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We analyze a population of Brownian particles moving in a spatially uniform environment with
stochastically-gated absorption. The state of the environment at time t is represented by a discrete
stochastic variable k(t) € {0,1} such that the rate of absorption is v(1 — k(t)) with v a positive
constant. The variable k(t) evolves according to a two-state Markov chain. We focus on how
stochastic gating affects the attenuation of particle absorption with distance from a localized source
in a one-dimensional domain. In the static case (no gating), the steady-state attenuation is given by
an exponential with length constant /D /v, where D is the diffusivity. We show that gating leads
to slower, non-exponential attenuation. We also explore statistical correlations between particles
due to the fact that they all diffuse in the same switching environment. Such correlations can
be determined in terms of moments of the solution to a corresponding stochastic Fokker-Planck

equation.

I. INTRODUCTION

A  fundamental property of a one-dimensional
diffusion-absorption process is that it generates an
exponentially decaying steady-state solution in response
to a localized source of particles. “Absorption” could
be due to the presence of spatially distributed traps
within or on the boundary of the medium [1-8], or due
to degradation/inactivation of the diffusing particles as
in the formation of protein gradients at the intracellular
[9-12] and multicellular levels [13-17]. In the latter case,
the presence of attenuation in the particle concentration
plays a crucial role in cell signaling, either coupling
cell growth to the cell cycle or regulating gene activity
according to spatial location during embryogenesis.
On the other hand, attenuation can be a problem for
diffusion-based forms of intracellular transport that
distribute newly synthesized proteins to different regions
of a cell. This issue is particularly acute for neurons,
with their extensively branched dendrites that receive
information from other neurons, and a single long axon
that delivers information over long distances to other
neurons or muscle cells [18-21]. The presence of active
motor-driven transport does not necessarily solve this
problem, since the stochastic nature of molecular motor
trafficking results in an effective advection-diffusion
equation, which still results in attenuated steady-state
concentrations of particles [22].

Recently, we have shown how attenuation of the
steady-state concentration can be mitigated by taking
the absorption of particles to be reversible [22-25]. Al-
though our mathematical analysis was motivated by
experimental studies of intracellular transport in neu-
rons [26, 27], it reflects a general feature of diffusion-
absorption processes: if absorption of particles is re-
versible then the particles absorbed close to the source
are free to be re-released into the diffusing pool of par-
ticles for absorption at more distal regions. In this pa-
per, we investigate another potential mechanism for mit-
igating attenuation, which is based on stochastic gating.
The latter has been studied extensively within the con-

text of diffusion-trapping problems [28-33] but, as far
as we are aware, has not been considered within the
context of the spatial distribution of diffusing molecules
within cells. One of the important distinctions that has
to be made in the case of stochastically-gated diffusion is
whether each diffusing particle is independently gated or
the medium itself is gated. In the latter case, statistical
correlations arise between the particles even when they
are non-interacting, due to the fact that they move in the
same fluctuating environment. We have explored this is-
sue in a series of papers concerning diffusion in domains
with stochastically gated exterior boundaries or interior
barriers (gap junctions) [34-39]. In this paper we ex-
tend our analysis to the case of a population of Brownian
particles moving in an environment with stochastically-
gated absorption. That is, the state of the environment
at time t is represented by a discrete stochastic variable
k(t) € {0, 1} such that the rate of absorption is y(1—k(t))
with ~ a positive constant. The variable k(t) evolves ac-
cording to a two-state Markov chain. For simplicity, we
typically assume that the absorption process is spatially
uniform, though we also consider an example of spatially
heterogeneous absorption in section V.

The structure of the paper is as follows. In section II,
we consider a single Brownian particle diffusing along the
semi-infinite line z € [0, 00) with a reflecting boundary
at x = 0. Assuming that the particle starts at x = 0,
we determine the steady-state absorption density ¢(z) as
a function of position x. In the case of a static absorp-
tion rate v, we find that g(x) decays exponentially with
length constant /D/v where D is the diffusivity. On
the other hand, if the absorption rate is stochastically
gated, then the attenuation of ¢(z) as a function of z is
non-exponential and significantly slower. In section III
we turn to a large population of non-interacting Brow-
nian particles diffusing in the same randomly switching
environment. Given a particular realization of the en-
vironment, the population density evolves according to
a Fokker-Planck (FP) equation with a time-dependent
absorption rate. It follows that different realizations of
the environment generate an ensemble of FP equations.



We show how moments of the corresponding population
densities, obtained by taking expectations with respect
to realizations of the environment, evolve according to
a hierarchy of differential Chapman-Kolmogorov (CK)
equations. Analyzing the second-order moment equa-
tions allows us to determine the variance in the stochastic
absorption density. In section IV we develop an alterna-
tive approach to studying stochastically gated absorption
by decomposing the solution into the product of a deter-
ministic factor and a non-spatial stochastic factor. The
latter is then analyzed using a method originally due to
Kubo [40]. Finally, in section V we consider an example
of spatially heterogeneous, gated absorption involving N
spatially localized traps. For simplicity, we assume that
the stochastic gating of the traps is synchronized so that
there is still a single gating variable k(t) € {0,1}. If each
trap had its own independent gate with discrete state
kn(t) € {0,1}, then switching would be described by a
Markov chain with 2%V states. Synchronized switching
might occur if there were some form of coupling between
the traps or some external drive that switches the traps.

II. SINGLE BROWNIAN PARTICLE WITH
STOCHASTICALLY GATED ABSORPTION

A. Static absorption

Consider a single Brownian particle diffusing along the
semi-infinite line z € [0, 00). Suppose that at any point =
the particle can be absorbed at a rate v. (Such absorption
could be due to a set of closely spaced discrete traps,
as previously investigated within the context of diffusive
transport in spiny dendrites of neurons [20].) Let p(z, )
be the probability density for the particle to be at x at
time ¢t and not yet absorbed. Then

dp 9%p

o = Doz T
We assume that the particle is initially injected at the
end z = 0 and this boundary is reflecting. (Throughout
this paper we fix the units of space and time by setting
D =1 and v =0.1.) Thus,

op(,t)
ox

Clearly in the large-time limit we have

(2.1)

=0; p(z,0) = é(x).

=0

(2.2)

Jim pr.0) =0

for all z € R™ so that there does not exist a non-trivial
steady-state solution. One way to obtain a non-trivial
steady-state solution is to consider a population of in-
dependent Brownian particles injected at the end x = 0
according to a constant flux Jy, and determining the re-
sulting steady-state particle concentration u(x). The lat-
ter takes the form of a decaying exponential

u(x) = ie_\/wiD‘”.
VD

However, it is also possible to extract the exponential
nature of the transport process at the level of a single
Brownian particle.

The basic idea is to keep track of the probability flux
into targets by introducing the density ¢(z,t) such that

9q(z,1)
5 = P@ ) a(z,0)=0. (2.3)
Integrating with respect to times gives
¢
q(z,t) = 'y/ p(x, T)dT. (2.4)
0

Although p(x,t) — 0 as t — oo, one finds that

q(z,t) = q(z) = 'y/ooo p(z, 7)dT as t — oo. (2.5)

Moreover, integrating equation (2.1) with respect to
x and ¢, and using equations (2.2) establishes that
Jo7 a(x)dz = 1. In other words, ¢(z) is the probability
density that the particle is absorbed at x. It is straight-
forward to determine ¢(z) using Laplace transforms. Set-
ting

p(z, s) :/ e *¥p(x,t)dt, (2.6)
0

we see that ¢(z) = vlims_o p(z, s). Laplace transform-

ing equation (2.1) and using the initial condition in (2.2)

implies that for each s

O =0, zeo) P =0

— — s)p=—6(z), =z ,00);  — = 0.

dgz VTP ’ dz|,_,
(2.7)

It follows that p(z,s) is determined by the Neumann

Green’s function on the semi-infinite line:

_ 1 —/Gre/De
(v+s)D

D

Bz, s) (2.8)

We thus deduce that the probability density for absorp-
tion is an exponentially decaying function of x,

q(z) = | Le=V/Dz, (2.9)

o)

B. Gated absorption

Following previous work on diffusion in randomly
switching environments [24, 37], there are two alterna-
tive ways to introduce gated absorption, see Fig. 1. First,
the Brownian particle can switch between two conforma-
tional states labeled k = 0,1, and is only absorbed (de-
graded) if it is in state k = 0. Alternatively, there exists a
physical gate that can switch between two discrete states
k = 0,1, so that the Brownian particle is only absorbed if



the gate is in state £ = 0. In the case of a single Brownian
particle, these two scenarios are statistically equivalent.
However, this equivalence breaks down in the case of a
population of non-interacting Brownian particles moving
in the same switching environment (see section IIT).

We will assume that the discrete state k(t) € {0,1}
evolves according to a two-state Markov chain with con-
stant transition rates «,f. Let X(t) denote the cur-
rent position of the particle given that it hasn’t yet been
absorbed, and consider the Markov process (X (t), k(t))
with probability density

pr(z, t)dx (2.10)
=Pz < X(t) <z +dx, k(t) = k| X(0) = 0,k(0) = 0].
The probability densities pg(z,t), k& = 0,1, evolve ac-

cording to the differential Chapman-Kolmogorov (CK)
equation

Jpo 9%po
—_— = 2.11
o 92 Bpo +ap1,  (2.11a)
Op1 9*p1
=D— 2.11b
s 502 T Bpo — ( )
These are supplemented by the initial conditions
pr(z,0) = prd(x), (2.11¢)
with py + p1 = 1, and boundary conditions
0 t
Ol o o, (2.11d)
Ox x=0

Note that we could also take the diffusion coefficient to
differ in the two states, but for simplicity we take them

k(t)=0 k(t) =1
My _ B,
@ 5 < o)
(a)
o - e
b) D o D
X > X —

FIG. 1. Schematic diagram of a Brownian particle diffusing in
a one-dimensional domain with gated absorption. Absorption
can only occur when both the particle and the gate have the
same color.) (a) The particle switches between two conforma-
tional states, k = 0,1, and can only be absorbed in the state
k = 0. The rate of absorption is v, and the switching rates
between the two conformational states are given by «, 8. (b)
Same as (a) except that now the gate, rather than the par-
ticle, switches state. [Note that in the figures diffusion is
one-dimensional; the vertical coordinate is simply introduced
to illustrate absorption.]

to be the same.
density

Finally, we introduce the absorption

¢
q(z,t) = 7/ po(x, T)dr. (2.12)
0
Again we use Laplace transforms to determine ¢(z).
Laplace transforming equations (2.11a) and (2.11b), and
using the initial conditions yields

d2
D dfo (v + B+ s)po + apr = —pod(z), (2.13a)
d*pr e
D = (a+s)p1 + Bpo = —p10(x). (213b)
for x € (0,00). It is useful to rewrite these equations in
matrix form by setting p = (g, p1) " with
a’p -
D% — (A(Y) +sD)p = —d(x)e, @ € (0,00),

where

- (15 3). o= (3)

(We keep track of the dependence on v because in sec-
tion IV we encounter similar equations except that v —
27.) Let us now set s = 0. Let Ay () denote the eigen-
values of A(v) with corresponding left and right eigen-
vectors denoted by Vi (v) and vi(y), respectively, with
V4 - vy = 0. Note in particular that

(2.14)

1
Ae(7) =5 [a+5+vi Via+5+9)? *4017] ;
(2.15)
which are real, positive and distinct. It follows that A(7)
is diagonalizable. Introducing the expansions

B(5,0) = ey (@4 () + e (@v (), (216)
we obtain the pair of uncoupled equations
Lo N esa) = Ty (i), (217)
A () = T ()(a), (217b)
where
PR A1) R L VHC) R T R

vi(y)-ve(y)  (a=Ax(7))?+af

Solving these equations along identical lines to the non-
switching case shows that

Fﬂ:O‘)

e~V (/D
VDA (A

ce(z) = (2.19)

and

q(x) = vpo(,0) = la—h
()

+(a=A-(7))
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FIG. 2. Absorption density ¢(z) as a function of absorption
position z. The solid curves are determined from Eq. (2.20)
and the marks are the results from Monte Carlo simulations.
We take 8 =1, vy=0.1, D =1, and « varies.

In particular, if &+ 8> ~, then Ay > A_ and A\_(y) =
(a/ (a4 B))7y. Hence, in the fast switching regime

q(x) ~ | /%fﬁefv Yett/ D (2.21)
where
«
=y, 2.22
Vet = 57 (2.22)

is an effective absorption rate. This is equal to the origi-
nal absorption rate multiplied by the mean proportion of
time the Brownian particle or gate is in the state &k = 0.
Plots of the spatial decay of ¢(x) for different values of
a and other parameters fixed are shown in Fig. 2. It can
be seen that large a increases the decay rate, whereas
small « reduces the effects of absorption at sites close to
the source at = 0 so that resources can reach regions
further into the domain.

III. POPULATION OF BROWNIAN PARTICLES
DIFFUSING IN A STOCHASTICALLY GATED
ABSORBING ENVIRONMENT.

So far we have focused on a single Brownian parti-
cle diffusing in a stochastically gated absorbing environ-
ment. We now turn to the case of a population of non-
interacting Brownian particles diffusing in such an en-
vironment. In contrast to the single particle case, the
two scenarios shown in Fig. 1 are no longer equivalent.
That is, if each particle randomly switches conforma-
tional state, then there are no statistical correlations be-
tween the particles, and one can simply carry over the
analysis of section II. On the other hand, if the gate it-
self randomly switches state, then correlations arise from

the fact that all the particles diffuse in the same switching
environment. We will consider the latter in this section.

Consider an ensemble of identical, independent Brow-
nian particles labeled by i = 1,..., N with position vari-
ables X;(t), X;(0) = 0, all being subject to the same
randomly switching environment, see Fig. 3. Consider
a single realization of the stochastic switching process,
o(t) = {k(7),0 < 7 < t}. Take the thermodynamic limit
N — o0, and let P(z,t) denote the probability density
of particles in state x at time ¢ given the particular re-
alization o (t). The population density evolves according
to the stochastic Fokker-Planck (FP) equation

OP(z,t) B D82P(:17,t)

ot Ox?

—y1 = k@®)]P(x,t), x>0

(3.1)
with P(z,0) = §(x) and a reflecting boundary at x = 0.
We also introduce the corresponding absorption density
Q(z,t) with

9Q(x, t)

ot

and Q(z,0) = 0. Noting that the densities P(z,t) and
Q(x,t) are random fields with respect to different realiza-
tions of the dynamic gate, we will average with respect
to these realizations and analyze the large-time limit.

We will proceed by extending recent work on diffusion
processes with randomly switching boundary conditions
[34, 36, 37, 39]. In these studies a method was developed
for deriving a closed set of equations for equal-time mo-
ments of the stochastic fields. For our gating model, the
first-order moments are defined according to

ﬁk(xvt) = E[P(I7t)1k(t):k]a Q(x’t) = E[Q(I,t)],

= 3[1 = k()] P(x, ), (3.2)

(3.3a)

and the second-order moments are
Ck (Jf, Y, t) = E[P(Jj’ t)P(ya t)lk(t):k:}: (33b)
Ry (z,y,t) = E[P(2,t)Q(y, t) Lkt)=k]s (3.3¢)
S(x,y,t) = E[Q(x,1)Q(y, )], (3.3d)

where expectation is taken with respect to realizations
o(t). Here 14—y is an indicator function which is equal
to one if k(t) = k and is zero otherwise. Higher order
moments are similarly defined, for example,

CV @y, ey t) = E[P(21,8) -+ P(@ry ) Lige)—i)-

(3.4)
Y o
Oog A o 0© ﬁ, o ®0 gO
© 6° - |®©° % o 0
0% oo © o e® 0o ()
X — X

FIG. 3. Population of Brownian particles diffusing in the same
environment with stochastically-gated absorption.



From a computational perspective, the various mo-
ments can be determined by running multiple realizations
o1,...0y of the population model. Each trial o; yields
a probability density PN (z,t), whose accuracy will de-
pend on the populatlon size N Averaging with respect
to the realizations then yields an approximation of the
first-order moment,

p(z,t) =

Po(z,t) + Py (z,1)

1ZPN o).
Similarly,

C(x7yat) = Co(fE,y7t) + Cl(xuyvt)

X
~x Y P (2, )P (y,t).
j=1

The existence of correlations induced by the switching
environment means that

Ck(x7 Y, t) 7& T?k(x7 t)ﬁk(% t)7

for example.

In the appendix, we show how to derive a closed set
of equations for the first and second moments following
along analogous lines to [34]. We find that the first-order
moments uy evolve as

Py _ %Py
ot _Dax

(1=E)Pp+ > Wimb,p, (3.5)

m=0,1

with Neumann boundary conditions at x = 0. Here W is
the generator of the two-state Markov chain underlying
the stochastic gate:

(3.6)

Moreover
(3.7)

Formally speaking, equations (3.5) are identical to equa-
tions (2.11a), (2.11b) for the single-particle probability
densities pi(x,t). It follows that we can identify g(x,t)
with g(x,t). (Note that the first-order moments of the
population model are not always equivalent to the proba-
bility densities of the single particle model, since there is
a much wider class of boundary conditions that one can
impose on the population model (3.1). This reflects the
fact that particle conservation needn’t hold at the pop-
ulation level. For example, one could impose a constant
non-zero flux of particles at © = 0, see also the discussion
at the beginning of section II.)
Similarly, it can be shown that

OCy, 0%Cy, 0%Cy,
=D D —2v(1 —
ot Ox? + Oy (1= k)Cy
+ ) WimCom (3.8)
m=0,1

These are supplemented by the initial conditions

Ok(xayao) :ﬁk(xao)ﬁk(yao)a (39)
and boundary conditions
8Ck(xayat) —0= 8Ck($,y,t) , k:O,l
or 0 dy =0
(3.10)

Equations (3.8) for the second-order moments C(z,y, t)
are identical in form to the CK equation that would be
written down for the joint probability density of two
Brownian particles with positions x and y at time ¢,
evolving in the same randomly switching environment.
More generally, C(") is related to the joint probability
density of r particles. However, we are mainly inter-
ested in the statistics of the absorption distribution in
the large-t limit, in particular, the variance in the distri-
bution across multiple realizations of the gate. The latter
is given by (assuming it exists)

Var[Q(z)] = tlim S(x,z,t) — q(z)?,
—00

where ¢(x) is the solution (2.20), It turns out that

the second-order moment distribution S(z,y,t) is deter-

mined by Ry(x,y,t), which itself couples to Ck(z,y,t),

see appendix. That is,

(3.11)

aRk(SL’,y,t) o 82Rk(f£,y,t)
ot =D a 2 (1 = k)R (2, y,1)
(1= k)Cr(@,y,t) + Y WignRn(z, 9, 1), (3.12)
m=0,1
and
8S ) 7t

Equations (3.12) and (3.13) are supplemented by the con-
ditions Ry (x,y,0) = S(z,y,0) = 0 and 9, Rx(0,y,t) = 0.
Combining equations (3.11) and (3.13) implies that

Var[Q(z)] = 2yRo(z, ,0) — ¢(x)?,

where R(z,y, s) is the Laplace transform of R(z, v, t).
Since equation (3.12) is coupled to the two-point cor-
relation Cy(z,y,t), we first solve equation (3.8) with

(3.14)

Cr(z,y,0) = §(x)d(y)pr and
oo _oa
oz lz=0 B 8y y=0

Proceeding as in section II B, we apply the Laplace trans-
form to equation (3.8), set s = 0 and write it in the
matrix form

DAC(z,y,0) — A(29)C(z,y,0) = —eod(2)d(y) (3.15)

for C = [Co,C1]T. The matrix A(2y) is given by equa-
tion (2.14) except that v — 2v. Following equation
(2.16), we introduce the expansion

Cl2,,0) = fi(z,y)v(27) + f-(z,y)v_(27),



which yields the decoupled equations

DAfi(z,y) — Ae(2y) fe(x,y) = =T+ (27)0(x)d(y).
(3.16)

Equations (3.16) can be solved using Green’s functions
and the method of images. Let x = (z,y) and set |x| = r.
First, note that the fundamental solution G, of the two-
dimensional modified Helmholtz equation satisfies (in po-

J

Cu(x,€) = g (Kolibx — €1) + Kolpbx — &11) + Ko(px — &a]) + Ko(lx — &)

lar coordinates)

G,  10Gu 5. _
oz o M9 =0

The solution is given by

1
g#(r) = %KO(,L”’)?
where K is a modified Bessel function of the third kind.
Next we introduce the source point & = (zg,yo) and the
mirror image vectors & = (—Zo,%0),&2 = (—zo, —Yo),
& = (x0,—yo). It then follows from the method of im-
ages that the Neumann Green’s function of the modified
Helmholtz equation in the first quadrant of R? is

(3.17)

Finally, expressing fi in terms of G, , where py = \/A+(2v)/D, gives

Co(,9,0) = = [(@ = A (29T (29) G (%,0) + (0 = A ()T (29)Gu_(x,0)]
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FIG. 4. Standard deviation of absorption density Q(z) over
different realizations of the stochastic gate using (3.14). We
take 8 =1,v=0.1, D = 1, and « varies. The inset zooms in
on absorption positions z € [0, 10].

(3.18)

(

Returning to equation (3.12), we now seek to analyze
Ry (z,y,t). Again we apply the Laplace transform and
set s = 0 to obtain

O’R - ~
D— — A(7)R = —yCy(1,0)7,

02 ﬁ = (Eo,él)T.

We introduce the decomposition

R(z,y,0) = vy(y)rs(z,y) + v_(7)r-(=,y),
with

827“i

D5 —A(y)rs = —T+(7)Co,

and T'+(7y) given by Eq. (2.18) for ey = (1,0)". The
solutions are immediately

re(z,y) = 5 7§i(7) - [e—\//\i(v)/Dlw—ﬁl + e~ VA+()/ D+ ao(f,y,O)dﬁ, (3.19)
+(v)D Jo
and
Ro(,,0) = (a0 — A ()4 (2,9) + (@ — A_(7))r—(x,1). (3.20)

In Fig. 4, we use (3.14) to plot the standard deviation

(

of Q(z) over realizations of the stochastic gate. Inter-



estingly, this plot shows that the standard deviation of
Q(z) is non-monotonic in the switching rate a = g for
certain values of x > (0. Nevertheless, will see in sec-
tion IV below that Q(z) becomes deterministic in the fast
switching limit and hence its standard deviation vanishes
ifax>»1,>1.

IV. EXPLICIT STOCHASTIC SOLUTION

Our analysis of a population of Brownian particles dif-
fusing in the same randomly absorbing environment re-
quired studying the piecewise-deterministic PDE (3.1).
Another way to view this equation is as an example of a
parabolic PDE with a stochastically gated decay rate. In
this section we construct an explicit solution of this more
general class of stochastic PDEs and show how r-point
correlations can be analyzed using previous studies of
stochastically-gated compartments. We then relate this
analysis to the particular case of diffusion in absorbing
environments.

Suppose P(x,t) satisfies the following evolution equa-
tion

OP(z,t
oP(,t) zeQCRY
ot

(4.1)
where IL,, is a linear differential operator and k(t) € {0,1}
evolves according to the two-state Markov chain of pre-
vious sections. Equation (4.1) is supplemented by ap-
propriate boundary conditions on 92 and an initial con-
dition P(x,0) = vo(z). We now observe that P can be

decomposed as

- LIP(x7t) _’7(1 - k(t))P(.’L’,t),

P(x,t) = e " Oy(x,t), (4.2)

where 6(t) is the residence time of k() in state 0,

H(t)z/o (1 — k(7)) dr,

and v(x,t) is the deterministic solution to the initial
boundary-value problem

v

i L,v, (4.3)
with the same boundary conditions and initial condition
v(z,0) = vo(x). With the representation (4.2), we see
that understanding the statistics of P reduces to under-
standing the statistics of e=7?®), The latter problem was
originally analyzed by Kubo [40] in the study of spectral
line broadening in a quantum system, and subsequently
extended to chemical rate processes with dynamical dis-
order by Zwanzig [41]. It has subsequently arisen in other
contexts such as modeling the exchange of particles to
and from a well-mixed domain within the plasma mem-
brane through a randomly opening and closing channel
[42]. Here we apply such methods within the context of

the stochastic PDE. We first note that in the fast switch-
ing limit, a + 8 — oo with a/ fixed, we have that with
probability one,
@
0(t) = pot, Bg= ——.
( ) Lo Po o+ B
(Note that (py, 1 —pp) " is the stationary measure of the

matrix W.) Hence, in this fast switching limit we have
that with probability one

P(x,t) — e 7Poty(z,t).

That is, for fast switching the problem reduces to the
problem with an effective static decay rate pgy (see also
section II B). In addition to this almost sure limiting be-
havior, we can use (4.2) to calculate the r-point correla-
tions of P,

E [ 1:[ P(xj, tj)] = (H§:1 v(x;, tj)) E[H;:1 e—'y@(t,-)]7
) (4.4)

for x1,...,2p,t1,...,t. € [0,00). For the moment, we do
not restrict ourselves to equal-time correlations (t; = t
for all 7), and we focus on the cases r = 1 and r = 2.

First observe that Y (t) = e=7%(®) is a piecewise deter-
ministic Markov process that satisfies

Y(t) = —v(1 - k()Y (?).
Hence, the probability density function of Y(¢),
Pr(y,t)dy = P(Y(t) € (y,y + dy), k(t) = k),

satisfies the forward differential CK equation

0 0

gpo = oz ( - ’Yypo) — Py + oPy (4.5)
0

a'Pl = 57)0 — aPy. (46)

From equations (4.5) and (4.6), it follows that the first
moments of Y (¢),

mk(t) = E[Y(t)lk(t):k],
satisfy the linear ODEs

(o) =—am (),

with A(7) given by equation (2.14), and the initial con-
ditions, my(0) = py, assuming P(k(0) = k) = pi. Hence,

we have that
mo(t) \ _ ~Ame  Po
m(t) p1 )’

This equation can be solved by expanding in terms of the
eigenvectors vy (or equivalently diagonalizing the matrix
A). We thus obtain the result

m(t) =Ty (y)e v () + T (y)e - Miv_(4).
(4.9)

(4.7)

(4.8)



Hence, the first moment of P is
E[P(z,t)] = v(z,t)(mo(t) + mi(t)). (4.10)

To compute the 2-point correlation of P, we need to
calculate the 2-point correlations of Y,

m%) (t, t(]) = E[Y(t)1k(t):ky(t())]-k(to):j]»

for t > to > 0 and k,j € {0,1}. It is straightforward to

show that m](c )(t to) satisfies (4.7) with initial conditions
at t =ty given by

m;(w)(to,to) = 5k,]m( )(to),
where Jy, ; is the Kronecker delta and
m\? (1) = E[e"20O 1) ;).

Hence, we have that

(
m?g;(t’t‘)) — o AM)(t—t0) 50,]‘7”%3(150) .
my; (t,t0) 61,5m;" (to)

Moreover m(?) = (m((JQ),m§2))T evolves according to the
equation
d m(()2) (2)
— =—-A(2 4.11
dt (mgz) (27) mgz) ( )
which implies
mA (1) =Ty (29)e Vv, (2y)  (4.12)
+T_(27)e Mty _(29).  (4.13)

Combining these results, the two-point correlations of P
are given by

E[P (2, t2) P(z1,t1)]
= U(IEQ, tg)’U(l'ly tl)

m'?
z 12]1 (tz’ tl)
Jj2,51€{0,1}
where to > t1 > 0.
The analysis simplifies in the case of the equal-time
correlations

S o,

k=0,1

Xy, t) =

]E{ﬁp(xj,t)}

ﬁ v(zj,t) | E [e_me(t)} ,
j=1

Generalizing equation (4.11), we find that

E[e—rw(t)} m( )( t) +m(r)( t), (4.14)
where

d () m

— =—A(r 0 . 4.15

dt <mgr) ) () <mgr) ( )
Hence,

o A [ TTote o) im® rem® e

Z k (1,...,2,1) vy, t) | [mg ’ (£)+my (1))
k=0,1 j=1

(4.16)

An alternative way to analyze the equal-time correlations
is to derive PDEs for the moments along the lines out-
lined in section IIT and the appendix. For the general

PDE (4.1) we find that C’ ) satisfies the r-th order PDE

aC(r) r

ZLIJC(T) ZAk (ry)C{1).

This has a solution of the form

(4.17)

C M@y, .o t) = 0 (24, e, )M (E),

with v(") satisfying the equation

(r) r
816}% - Z Lo, o).

j=1

The latter has the separable solution

T

X1yeeoy XTpyt) = Hv(xj,t),

j=1

7J(r)(

and thus we recover equation (4.16).
Let us now return to the specific PDE given by equa-
tion (3.1). In this case

2 _—+*/(aDp)

v(z,t) = 95 e

:

Substituting equation (4.9) into (4.10) and taking the
limit ¢ — oo then recovers the solution (2.20) for g(z).
This follows from the Laplace transform

1 e D
Llv(z,t)e MN](s) = ———=e VO Fs)/Dz,
(A+s)D
Similarly, using equation (4.16) for » = 2 and equation
(4.13), we see that

1 2,2
CO($ay7t) + Ol(xayat) = 787@ +y1/(4DY)

wDt
x (T4 2y)e”

My (29) + T (29)e

7/\7(2v)tv_(27)) )

Laplace transforming this equation using the identity

1
L <2Dte

and setting s = 0 then recovers the solution (3.18). One
possible advantage of the moments methods developed in
section III is that one can determine derived quantities
such as E[Q(x,t)Q(y, t)] by solving the auxiliary equation
(3.12) for the equal-time moments Ry (x,y,t). In terms of
the direct method above, one has to evaluate the double
integral

_x2/4Dt—/\t> _ [s+A]/D)

1
BKO(:E



E[Q(x, t)Q(y,t)] = 72/0 /0 v(x,Tg)v(y,ﬁ)m(%) (max(72,71), (min(re, 7)) dry drs.

Another advantage of the moments method is that it can
handle heterogeneous absorption.

V. HETEROGENEOUS ABSORPTION

A classical problem in the theory of diffusion-limited
reactions is analyzing the effective rate of absorption of
Brownian particles moving in a medium with periodi-
cally or randomly distributed static traps [1, 3, 5, 7]. In
cases where Smoluchowski mean-field theory holds, one
can show that the survival probability of the diffusing
particles exhibits exponential decay at a rate that de-
pends on the concentration of traps. In other words, the
ensemble of traps may be treated as a uniform (homog-
enized) absorbing medium. This is the approach taken
in previous sections. Here we turn to the case of a spa-
tially heterogeneous absorbing medium consisting of N
spatially localized traps at positions x,, n = 1,...,N.
For simplicity, we will assume that the stochastic gat-
ing of the traps is synchronized so that there is a single
gating variable k(t) € {0,1}. If each trap had its own
independent gate with discrete state &y (¢) € {0,1}, then
switching would be described by a Markov chain with 2V
states.

The population model of section III now evolves ac-
cording to the stochastic equation

2 N
8P((9f’ U= p? a;(gz it~ k(o) D 8@ = wa)Pa(t)

n=1
(5.1)
P(z,,t) and a reflecting bound-

for x > 0, with P,(¢) =
ary at x = 0. Moreover,

N
3@({(;,15) =yl — g T — Tn) Py (t), (5.2)

and Q(z,0) = 0. Note that 74 has the units of velocity
rather than inverse time. It follows that we can set

N
t) = Z Qn(t)(S(l‘ - xn)7
n=1
with
Dn a1~ k(1) Patr).

For the sake of illustration, we will focus on the first-
order moment equations for pg(z,t) and g(z,t) defined
by Eq. (3.3a), after dropping the bars. After setting

Prn(t) = pr(n, t) = E[P(2n, t) Ly)=4),

(

we have
Opr
s R WL
1=0,1
N
—Yd0k.0 Z d(x — xn)po,n(t) (5.3)
n=1
and
dqn
— YaPon 4
g = apo, (). (5.4)

We want to calculate
G = tlim tn(t) = 'Yd/ P0,n(T)dT = v4P0,n(0). (5.5)
> 0

Laplace transforming Eq. (5.3) with pg(z,0) = prd(z)
we have

d*py
702 Z Wiipt — spi = —6(x)p
1=0,1
N
+940k,0 Y 8(x = x4)Po,n(s), (5.6)
n=1

supplemented by the boundary condition

el g,
dx =0
Summing both sides of Eq. (5.6) with respect to k €
{0,1} gives
9p al
Do — sp = —3(x) + 7 n; 8(z — x)Po.n(s) (5.7)
with P (s) = Do.m(8) +P1,m(s). Introduce the Neumann
Green’s function G(y, z; s) with
d*G ;
D((i:?yjf’s) —sG(y,z;8) = —0(x —y), =,y € (0,00),
(5.8)

and 9,G = 0 at y = 0. Solving this equation yields

1
Gy, x;s) = \/;[ —/5/Dle—yl +e” \/S/7D(z+y)}_

(5.9)
An application of Green’s theorem then leads to the im-
plicit equation

Bo,s) = /0 Ty Gy, i)

N
l6(y) —Vd Z oy — xn)ﬁo,n(s)]
n=1
—Yd Z G(xn, T3 8)pon(s)-

n>1

(5.10)

= G(0,z;s)



Return to Eq. (5.6) and set k = 0:
d*p, _
dpo (s +a+ B)po = —6(x)po — ap
x?
N
+ya Y 8(x — 20)Pon(s), (5.11)
n=1

This equation can be solved using the Neumann Green’s
function G(z,y;s) = G(x,y,s + a + B):

=G(0,2:5)p0 —va Y G, x5 8)Po.n(5)

n>1

+a/ Gy, z; s)ply, s)dy.
0

Do(x,s)

Finally, substituting for p(y, s) using Eq. (5.10) and set-
ting * = x,,, we obtain the matrix equation

= Goml(s )p0+aﬁ0m( ) (5.12)

ﬁo,m(S)

_de [ nm +01Hnm( ) ﬁO,n(S)v
where énm(s) = é(xn, Tm; ),

Houm(s) = / Clan,y: )Gy, 2m: 5)dy,  (5.13)
0

and z¢ = 0.
In order to derive a matrix equation for the ¢o°, we
note that in the limit s — 0,

Grm(8) = Gpm(a+ B)

and
Bom(s) = 2 4 /OOG( +8)d
nm\$S 9 m — s Tm s
D . Y Y

Introduce the approximation

Yapon(s) = ¢° + Cpv/s+ h. o .t.

Substituting into equation (5.12) gives

1—an1

n=1

N
Gom(a+ B)po — Z Grm(a+ B)gy”

n=1

+Yd

avygA ol

d4im

- Cn+h. o.t.
=D

The singular term vanishes provided that we impose the
normalization

(5.14)

n=1

(5.15)

N
1=>
n=1
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FIG. 5. Absorption density in the case of heterogeneous,
gated absorption. For spatially localized traps at positions
zn = nAz for Az = 0.1 and n = 0,...,100, the curves are
the effective absorption density, ¢5°/Az with ¢7° in (5.16).
We take 8 =~v4 = 0.1, D =1, and « varies.

and equating the O(1) terms leads to the matrix equation

N N
> Amn@ =@ 474> Grm(a+ B)gY
= n=1

= YaGom(a + B)po — T'Ap, (5.16)

with the unknown constant
0y N
“p 2

determined by the normalization condition (5.15).

Solving (5.16) numerically, Fig. 5 shows that gated ab-
sorption can mitigate attenuation in the case of spatially
heterogeneous traps, just as in the case of a spatially
uniform trap considered in previous sections.

VI. DISCUSSION

In this paper we analyzed a population of non-
interacting Brownian particles moving in a common
environment with stochastically-gated absorption. We
showed that the stochastic gating mitigated the spatial
decay of the steady-state absorption density as a function
of distance from the source of particles. If we interpret
absorption in terms of the delivery of diffusively trans-
ported particles to targets along the dendrite or axon of
a neuron, then gating provides another mechanism for
synaptic democracy [22]. Similar considerations would
hold if transport had an active component in the form of
an advection term. One of the important consequences of
a common switching environment at the population level



is that there are statistical correlations in the distribu-
tion of particles with respect to different realizations of
the absorbing environment. An analogous result holds for
diffusion in bounded domains with stochastically gated
boundary conditions [34-37] and populations of regula-
tory gene networks subject to the same switching envi-
ronment [43, 44].

One of the major simplifications of our analysis was
to take the absorption rate to be spatially uniform. Al-
though we did also consider an example of spatially het-
erogeneous absorption, involving N spatially localized
traps, we assumed for simplicity that the traps opened
and closed simultaneously (possibly due to some external
drive). Although one could formulate the corresponding
stochastic dynamics in the case of a population of Brow-
nian particles diffusing in a domain with independently
switching localized traps, the analysis rapidly becomes
unwieldy, see also the recent study of stochastically gated
gap junctions [37].

At the level of a single Brownian particle switching
conformational states, one could extend the analysis in
section II to a variety of trapping scenarios, including
higher dimensional bounded domains with a distribu-
tion of static or dynamic traps within the domain or
on the boundary of the domain. Indeed, we have pre-
viously shown how the notion of synaptic democracy ex-
tends to higher-dimensional domains with radial symme-
try and reversible traps [25]. Generalizing the population
level analysis of sections III and IV, however, requires a
deeper understanding of possible mechanisms underlying
the physical gating of trapping regions or inactivation
domains, resulting in a common switching environment

J

Prob{P(t) € (P,P +dP),Q(t) € (Q,Q + dQ), k(t) = k} = 0x(P, Q,)dPdQ,

11

shared by all the particles. Only then can one make pre-
dictions regarding the nature of correlations induced by
the switching environment.

APPENDIX

In this appendix we extend the moment equation anal-
ysis of previous work [34] to the case of gated absorption.
The first step is to spatially discretize the stochastic FP
equation (3.1) and the auxiliary equation (3.2), yield-
ing a random walk model. Introduce the lattice spacing
¢ and set © = jl,¢ € ZT. Let P;j(t) = P(j¢,t) and
Q;(t) = Q(j¢,t). This yields the piecewise deterministic
system of ordinary differential equations (ODEs)

ng =AP —y[l-k@®IP, iz=1 (A1)
D —k)p, 021 (A2)

with @;(0) = 0 and P;(0) = ;1. Here A is the discrete
Laplacian with

D
AP = [Q[Pz‘ﬂ + Pi—1 — 2P}
for 4 > 2 and
2D
APl:ZT[Pzipl]

The last equation implements the reflecting boundary
condition at x = 0.

Let P(t) = (P;(t), j =2 1) and Q(t) = (Q;(t), j = 1),
and introduce the probability density

(A.3)

The probability density g evolves according to the following infinite-dimensional CK equation:

R I L LT

i>1

where W is the generator of the two-state Markov pro-
cess. Since the CK equation (A.4) is linear in the P; and
@, it follows that we can obtain a closed set of equa-
tions for the first-order (and higher-order) moments of
the density op.

0
50, D= BPec®. Q01+ > Wenon(P, Q.7),
v m=0,1
(A.4)
First-order moments
Let

Pr,i(t) = E[P; (1) 1nt)=t] = /Qk(Pv Q,t)P;dPdQ,
(A5)

and

Q;(t) = E[Q; ()] = / o(P,Q.0)Q;dPAQ,  (A6)



where o = g9 + 01, and
JFe.Qapaq - |T] [ draq,| Fe.q)
J

Multiplying both sides of Eq. (A.4) by P; and integrating
with respect to P, Q gives (after integrating by parts and
assuming that ¢, (P,Q,7) — 0 as P,Q — c0)

dPr,;

TR APyi — (1 = k)Pri + Z WimPm,i- (A7)

m=0,1

If we now set Vi (j¢,t) = Py ;(t) and retake the contin-
uum limit £ — 0, we recover the first-order moment equa-
tions (3.5). Similarly, multiplying both sides of Eq. (A.4)
by Q;, integrating with respect to P,Q and summing
over k gives

(A.8)

Therefore, setting ¢(j¢,t) = Q;(t) and retaking the con-
tinuum limit yields equation (3.7).

Second-order moments

We now define the second-order moments

Chij(t) = E[Pi(t) P;(t) Lit)=k)
/ PP ox(P, Q. 1)dPdQ,

Rii5(t) = E[P(6)Q5(6) L]
- / P,Q; (P, Q. t)dPdQ,

12

and

S5(t) = ElQ:(02,(0) = [ Qi@j0(P,Q.)PdQ,
(A.9)
Multiplying both sides of the CK equation (A.4) by
P;(t)P;(t) and integrating with respect to P, Q gives (af-
ter integration by parts)

dCl i
% = AP Cy 5 — 27(1 — k)Chyj + Z WimCim,ij -
m=0,1
(A.10)
where A®) is the two-dimensional discrete Laplacian:
D
AP F,; = 72 vy + Fiorg — 2]
D
+€7[Fi,j+1 + Fi’jfl — 2F¢j].

If we now set Cy(il, j¢,t) = Ch;(t) and retake the
continuum limit ¢ — 0, we recover the second-order mo-
ment equations (3.8). As expected these equations do
not coupled to moments of Q;(¢). Similarly, multiplying
both sides of the CK equation (A.4) by either P;(t)Q;(t)
or Q;(t)Q;(t), integrating with respect to P, Q and sum-
ming over k in the latter case gives, respectively,

dRy ij
= ARy~ (1= k)i + (1= k)Cry;
+ Z kaRm,ija
m=0,1
and
ds;;
7 = V(R + Roji). (A-11)

Here A; indicates that the discrete Laplacian acts on the
i variable. These yield equations (3.12) and (3.13) in the
continuum limit. (Note that, in the above derivations,
we have assumed that integrating with respect to P, Q
and taking the continuum limit commute. One can also
avoid the issue that P, Q are infinite-dimensional vectors
by carrying out the discretization over a finite domain
[0, L], and taking the limit L — oo once the moment
equations have been derived.)
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