the ones encountered in disease
spreading models. The rich behavior of our model cannot
be recovered in any epidemic model that would require
coarse graining of the food concentration. Similarly, due
to the nonequilibrium nature of our problem, the equi-
librium states of some of the epidemic models cannot be
reproduced here.

To allow for some analytical predictions, after intro-
ducing the agent-based model in two dimensions (2D), we
proceed to focus our attention on one-dimensional (1D)
systems. We expect the 1D systems to share a lot of the
same qualitative behaviors as their 2D counterparts, and
to provide useful intuition.

Also, in this work we consider explicitly immobile
agents that are only allowed to interact with other agents
within a specified interaction radius. When this radius
is small, the number of potential trophallactic partners
is limited. This could also be thought of as ants mov-
ing randomly [12, 21] around a fixed position in the nest,
not allowed to permanently wander away from that loca-
tion. The interaction radius then captures how far they
are willing to go from their preferred location to interact
with a partner. A very large interaction radius is equiva-
lent to a well mixed colony, where ants can quickly visit

all of the nest. A more thorough investigation of the 2D
model and finite ant velocity is reserved for future work.
With our work we aim to lay the groundwork for an

understanding of stochastic trophallaxis that will even-
tually allow to investigate more complex systems with
specific strategies in a systematic way.
The rest of this manuscript is structured as follows.

In Sec. II we describe in detail the agent based simula-
tion model of trophallaxis we will consider in the rest
of the work. The simulation model is presented in 2D
with explicit motion, but the analytical description will
be in 1D and without explicit motion. In that section, we
also present the observables that we will use to describe
the behavior of the system. In Sec. III we consider the
large interaction radius limit of our trophallactic model.
In this limit every ant can always interact with every
other ant in the nest, and the analytical description of
this agent based model is akin to a mean-field model. In
Sec. IV we discuss to what extent the finite interaction
radius system can be viewed as a continuous model. We
study the food source in Sec. V and analytically calcu-
late the characteristic timescale for the food uptake rate
of the nest. In Sec. VI we present our numerical results
regarding the food uptake rate and distribution within
the nest and in Sec. VII we finish with a short discussion
and summary.

II. AGENT-BASED SIMULATION MODEL

We consider a simple stochastic model of food exchang-
ing, self-propelled agents, confined to a finite nest cham-
ber. A graphical representation of the trophallactic pro-
cess is shown in Fig. 1. The nest (or system) is a square
area of size L × L with a food source located at the
center of one boundary, modeling the nest entrance (see
Fig. 1 (a)). The N agents (that is, the colony) iteratively
perform three basic actions: moving, collecting food from
the source, and exchanging food with each other. We pro-
ceed to describe the details of these actions in the rest of
this section.

A. Agent motion

We model the agents’ random movements as active
Brownian motion of point-like particles (ABPs; see [26]
for a review) moving with a constant speed v and a ran-
dom unit orientation vector êi, so that the discretized
equations of motion for agent i are:

~xi(t+∆t) = ~xi(t) + ∆t vêi(t)

êi(t+∆t) = êi(t) + ∆t
[

ηξ̂i⊥(t) + αi(t)êi(t)
]

,

where ~xi(t) ∈ [0, L]2 ⊂ R
2 is the agent’s position at time

t; ∆t is the time step; η is a noise parameter, control-

ling the mean rate of change in orientation; ξ̂i⊥(t) ≡
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FIG. 1. Graphical representation of the trophallactic process.
(a) Sketch of the entire system. The blue color represents the
amount of food carried by each agent (circles). An agent is
solid blue when filled at capacity (ci = cmax). The red arrows
stand for trophallactic interactions, and the direction of the
arrow represents the direction of food transfer. The black
arrows signify the direction of agent movement. The source is
depicted as a square at the middle of the bottom system wall.
(b) Trophallactic interaction between two agents. The donor
agent, at the center of the dotted circle, selects one partner
at random from the agents inside the interaction radius R
(dotted circle) and transfers food. (c) One agent that is within
distance R from the source and not yet completely full is
selected at random to pick up food from the source. The
agent picks up a quantity (cmax − ci) from the source to load
full.

ξ̂i(t) −
(

ξ̂i(t) · êi(t)
)

êi(t) is the component orthogonal

to êi(t), of a uniformly distributed random vector on the

unit circle ξ̂i(t); and αi(t) is a Lagrangian multiplier, cho-
sen such that

∣

∣êi(t)
∣

∣ = 1 for all times and agents. Note
that there are no forces between the point-like agents.
We apply hard reflective boundary conditions at the sys-
tem boundaries.
This random movement is a gross oversimplification of

the complex, occasionally directed motion of ants in real
colonies. In addition, real ants are known to keep walk-
ing along a wall more likely when they encounter one,
rather than to back away from it [27, 28]. This thigmo-
tactic behavior can significantly change the distribution
of ants in the nest, and as a result, the food dispersion.
Despite this, as real ants show diffusive mixing behavior
in the bulk of the nest, we believe that an ABP model can
serve as a sufficient starting point for a null model. The
significance of thigmotactism in trophallaxis can then be
investigated as a departure from the null model.
.

B. Food intake from the source

Each agent i can carry an amount (per agent concen-
tration) of food ci(t) ≤ cmax, up to the carrying (or
crop) capacity cmax, which is the same for all agents.

At t = 0, no food is inside the system (ci(0) = 0, ∀i),
and enough food to fill every agent (fmax = Ncmax) ex-
ists at the food source of the system, which is located
at the middle of one boundary (~xsource = (L/2, 0)). The
agents have a finite interaction radius R that limits the
spatial interaction range, i.e., the distance of the part-
ner with which they can exchange food. Whenever an
agent randomly locates the food source, such that the
position of the source ~xsource is within the agent’s inter-
action range (

∣

∣~xi(t)− ~xsource

∣

∣ ≤ R)), it attempts to pick
up food from the source (see Fig. 1 (c)). Food only en-
ters the system through these uptake events. In order
to temporally resolve the food flow into the system, we
do not model this food intake events as instantaneous,
but consider them to last a time T , called interaction
refractory period. Therefore, every T/∆t time steps,
one of the available agents that are within range of the
source (

∣

∣~xi(t)− ~xsource

∣

∣ ≤ R)) and not at their carrying
capacity (ci(t) < cmax) is chosen with equal probability,
and its food concentration is set to the maximum value
ci(t) = cmax. Agents that are at capacity do not attempt
to pick up food at the source, so they are ignored even
if they are within R of the source. Both the source and
the agent that picked up food are then in a refractory
state for the next T/∆t time steps, in which they are not
allowed to exchange food with any other agents. There-
fore, agents can only pick up food from the source one
at a time. It should be noted that real ants can and
do feed in parallel from single food sources. This be-
havior is not captured by our model, but for sufficiently
small colonies such as those analyzed in [15], our descrip-
tion is acceptable. Letting agents pick up food only one
at a time simplifies the model and also leads to a more
controlled flow of food into the system at large interac-
tion radii. The agent that just picked up food from the
source continues to move in its refractory period, such
that the agents always keep moving. This is again cho-
sen for simplicity, so as to decouple the food exchange
events (whether an agent performs an exchange or not)
from the random motion.
Also note that the exact location of the food source is

not important for this model. The model can be modified
by moving the source outside the nest, labeling the ants
that reach and subsequently exit the nest entrance as
foragers and adjusting the characteristic time between
source visits (in our model equal to the refractory period)
to account for the extra time needed to reach the source.

C. Food exchange between agents

The core of our model is the trophallactic exchange
between agents that already carry some food. Little is
known about the specific details of trophallaxis on the
individual level in real animal societies [1]. Therefore,
we propose a minimal set of interaction rules that repro-
duces basic trophallaxis dynamics. Agents that acquired
food, randomly choose a food exchange partner within
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their finite interaction radius R and try to exchange a
fixed percentage σ of the food that they are carrying (see
Fig. 1 (b)).
The specific rules of the interaction are:

1. Every agent i that currently

• has food (ci(t) > 0);

• is not refractory (its last food exchange or in-
take from the source was more than T/∆t time
steps ago);

• has at least one other agent j in its interac-
tion range (

∣

∣~xi(t)− ~xj(t)
∣

∣ ≤ R) that is also
not refractory

is selected in a random order.

2. The selected agent i randomly chooses one of the
non-refractory agents j in its interaction range.

3. An amount

∆ci→j = min
(

σci(t), cmax − cj(t)
)

=

{

σci(t) if cj(t) + σci(t) ≤ cmax

cmax − cj(t) otherwise
(1)

is transferred from agent i to agent j. In this way,
the food receiving agent j takes only as much of
the share σci(t) from the donating agent i as it can
carry. In the special case of cj(t) = cmax, ∆ci→j =
0, and no food is transferred.

4. Both food exchange partners i and j are immedi-
ately set to be refractory for the next T/∆t time
steps, irrespective of the actual amount ∆ci→j ≥ 0
transferred. In consequence, both agents cannot
give or receive food again in this iteration (and the
next T/∆t time steps as well).

This set of rules introduces no bias in the random choice
of available food exchange partners and requires no ac-
tive information exchange between agents. The single
agent always offers the percentage σ of its own food to a
randomly chosen partner, without knowing if the other
one is already full or completely empty. It can only infer
that its partner is at the carrying capacity after the food
exchange when ∆ci→j < σci(t). It is important to note
that consequently both the motion, and the trophallac-
tic strategy (food exchange rules) between the agents are
random.

D. Observables

In this work we are interested in understanding how
food, initially localized at the source, spreads through
the system, until every agent is at its carrying capacity,
i.e. until ci(t) = cmax, ∀i. Quantifying this nonequilib-
rium transport process is complex, and care needs to be

taken in choosing appropriate observables. The simplest
quantities of interest we will use as observables are the
mean concentration of food in the nest

〈c(t)〉 = 1

N

N
∑

i=1

ci(t) (2)

and the variance of food concentrations

〈∆c2〉 = 1

N

N
∑

i=1

[

ci(t)− 〈c(t)〉
]2

. (3)

These observables are not directly informative about the
spatial distribution of the food that has entered the nest.
In order to quantify this, we define the mean squared
distance MSD(t):

MSD(t) ≡ 〈di(t)2ci(t)〉i =
1

N

N
∑

i=1

di(t)
2ci(t),

where di(t) ≡
∣

∣~xi(t)− ~xsource

∣

∣ is the distance between
agent i and the food source at time t. This quantity is
a generalization of the mean squared displacement of a
Brownian particle in statistical mechanics. In our case,
the distance of each agent from the reference point is
weighted by the amount of food it is carrying.
Since limt→∞ ci(t) = cmax and the system is finite, we

can easily calculate the ensemble average steady state
value of MSD(t) from the system geometry by considering

lim
t→∞
N→∞

1

N

N
∑

i=1

di(t)
2ci(t) = cmax

1

A

∫

A

(~x− ~xsource)
2 dA.

(4)
Here, A is the total system area. For a 2D square nest of
side length L, and with the source at the midpoint of one
of the sides, lim t→∞

N→∞
MSD(t) = 5

12 cmaxL
2, whereas for a

1D interval nest of length L with the source at one of the
endpoints it is simply lim t→∞

N→∞
MSD(t) = 1

3cmaxL
2.

We can then define a dimensionless version of MSD(t)
which we designate by MSD(t):

MSD(t) ≡ MSD(t)

lim t→∞
N→∞

MSD(t)
.

With this observable, we are able to monitor the spatio-
temporal distribution of food from the source through the
system. Note that MSD(t) ∈ [0, 1] and when MSD(t) = 1
the steady state has been reached (colony is full).

III. MEAN-FIELD LIMIT: DESCRIBING A

WELL MIXED NEST

To understand the limits of trophallactic behavior in
our system, we will first consider the simple well mixed
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case that takes place when the interaction radius is
R ≥ Lmax, where Lmax is the maximum distance be-
tween any two points in the nest, or equivalently when
the velocity of the agents becomes very large, v ≫ L/∆t.
In this case, every agent has the chance to interact with
every other agent and the source at all times. We can for-
mulate an analytic mean-field model if we consider the
food transfer as a continuous process. This condition can
be satisfied if the food exchange rate is small compared
to the crop capacity cmax. This condition in principle
requires σ ≪ 1, but also that the ants ingest an infinites-
imally small quantity of food at the source. The sec-
ond constraint can never materialize within the confines
of our model. However, we will see that the mean-field
model can accurately predict the average food intake of
the nest even if both of these requirements are not met.
During a short time interval [t, t+dt] each ant i inter-

acts with another ant j with probability dt/
[

T (N − 1)
]

,
where dt/T is the probability of not being in the refrac-
tory state and 1/(N− 1) is the probability of picking ant
j for interaction. The amount of food that is transferred
from ant i to ant j is given by ∆ci→j of Eq. (1). In ad-
dition, each ant picks up food from the source with the
probability

[

dt(cmax − ci)
]

/(TsN). The quantity Ts is
the average time between visits of ants to the nest en-
trance. A large Ts can be used to effectively model a
food source that is far away from the nest entrance.
Thus, the food dynamics is governed by the ordinary

differential equation

dci(t)

dt
=

1

T (N − 1)

N
∑

j=1

j 6=i

(

∆cj→i −∆ci→j

)

+
1

TsN
(cmax − ci). (5)

This equation can easily be solved analytically for the
average food concentration 〈c(t)〉. When taking the av-
erage, the summations in Eq. (5) with piece-wise defined
functions that are symmetric with respect to i and j can-
cel and the solution finally reads:

〈c(t)〉 = cmax

(

1− e−
t

NTs

)

. (6)

In this work, for simplicity, we assume Ts = T , as
described in Sec. II B. A similar equation for the number
of fed individuals as a function of time was derived in
[29], and an exponentially saturating uptake of food has
also been observed experimentally in [15].
Figure 2 directly compares the analytic mean-field pre-

diction for the average food concentration of Eq. (6)
(red dashed line), with the ensemble averaged simula-
tion data without any fitting parameters for σ = 0.005
(blue line), σ = 0.5 (purple line), and σ = 1 (green line).
The interaction radius was set to its maximum value
R = Lmax(= L in 1D), so that the non-dimensional pa-
rameter λ ≡ R

L
(in the rest of the paper called interaction

parameter) is λ = 1. The number of ants N was set to

FIG. 2. (a) Average food concentration 〈c〉 (measured in units
of cmax) and (b) food variance 〈∆c2〉 (measured in units of
c2max) versus time (in units of T ) when R = Lmax. Green
solid line: σ = 1, purple solid line: σ = 0.5, blue solid line
σ = 0.005, red dashed line: mean-field prediction (Eq. (6)),
orange dash-dotted line: σ = 1 prediction (Eq. (7) for (a)
and Eq. (8) for (b)). Even for σ as high as 0.5, the mean-field
model offers a very good approximation of the food uptake
dynamics. The width of the shaded area around each line
indicates the standard deviation.

N = 100. For small values of σ, Eq. (6) gives an excellent
prediction of the food uptake from the agent-based simu-
lations. As σ increases and especially for values σ & 0.5,
the prediction becomes progressively worse. In fact, the
mean-field theory is valid for a certain initial time in-
terval that decreases with increasing food exchange ratio
σ. For a low value (σ = 0.005), agreement is achieved
throughout the whole simulation.
In our simulations ants do not attempt to pick up food

from the source when their crop is full. This is in dis-
agreement with the set-up of the mean-field model as the
last term of Eq. (5) is normalized with the total number
of ants, and not with the number of empty ants. Mod-
ifying the feeding rules to allow ants to attempt to pick
up food from the source even when full only minimally
affects the simulation results and the agreement with the
mean-field model is still very good.
Early in the food dissemination process, the major-

ity of the ants have a completely empty crop. For small
times, we can initially neglect the food exchange between
ants as the food distribution in the nest is mostly dom-
inated by food uptake events from the entrance. The
population of ants is then roughly separated into two
groups: the ants that have a full crop, whose number n
increases linearly with time as n = t/T ; and the ants
who are empty. Consequently, the total food in the nest
increases linearly with time as

〈c〉 ≈ cmaxt

NT
(7)

(orange dot-dashed line in Fig. 2(a)). Note that this bi-
nary model becomes exact when σ = 1, as in this case,
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the ants exchange the entirety of their crop contents and
the separation of the ant population in two groups, full
and empty, is always exact.

The variance 〈∆c2〉 cannot be predicted by the mean-
field model with the same ease. However, again for small
times, Eq. (7) leads to

〈∆c2〉 ≈ c2max

t

NT

(

1− t

NT

)

(8)

(orange dot-dashed line in Fig. 2(b)), which becomes ex-
act for σ = 1 (green line in Fig. 2(b)).

Eventually, assuming large velocities v or large radii R,
the mean-field model predicts that the food is taken up
from the source at an exponentially decreasing rate, with
decay constant γλ=1 = 1/NT to a very good approxima-
tion. In Fig. 3 we explore to what extent this finding
holds when R < L (or λ < 1), that is, the interaction
radius is only a fraction of the nest size. In particu-
lar, we consider the food uptake for immobile agents and
λ = 0.1, 0.5 and 1 for σ = 0.5 (Fig. 3(a)) and σ = 0.005
(Fig. 3(b)).

For small σ we observe that the system switches from
a fast food uptake rate that agrees very well with the
large R model in the initial stages of the process to a
slower dynamics that depends on the interaction radius.
The time when the transition occurs decreases with the
interaction radius. There is a simple interpretation for
this behavior. Initially, all the ants near the nest en-
trance that have access to the source are empty, and the
trophallactic process dynamics is dominated by the ants
at the entrance picking up food. The mean-field theory
holds until the moment when the ants that can pick up
food from the source are approximately at capacity. After
this transition, the behavior stops being well explained by
mean-field theory because the food is now diffusing out
of the nest entrance vicinity via ant to ant trophallac-
tic interactions. The transition between the two regimes
is abrupt for small σ, and becomes less pronounced for
large σ.

Past the transition time, the food uptake can be ap-
proximated by

〈c(t)〉 = cmax −
(

cmax − 〈c(t0)〉
)

e−γ(t−t0), (9)

where t0 is the transition time and γ is a new inverse
timescale for the food uptake. The time t0 of the transi-
tion increases with λ.

Sections IV and V will be devoted to deriving an ap-
proximate value for γ. We will construct a continuum
model to approximate how the food diffuses away from
the nest entrance vicinity to the rest of the nest and
use this to study the saturation behavior of food in the
colony.

FIG. 3. Average food as a function of time. At the beginning
of the dynamics, the amount of food in the system is described
well by the mean-field model (red dashed line). Later, differ-
ent dynamics occur, depending on the parameter values. (a)
For a large σ (σ = 0.5), the amount of food is well described
by the mean-field model for values of λ between 1 and 0.5.
(b) For a small σ (σ = 0.005), the mean-field model is valid
for a reasonable length of time only for λ → 1.0. The system
switches from a fast food uptake rate that agrees very well
with the large R model in the initial stages of the process
to a slower dynamics that depends on the interaction radius.
The time when the transition occurs decreases with the inter-
action radius. The width of the shaded area around each line
indicates the standard deviation.

IV. THE STATIONARY LIMIT: A NEST WITH

SPATIAL FIDELITY ZONES

In the previous section, we mainly discussed a mean-
field type model that allowed spatially independent, all-
to-all interactions. In this section, we explore the regime
of small interaction radii. As already mentioned, this can
be interpreted as ants that occupy spatial fidelity zones
(see Fig. 4). In the explicit equations of motion ants have
velocity v = 0, and their effective spatial fidelity zone is
confined to a circular region of radius R centered around
the ~xi location of ant i. In this limit, the behavior of the
system becomes strongly spatially dependent. The goal
of this section is to derive a set of equations that describe
the food dissemination process in this case.

Given the nature of the trophallactic process with
R ≪ L, it is tempting to describe it as a simple diffu-
sive process with a fixed diffusion coefficient and a source
term. This is deceptive, as the finite crop capacities, the
finite system size, and agents picking up food to capac-
ity at the source render this problem more complex. All
these conditions are relevant to trophallaxis, but make
the problem of finding an exact solution to the appro-
priate dynamical equations analytically intractable. In
order to gain some intuition about the behavior of the
system, we will adopt a series of simplifying assump-
tions that allow us to analytically solve the equations,



7

FIG. 4. Spatial fidelity zones, as implemented in this work.
The displayed ants are free to move inside a zone of radius
R, centered at points P1−4. The ants select their interaction
partners with equal probability only from the set of ants with
overlapping fidelity zones. (a) Small interaction radius. Ant
3 (red) can interact with ants 2 (blue) and 4 (yellow). Ant 1
(b) Large interaction radius. Ant 1 and 3 can interact with
all other ants. Ant 2 can interact only with 1

derive a trophallactic timescale and demonstrate that the
overall system behavior qualitatively agrees with the full
trophallactic dynamics, obtained by simulations.

While the mean-field model was spatially independent
and its predictions should hold for any number of dimen-
sions, any spatially dependent model will in principle de-
pend on the dimensionality of the nest. Since we are pri-
marily seeking to understand qualitative behaviors, the
continuous limit trophallactic models in this work will be
written down and solved in 1D. An explicit treatment of
the more realistic 2D model will be presented in a future
publication.

As we see by comparing Fig. 5 and Fig. 6, the behav-
iors of the 1D and 2D system are qualitatively similar. In
Fig. 5, we present a time series of the food distribution
in a square nest for various parameters σ and λ. The
food source of the nest is at the center of the bottom
nest border (x = L/2, y = 0), and indicated with a black
semicircle. One hundred ants are initially distributed at
random in the nest, with a uniform probability distribu-
tion. Since the uniform probability typically produces a
very inhomogeneous distribution of ants in the nest, a
repulsive potential is applied to ensure that the ants oc-
cupy the nest more homogeneously before their position
is fixed. In Fig. 5 we present the food distribution aver-
aged over 10 independent realizations of the simulation
for the same ant positions. In Fig. 6 we show the average
food distribution (solid red line) for various parameters
σ and λ, when the ants are confined to 1D. Figures 5 and
6 indicate several qualitative similarities between the 2D
and 1D system. First, for small σ and λ (row (a)), the
food initially quickly saturates the area at the vicinity
of the nest entrance (the area within interaction range
of the source), and then disperses to the whole nest via
an initially narrow and subsequently broadening moving
front. Second, for small σ but larger λ (row (b)), the
area within interaction range of the source takes longer

y
/L

(a1)

t = 10
(a2)

t = 31
(a3)

t = 100

y
/L

(b1) (b2) (b3)

y
/L

(c1) (c2) (c3)

y
/L

(d1)

position x/L

(d2)

σ = 0.1
λ = 0.2

σ = 0.1
λ = 0.5

σ = 0.5
λ = 0.2

(d3)

σ = 0.5
λ = 0.5

0.15

0.30

0.45

0.60

0.75

0.90

1.00

food
c(t)/cmax

FIG. 5. Time series of 2D spatial food distribution pattern for
various parameter values σ and λ. For small values of σ and
λ, the dynamics is approximately diffusive with food being
distributed locally amongst close agents. For larger values,
food becomes delocalized and spread among many agents that
are far from each other.

to saturate before the food diffuses away. Third, for large
σ and small λ (row (c)) there is no clear separation be-
tween the time the area close to the nest entrance fills at
capacity and the time the diffusion of food out of that
area becomes important. However, like in the previous
cases, there is still a gradient of food density from the
source at the nest entrance to the opposite border of the
nest. Finally, for large σ and λ (row (d)), the gradient
disappears, and the nest acquires food roughly uniformly.
In order to write down models that are analytically

solvable, we will replace the discrete, agent based descrip-
tion with a formalism that is continuous in space and food
exchange. In this continuous limit, it is more informa-
tive if we speak in terms of spatial food densities ρ(x, t)
instead of per-agent concentrations c(xi, t). The relation-
ship between the continuum and discrete food variables
at a position x and time t is given by multiplying the
concentration with the ant number density N/L:

ρ(x, t) ≡ c(x, t)
N

L
. (10)

The maximal amount of food fmax in the system is then
related to the concentration carrying capacity cmax and
the density carrying capacity ρmax = limt→∞ ρ(x, t) as

fmax = Lρmax = Ncmax. (11)

For simplicity, we initially assume that the ants, or
points in space, only interact with their nearest neigh-
bors, i.e., we consider the case of small λ. The balance
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FIG. 6. Food distribution patterns for ants in 1D. The red
line is an ensemble average over 100 realizations of the model,
the blue background is a histogram of the food distribution
among the ants at each point in space. The 1D behavior and
concentration dependence on σ and λ qualitatively follows
that of the 2D system, displayed in Fig. 5.

equation describing the food exchange between neighbor-
ing points away from the source at positions x, x +∆x,
x−∆x is

∆t
∂ρ(x, t)

∂t
= ∆ρx+∆x→x −∆ρx→x+∆x (12)

−∆ρx→x−∆x +∆ρx−∆x→x ,

where ∆ρ is the continuous analogue to Eq. (1). Using
Eq. (10), this is:

∆ρa→b =

{

σρ(a) if σρ(a) + ρ(b) ≤ ρmax

ρmax − ρ(b) otherwise

= σρ(a)Θ

(

ρmax − σρ(a)− ρ(b)

ρmax

)

+(ρmax − ρ(b))Θ

(

σρ(a) + ρ(b)− ρmax

ρmax

)

,

where Θ(x) is the Heaviside step function. By replacing
ρ(x, t) with its Taylor expansion in ∆x up to the order
O(∆x2), we can obtain a diffusion-like spatio-temporal
partial differential equation for ρ(x, t):

ρ(x±∆x) = ρ(x)±∆x
∂ρ

∂x
+

1

2
∆x2 ∂

2ρ

∂x2
.

Since the Heaviside functions are not differentiable, we
regularize them using the identity

Θ(x) = lim
k→∞

Θk(x) = lim
k→∞

(

1

2
+

1

π
arctan(kx)

)

.

By first replacing all Θ(x) by Θk(x), then expanding
ρ(x, t), and finally taking the limit k → ∞, we derive

∂ρ

∂t
=







σ∆x2

∆t
∂2ρ
∂x2 if ρ

ρmax
(1 + σ) < 1

∆x2

∆t
∂2ρ
∂x2 if ρ

ρmax
(1 + σ) > 1.

(13)

If ants are evenly spaced and each ant interacts only with
its nearest neighbors, then ∆x ≈ L/N and ∆t = T . If
the ants are not evenly spaced, but each ant still interacts
only with its nearest neighbors, we can modify Eq. (12)
to account for the variability in ∆x and then perform an
ensemble average over all agent distributions. Finally,
Eq. (13) is modified by substituting ∆x2 with 〈∆x2〉, the
ensemble mean squared distance between the particles.
More generally, if the finite interaction radius allows for
an agent to have more than one potential trophallactic
partner, then 〈∆x2〉 will be replaced by r2, the ensem-
ble averaged squared distance between an ant and all its
possible interaction partners. Assuming randomly dis-
tributed ants on the one-dimensional interval x ∈ [0, L],
this average distance can be analytically calculated in
the continuous limit. The resulting expression r2 is a
function of the interaction radius R. We show the full
calculation in Appendix C. The final result is

r2

L2
=

1

3

{

− 1
3λ

3 + λ2 if λ ∈ [0, 12 )

− 5
3λ

3 + 3λ2 − λ+ 1
6 if λ ∈ [ 12 , 1].

(14)

Eq. (13) is a diffusion equation with a density depen-
dent diffusion constant. For densities smaller than a
threshold ρmax/(1 + σ) the effective diffusion constant

is D = σr2/T , whereas for densities larger than that

threshold the diffusion constant increases to D = r2/T .
Note that as a consequence of finite crop capacity, very
close to the nest entrance food diffuses effectively faster
and not slower, as one might naively expect.
When assuming that the crop capacity is not exactly

the same for every ant, such that ρmax,i = ρmax + ξi
with ξi drawn from a Gaussian distribution with width
τ , the discontinuous step in Eq. (13) is smoothed out
into a sigmoidal of width τ after averaging over Eq. (12).
Eq. (13) now reads

∂ρ

∂t
= 〈D〉(ρ)∆x2

∆t

∂2ρ

∂2x
(15)

with the averaged diffusivity

〈D〉(ρ) = 1

2

(

σ + 1 + (σ − 1) erf

(

ρmax − ρ(1 + σ)√
2τ

)

)

,

(16)
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where erf(x) is the standard error function. As τ → 0,
Eq. (13) is recovered.

In the next section we will show that the timescale
derived from the below threshold regime determines the
dynamics of the system.

V. DIFFUSIVE LIMIT: DESCRIBING THE

DYNAMICS OF FOOD UPTAKE

In the previous section, we showed an estimate of the
effective diffusion constant in the nest, and saw that the
diffusion constant depends on the food concentration in
the nest (see Eq. (13)). Solving this diffusion equation
analytically for any boundary conditions or source term
is not straightforward. We assume that in the initial
stages of the trophallactic process the majority of the
agents far from the source are below carrying capacity,
(in particular that ρ(x, t) < ρmax/(1+σ)), so the diffusion
constant is

D = σr2/T. (17)

In reality, the diffusion constant should switch to its high
food density value near the source (see Eq. (13)), but for
simplicity, we will just consider D = const in the fol-
lowing derivations of this section. In addition, it is a
priori unclear how to handle the food source. At first
sight, the food supply of the nest could be treated as an
initial condition of the diffusion equation, e.g. a delta
distribution located at the nest entrance. However, this
would turn the nest entrance into yet another food carry-
ing point in space, indistinguishable from the ants. But
that is not the case, since the nest entrance cannot re-
ceive food and does not have a carrying capacity. The
food located at the nest entrance is not really part of the
system, which is why it should rather be treated either
as a boundary condition or as a source term of the diffu-
sion equation. We explore these two possibilities in the
rest of this section. First, we model the food source as
a boundary condition, fixing the amount of food at the
nest entrance, and assuming a fixed diffusion coefficient.
Second, we model the source as an explicit source term,
continuously disbursing food into the nest and in addi-
tion consider finite crop capacity. In both cases we derive
characteristic saturation time scales and show they are in
agreement.

A. The food source as a boundary condition

At the source, the agents should be at carrying capac-
ity. This means that the source can be implemented as
a boundary condition. Namely, if the source is at x = 0,
then we fix ρ(0, t) = ρmax. We therefore have to solve the
standard diffusion equation without a source term in a
1D finite system. The appropriate boundary and initial

conditions are

ρ(x, 0) = 0 for x ∈ (0, L]

and

ρ(0, t) = ρmax , ∂ρ(x,t)
∂x

∣

∣

∣

x=L
= 0.

The solution can then be found using standard meth-
ods (App. A) and expressed as a series:

ρ(x, t)

ρmax
= 1− 4

π

∞
∑

n=1

sin
(

(2n−1)
2 π x

L

)

2n− 1
e
−
(

(2n−1)π
2L

)2
D t

.

(18)
Keeping only the dominant first term (n = 1), the

solution reads:

ρ(x, t) ≈ ρmax

[

1− 4

π
sin

(

πx

2L

)

e−(
π
2L )

2
D t

]

. (19)

In Fig. 7, we plot Eq. (18) (solid line) and Eq. (19)
(dashed line) for times t = 0.001L2/D, t = 0.1L2/D
and t = 0.5L2/D. We see that for large enough times,
Eq. (19) is an excellent approximation of Eq. (18). Note
also that the overall shape of the spatial distribution of
the food and its time dependence qualitatively match the
small λ simulations displayed in Fig. 6. However, this
continuum approach cannot capture the very interesting
individual ant food distribution dynamics shown in the
histograms of Fig. 6. For example, we see that in several
regimes the mean food at a given location is not a good
indicator of the actual food concentration of individual
ants at that location (cf. Fig. 6(a1)). We see that al-
though 〈c(t = 10)〉x=0.1 ≈ 0.75, there are no individual
ants in the bin x ∈ [0.05, 0.1] with ci(t = 10) = 0.75. In-
stead, at that location, the food is distributed bimodally,
with approximately 75% of the ants at capacity and 25%
empty.
From Eq. (18), we can calculate 〈c(t)〉 by integration,

keeping only the slowest decaying term. The approxi-
mate average food in the nest is then found to be:

〈c(t)〉 ≈ cmax

(

1− 8

π2
e−(

π
2L )

2
D t

)

, (20)

and the mean squared distance:

MSD(t) ≈ 1− 96(π − 2)

π4
e−(

π
2L )

2
D t. (21)

Associating the resulting exponential decay parameter
(

π
2L

)2
D with the decay parameter γ of the exponential

source term in Eq. (9) yields

γ =

(

π

2L

)2

D . (22)

Using Eq. (17) we obtain

γ ∼ σr2

TL2
. (23)
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FIG. 7. Analytic food distribution for times t = 0.001L2/D
(blue line, bottom), t = 0.1L2/D (brown line, middle),
t = 0.5L2/D (red line, top). The solid lines are the full so-
lution (Eq. (18)) and the dashed lines are the approximation
(Eq. (19)). The dashed line for t = 0.5L2/D overlaps with
the solid line and is not visible.

FIG. 8. Average food concentration 〈c〉/cmax (a) as a function

of time t/T (b) and as a function of rescaled time σr2t

L2T
for

various values of σ and λ. After rescaling the time, the curves
collapse on the same master curve. The width of the shaded
area around each line indicates the standard deviation.

FIG. 9. Mean squared food distance MSD (a) as a function

of time t/T (b) and as a function of rescaled time σr2t

L2T
for

various values of σ and λ. After rescaling the time, the curves
collapse on the same master curve. The width of the shaded
area around each line indicates the standard deviation.

For equidistant agents with nearest neighbor interac-
tions, using r2 = (L/N)2, this reduces to

γ ∼ σ

TN2
. (24)

Thus, Eq. (23) provides the characteristic time scale
for the trophallactic process in the nest. In Fig. 8 and
Fig. 9 we plot 〈c〉 and MSD(t) respectively for σ = 0.005
and 0.1; and λ = 0.05, 0.1 and 0.2. In panel (a) we plot
the quantities as a function of t/T , whereas in panel (b),
we rescale time using γ in Eq. (23). We find a relatively
good collapse of the data after an initial period where
the dynamics is dominated by direct source food uptakes
from agents in range of the source. This indicates that
despite the oversimplifications of the analytic model, the
timescale L2T/σr2 captures the dynamics of the discrete,
agent-based model.
In Fig. 10 and Fig. 11 we present the same observables

〈c〉 and MSD(t) for a 2D system with σ = 0.005 and 0.1;
and λ = 0.13 and 0.2. Again, we show those quantities
as a function of t/T in panel (a) and rescale the 2D data
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FIG. 10. Average food concentration 〈c〉/cmax for a two-
dimensional system (a) as a function of time t/T (b) and as

a function of rescaled time σr2t

L2T
for various values of σ and λ.

After rescaling the time, the curves collapse to a good degree.
The width of the shaded area around each line indicates the
standard deviation.

according to the timescale in Eq. (23) derived for the 1D
model in panel (b). The data collapse to a good degree.
Note that the curves collapse when rescaled in terms of σ,
but separate when rescaled in terms of λ. This indicates a
good predictive power of the linear σ dependency of the
1D scaling Eq. (23) in 2D systems, but less predictive

power of the λ dependent r2/L2 part. Since the latter
was derived from the 1D geometry, a loss of predictive
power going from 1D to 2D is to be expected.

B. The food source as a source term.

In this section, we consider the alternative case of mod-
eling the food source as a source term of the diffusion
equation. For computational ease, in this section we
consider a 1D semi-infinite nest, with the source being
located at x = 0+. The diffusion equation that governs
the dynamics of the system reads:

(25)∂
∂t
ρ(x, t) = D ∂2

∂x2 ρ(x, t) + q(x, t),

FIG. 11. Mean squared food distance MSD for a two-
dimensional system (a) as a function of time t/T (b) and as

a function of rescaled time σr2t

L2T
for various values of σ and λ.

After rescaling the time, the curves collapse to a good degree.
The width of the shaded area around each line indicates the
standard deviation.

where ρ(x, t) is the food density, D the diffusivity, and
q(x, t) the source term.
The food is taken up at the single point x = 0 at an

exponential rate with unknown exponent γ, similarly to
what is observed in the experiments [15]. Again, we focus
on the initial stages of the trophallactic process, assuming
a constant D as in Eq. (17), and that ants have a finite
capacity. We estimate a bound for the exponent γ. As
we showed in Section III, the amount of food remaining
at the nest entrance decays approximately exponentially
in time (Eq. (6)). If the total amount of food available
initially is fmax (as in Eq. (11)), then the total amount
of food still available at the source at time t is fmaxe

−γt

and the source term reads

q(x, t) = − ∂
∂t
fmaxe

−γt2δ(x)

= 2γfmaxe
−γtδ(x) . (26)

where δ(x) the Dirac delta distribution, as the nest en-
trance is located at x = 0+. For normalization pur-
poses we include a factor of 2 in Eq. (26) and assume
∫∞
0

δ(x)dx = 1.
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Equation 25 can be non-dimensionalized by choosing
the time scale st, length scale sx and food scale sρ to be

st =
1

γ
, sx =

√

D

γ
and sρ = 2fmax/sx .

Denoting a non-dimensional variable as X̃ ≡ X
sX

, Eq. (25)
becomes

(27)∂
∂t̃
ρ̃(x̃, t̃) = ∂2

∂x̃2 ρ̃(x̃, t̃) + e−t̃δ(x̃) .

With the boundary and initial conditions

ρ(x, 0) = 0 for x ≥ 0

and

∂ρ(x,t)
∂x

∣

∣

∣

x=0
= 0,

the general solution of the semi-infinite system in non-
dimensional terms is

(28)ρ̃(x̃, t̃) =

∫ ∞

0

dx̃′
∫ t̃

0

dt̃′K̃(x̃, x̃′, t̃− t̃′)e−t̃′δ(x̃′) ,

where

K̃(x̃, x̃′, t̃) ≡ 1√
4πt̃

e−
(x̃−x̃′)2

4t̃

is the heat kernel of Eq. (27). Dropping the tildes, the
non-dimensional solution finally becomes

(29)ρ(x, t) = e−t



−1

2
Im

(

eix erfc

(

x

2
√
t
+ i

√
t

)

)



 ,

where erfc(x) = 1 − erf(x) is the complementary error
function, and Im(x) denotes the imaginary part of x (see
App. A for derivation). Some simpler analytic approxi-
mations can be derived by considering the limits of the
complementary error function. For large times and far
from the source,

ρ(x, t) ≈ 1

2

√

t

π

1
(

x2

4t + t
)e−

x2

4t

approximates Eq. (29) well, whereas for short times and
close to the source

ρ(x, t) ≈ 2

√

t

π
e−

x2

4t − |x| e−t

is a good approximation.
We now explore the relationship between γ and D.

The higher γ is, the faster the nest absorbs food from
the source. However, a very large γ would lead to a very
large density ρ(x, t) in the vicinity of the nest entrance,
which contradicts the finite carrying capacity. In the rest
of this section, we derive an upper limit for γ that is

consistent with the finite carrying capacity of the system
ρmax.
Going back to dimensional notation, Eq. (29) evalu-

ated near the source (x → 0) reads:

ρ(0, t) = −fmax

√

γ

D
e−γtIm

(

erfc
(

i
√
γt
)

)

. (30)

Since γt ≥ 0,

Im
(

erfc
(

i
√
γt
)

)

= − 2√
π

∫

√
γt

0

ez
2

dz ,

and Eq. (30) becomes

ρ(0, t) =
2fmax√

π

√

γ

D
e−γt

∫

√
γt

0

ez
2

dz .

The finite crop capacity is reached at a time tf , such that

ρ(0, tf) = ρmax.

The time tf when this equality is fulfilled depends on
γ and σ. A large γ or a small σ will lead to fast food
saturation near the source.
In fact, for every time t, the food density near the

source has to be less than or equal to ρmax,

ρ(0, t) ≤ ρmax

⇔ ρ̃(0, t̃) ≤ ρmax

sρ
=

1

2L

√

D

γ

⇔ γ ≤ 1

ρ̃(0, t̃)2
D

(2L)2
, (31)

where the tildes denote dimensionless quantities.
By numerically evaluating the dimensionless density at

the origin, we find that ρ̃(0, t) initially increases, reaches
the maximum value of ρ̃(0, t) ≃ 0.31 and then decreases
as the finite amount of food at the source diffuses to
infinity. Every value of ρ̃(0, t) results in a different upper
limit for γ through Eq. (31). Hence, if γ is constant
throughout the process, the upper bound for γ should be
equal to mint̃(

1
ρ̃(0,t̃)2

D
(2L)2 ), or

γ . 10.4
D

(2L)2
.

This is consistent with Eq. (22) derived for the finite
system. The D/L2 dependency of γ is not surprising
as it could have been easily predicted by considering
the dimensionless groups that can be constructed with
the equation parameters, γ, D and L. However, note
that L is not an explicit length scale of the semi-infinite
system presented in this section, but comes in through
the equation relating the total amount of food fmax and
the saturation density ρmax and can be re-expressed as

γ . 10.4
Dρ2

max

(2fmax)2
.

Thus, we have shown how the diffusion coefficient and
the implicit system length scale provide an upper bound
for the overall food uptake by the nest.
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FIG. 12. The time t0.5 until the average food in the colony
reaches 0.5cmax. (a) Half time t0.5 as a function of λ for
σ = 0.005 (blue, top curve), σ = 0.05 (purple, middle curve)
and σ = 0.5 (green, bottom curve). (b) Rescaled half time
σr2t0.5
TL2 as a function of λ for σ = 0.005 (blue, bottom curve),

σ = 0.05 (purple, middle curve) and σ = 0.5 (green, top
curve). The half time decreases with increasing λ and σ. The
σ and λ dependence of t0.5 can be for the most part explained
by the scaling of Eq. (23). For high λ, the σ dependence grad-
ually disappears, and the scaling of Eq. (23) fails to explain
the behavior. In that limit, the relevant timescale is that of
Eq. (6).

VI. HALF TIME AND VARIANCE

In Fig. 12 we plot the time t0.5 it takes for the nest
to acquire half of the available food. We see that the
time decreases with increasing σ, the proportion of food
the ants attempt to exchange at each interaction, and λ,
the normalized interaction radius that is a proxy of how
well mixed the colony is (or alternatively how broad the
fidelity zones of the ants). We see that the half-time t0.5
dependence on σ declines with increasing λ.
As shown in Fig. 12, the half time is approximately

t0.5 ≈ 0.4TL2

σr2
for small interaction radii. For high inter-

action radii, the half time scales as t0.5 ∼ NT , as can be
deduced from Eq. (6).
The food variance 〈∆c2〉 in the colony is a proxy of how

well the available food is distributed among the agents
in the nest. It is displayed in Fig. 14. After an ini-
tial increase, the variance plateaus for some time, until

it reaches a maximum approximately at a time 0.3TL2

σr2
,

roughly when the colony is becoming half full. After
that time, the variance is monotonically decreasing, as
the food is distributed better, due to the emerging satu-
ration of the colony.

At the beginning of the food dissemination process,
the behavior of the variance, showcased in Fig. 14, re-
flects the food uptake dynamics when there is no satu-
ration near the source. During the initial sharp increase
of the small σ curves, the ants inside the interaction ra-
dius of the source, initially all empty, quickly take up
food at a rate similar to the mean-field model. As σ
is small, the rate at which the food diffuses away from
that zone is slower than the fast uptake of food at the
entrance. Consequently, 〈∆c2〉 increases quickly, and a
growing proportion of the ants near the entrance reaches
saturation. The food uptake rate of the area near the
source then becomes approximately equal to the rate at
which the food diffuses out of that zone, and the slope
of 〈∆c2〉 decreases. Eventually, when that area is close
to saturation, it acts as an effective boundary condition
ρ(R, t) = ρmax, and the food diffuses to the rest of the
nest as a propagating front (see e.g. Fig. 6 (a1)-(a3)).
This clear separation of the two timescales happens only
for small σ. For large σ, the plateau disappears.
Since for relatively small σ the front between the ants

that are at capacity (to the left of the propagating front
of Fig. 6) is relatively sharp, we can approximate the
normalized variance as 〈∆c2〉/cmax2 ≈ n/N − (n/N)2,
where n is the number of ants at capacity. This is max-
imized when n = N/2, i.e. when the colony is half full,
in agreement with the simulation results of Fig. 14 and
Fig. 8.
In Fig. 13 and Fig. 15 we present the same observables

t0.5 and 〈∆c2〉 again for a 2D system, showing similar
behavior compared to the 1D system.

VII. DISCUSSION

We have presented a simple agent-based model of
trophallaxis, the mouth to mouth dissemination of food
in an ant colony. The agents (ants) in our model have
finite capacity and can move in a finite nest. Their inter-
action is confined to a finite zone (spatial fidelity zone),
which, depending on the parameter selection, can extend
to the whole nest. The agents pick an interaction part-
ner at random and donate a fixed percentage of their crop
content, limited by the recipient’s crop capacity. Agents
that can reach the entrance of the nest are picked at
random to fill their crop at capacity with food from the
source. Our model describes the trophallactic process in
the simplest possible terms, assuming stochastic effects
over planning or strategy wherever possible.
We then proceed to consider analytically tractable sim-

plifications of the agent-based model in order to under-
stand the model behavior for a well-mixed colony (i.e.
quickly moving agents or large interaction radius), and
for nests with spatial fidelity zones. For both cases, we
have derived characteristic time scales for the food uptake
rate that allow us to describe the collective trophallactic
dynamics in the respective limits. The mean-field ap-
proximation (well-mixed colony) is expected to hold for
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FIG. 13. The time t0.5 until the average food in the colony
reaches 0.5cmax for a 2D system. (a) Half time t0.5 as a func-
tion of λ for σ = 0.005 (blue, top curve), σ = 0.05 (pur-
ple, middle curve) and σ = 0.5 (green, bottom curve). (b)

Rescaled half time σr2t0.5
TL2 as a function of λ for σ = 0.005

(blue, bottom curve), σ = 0.05 (purple, middle curve) and
σ = 0.5 (green, top curve). The half time decreases with in-
creasing λ and σ. The σ and λ dependence of t0.5 can be for
the most part explained by the scaling of Eq. (23). For high
λ, the σ dependence gradually disappears, and the scaling
of Eq. (23) fails to explain the behavior. In that limit, the
relevant timescale is that of Eq. (6).

small amounts of food exchanged compared to the crop
capacity (σ ≪ 1) and for large interaction radii compared
to the system size (λ ≈ 1). The diffusion approximation
(spatial fidelity zones) is a reasonable description also for
small amounts of food exchanged compared to the crop
capacity (σ ≪ 1), but for small interaction radii com-
pared to the system size (λ ≪ 1) instead. Small amounts
of exchanged food are necessary for both approximations
to hold because this allows a time-continuous description
of the change in the food concentrations and densities.
The time scales generally depend on parameters such as
number of ants, the typical time between interactions,
and the fraction of food transmitted at each trophallac-
tic event. We find that for localized ants with spatial
fidelity zones, the characteristic food uptake timescale
decreases as the percentages of food exchanged or the
spatial fidelity zones become larger. This acceleration of
food uptake is also reflected in the timescales of how the
food is spread through the nest and distributed among
the colony. We also find that this timescale is more gen-
erally an upper limit of how fast a trophallactic system
of agents with finite capacity can absorb food. This leads
us to conclude that, in the case of spatial fidelity zones

FIG. 14. Normalized food variance 〈∆c2〉/c2max (a) as a func-

tion of time t/T and (b) as a function of rescaled time σr2t

L2T

for various values of σ and λ. After rescaling the time, the
curves collapse on the same master curve at the later stages
of the dynamics. The variable shapes and plateau sizes of the
initial stages of the dynamics reflect the complicated spatial
food distributions along the length of the nest, presented in
Fig. 6.

of limited extent, a drastically different strategy would
be needed to significantly accelerate food uptake, e.g. by
having dedicated foragers that enter the nest and freely
move to all locations to deliver food rather than staying
close to the entrance and relying on diffusion for food
dissemination.

Upon increasing the size of the spatial fidelity zones,
the amount of food being exchanged plays a progressively
smaller role in determining the characteristic timescales.

Finally, for a well-mixed colony, where the interactions
between the ants occur at random, there is minimal in-
fluence of the proportion of food exchanged between ants
on how fast the colony can absorb food. The food up-
take is then primarily determined by how frequently the
source is visited.

All of the free parameters that we consider (number of
ants, system size, proportion of food exchanged, extent
of spatial fidelity zone and interaction duration time) are
easy to measure and to compare to experiments such
as [15]. With our work, we have laid the theoretical
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FIG. 15. Normalized food variance 〈∆c2〉/c2max for a two-
dimensional system (a) as a function of time t/T and (b) as

a function of rescaled time σr2t

L2T
for various values of σ and

λ. After rescaling the time, the curves collapse on the same
master curve at the later stages of the dynamics.

groundwork for a quantitative description of trophallaxis
in ants and other eusocial insects in terms of simple ob-
servables.

The behavior of ant colonies in a realistic setting de-
parts in many ways from our basic stochastic model. Real
ant colonies can exhibit division of labor, forager recruit-
ment, information exchange introducing non-random be-
havior, or non-trivial trophallaxis strategies. However,
our model and predictions can provide a useful bench-
mark to assess to what level the observed food uptake
rates and efficiency in food distribution is due to stochas-
tic effects or ingeniously applied trophallactic strategies
by the ant colony.
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Appendix A: Solving the diffusive limit, source as a

boundary condition

The system solved in Sec. VA is equivalent to:

x ∈ [0, 2L] for ρ(x, 0) = 0

and

ρ(0, t) = ρmax, ρ(2L, t) = ρmax.

Transforming to ρ′ = ρmax − ρ turns the boundary and
initial conditions into

ρ′(0, t) = 0 , ρ′(2L, t) = 0 and ρ′(x, 0) = ρmax .

Solving the diffusion equation with these boundary con-
ditions is known as the problem of cooling of a rod and
can be done through separation of variables. The solu-
tion reads

ρ′(x, t) =
4ρmax

π

∞
∑

n=1

sin
(

(2n−1)
2 π x

L

)

2n− 1
e
−
(

(2n−1)π
2L

)2
Dt

.

We transform back to ρ = ρmax − ρ′ to get Eq. (18).
A simple integration can give us the average food

〈c(t)〉 = cmax



1− 8

π2

∞
∑

n=1

1

(2n− 1)2
e−(2n−1)2 π2

4L2 Dt





and the mean squared distance:

MSD(t) = 1+
96

π4

∞
∑

n=1

2 + π(−1)n(2n− 1)

(2n− 1)4
e−(2n−1)2 π2

4L2 Dt.

Appendix B: Solving the diffusive limit, explicit

source term

For completeness, here we outline the derivation of
Eq. (29). In this derivation, we assume that the system
is infinite (as opposed to semi-infinite, as in the main
text), and that the source is at x = 0. The solution
for the semi-infinite case can be easily obtained from the
full system by considering only x > 0 and adjusting the
normalization.
Dropping the tildes, the solution of Eq. (27) for x ∈

(−∞,∞) reads:

ρ(x, t) =
1√
4π

∫ ∞

−∞
dx′
∫ t

0

dt′
e
− (x−x′)2

4(t−t′)
−t′

√
t− t′

δ(x′)

=
1√
4π

∫ t

0

e
− x2

4(t−t′)
−t′

√
t− t′

dt′

=
1√
4π






−
√
π

2i
e−t



e−ix

(

1+erf

(

− x

2
√
t− t′

+i
√
t− t′

)

)

+ eix

(

−1 + erf

(

x

2
√
t− t′

+ i
√
t− t′

)

)











t

0

.



16

The upper boundary (t′ = t) of the time integral evalu-
ates to zero for x ≥ 0. For x < 0, it evaluates to

√
4πe−t sin(x) .

The lower boundary (t′ = 0) evaluates to

−
√
π

2i
e−t



e−ix

(

1 + erf

(

− x

2
√
t
+ i

√
t

)

)

+ eix

(

−1 + erf

(

x

2
√
t
+ i

√
t

)

)



 .

Through making use of erfc(z) ≡ 1− erf(z) and denoting
the complex conjugate of z with z̄, the solution can be
concisely written as:

ρ(x, t) = e−t

[

sin(x)Θ(−x)+
1

4i

(

u erfc(w)− u erfc(w)
)

]

,

where

(B1)u ≡ eix and w ≡ x

2
√
t
+ i

√
t .

Since u erfc(w)− u erfc(w) = −2iIm(u erfc(w)), the solu-
tion finally becomes

(B2)

ρ(x, t) = e−t



sin(x)Θ(−x)

− 1

2
Im

(

eix erfc

(

x

2
√
t
+ i

√
t

)

)



 .

The solution in the main text (Eq. (29)) can be obtained
from this solution by dropping the Θ(x) term. Note that
Eq. (B2), integrated over x ∈ (−∞,∞) at t → ∞ will
eventually yield

∫∞
−∞ ρ(x, t → ∞) = 2fmax in dimen-

sional terms.

Appendix C: Averaged interaction radius

The derivation of the ensemble averaged squared dis-
tance between pairs of interacting ants r2(R) can be split
into two parts, depending on the size of the interaction
radius R:

1. The ant’s interaction range overlaps only with one
system boundary or does not overlap with the
boundaries: R ∈ [0, L2 ).

2. The ant’s interaction range either overlaps with one
or with both system boundaries: R ∈ [L2 , L].

1. Case R ∈

[

0,
L

2

)

: The average squared distance

r2f of a point r in the interaction range [−R,R] ⊂ R (e.g.

one ant) to the center of the interval r = 0 (e.g. the
other ant) free of boundaries can be calculated as the
mean of the uniform distribution u(I) of points in the
interval I = [−R,R]. The uniform distribution is

u(I) ≡ 1
∫

I
dr

=
1

|I| =
1

2R
,

where |I| = 2R denotes the length of the interval.
Using this, the boundary free average squared distance
can be calculated as

r2f =

∫

I

r2u(I) dr =

∫ R

−R
r2 dr

∫ R

−R
dr

=
1

2R

∫ R

−R

r2 dr =
R2

3
.

(C1)

The same approach can be used to calculate the aver-

age squared distance r2b (s) of a point r in the truncated
interaction range [−s,R] ⊂ [−R,R] (e.g. one ant) to
the original center of the interval at 0 (e.g. the other
ant), when the interaction range overlaps with one sys-
tem boundary. Without loss of generality, this boundary
is put to the left in the calculation. Due to symmetry,
the result remains the same for an overlap with the right
system boundary.

r2b (s) =
1

s+R

∫ R

−s

r2 dr =
R3 + s3

3(s+R)
. (C2)

In order to calculate the system wide average over these
average squared distances, the system interval [0, L]
needs to be split up into the following three regions:

1. The average squared distances resulting from in-
teraction ranges overlapping with the left system

boundary: 1
R

∫ R

0 r2b (x) dx .

2. The average squared distances resulting from non
overlapping interaction ranges in the central region:

1
L−2R

∫ L−R

R
r2f dx .

3. The average squared distances resulting from in-
teraction ranges overlapping with the right system

boundary: 1
R

∫ L

L−R
r2b (L − x) dx .

These three regions can then be averaged using their
lengths as weights to obtain the system wide average:

r2 =
1

L

(

∫ R

0

r2b (x) dx+

∫ L−R

R

r2f dx

+

∫ L

L−R

r2b (L− x) dx

)

.

Due to the above mentioned symmetry of the system
boundaries, the third integral can be rewritten to match
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the first one, so that

r2 =
1

L

(

2

∫ R

0

r2b (x) dx+

∫ L−R

R

r2f dx

)

.

And with Eq. (C1) and Eq. (C2), the final expression for

R ∈
[

0, L
2

)

becomes

r2 =
1

L

(

2

∫ R

0

R3 + x3

3(x+R)
dx+

∫ L−R

R

R2

3
dx

)

=
1

L

(

5

9
R3 +

1

3
(L− 2R)R2

)

= −1

9

R3

L
+

1

3
R2 .

2. Case R ∈

[

L

2
, L

]

: This case needs an extra

calculation for the average squared distance r2db(s) of a
point r in the double truncated interaction range [−s, L−
s] ⊂ [−R,R] (e.g. one ant) to the original intervals center
at 0 (e.g. the other ant), when the interaction range
overlaps with both system boundaries.

The calculation of r2db(s), similar to those of r2f and r2b (s),
is

r2db(s) =
1

L

∫ L−s

−s

r2 dr =
(L− s)3 + s3

3L
. (C3)

In order to also calculate the system wide average over
these average squared distances for the case ofR ∈ [L2 , L],
the system interval [0, L] again needs to be split up into
three regions (left, middle and right). The only differ-
ences are that the average squared distances calculated
in the middle region now result from interaction ranges
overlapping with both system boundaries, and a change
in the region boundaries. To clarify, the three parts are:

1. The average squared distances resulting from in-
teraction ranges overlapping with the left system

boundary: 1
L−R

∫ L−R

0 r2b (x) dx .

2. The average squared distances resulting from inter-
action ranges overlapping with both system bound-

aries: 1
2R−L

∫ R

L−R
r2db(x) dx .

3. The average squared distances resulting from in-
teraction ranges overlapping with the right system

boundary: 1
L−R

∫ L

R
r2b (L− x) dx .

Again, using a weighted average, the analogous system
wide average is

r2 =
1

L

(

∫ L−R

0

r2b (x) dx+

∫ R

L−R

r2db(x) dx

+

∫ L

R

r2b (L− x) dx

)

=
1

L

(

2

∫ L−R

0

r2b (x) dx+

∫ R

L−R

r2db(x) dx

)

.

With Eq. (C2) and Eq. (C3), the final expression for

R ∈
[

L
2 , L

]

becomes

r2 =
1

L

(

2

∫ L−R

0

R2 + x2

2(x+R)
dx

+

∫ R

L−R

(L− x)2 + x2

2L
dx

)

=
1

18
L2 − 1

3
LR+R2 − 5

9

R3

L
.

Putting both cases together in non-dimensional terms
(λ = R

L
) finally gives the expression Eq. (14).

[1] B. Hölldobler and E. O. Wilson, The Ants, 1990 (Har-
vard Belknap, Cambridge, 1990).

[2] N. Razin, J.-P. Eckmann, and O. Feinerman, J. R. Soc.
Interface 10, 20130079 (2013).

[3] J. H. Hunt, in Biology of social insects: Proc. IX
Congress, IUSSI, edited by M. Breed, C. Michener, and
H. Evans (Westview Press, Boulder, Colo., 1982).

[4] A. Dahbi, A. Hefetz, X. Cerdá, and A. Lenoir, J. Insect
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