
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Period proliferation in periodic states in cyclically sheared
jammed solids

Maxim O. Lavrentovich, Andrea J. Liu, and Sidney R. Nagel
Phys. Rev. E 96, 020101 — Published 10 August 2017

DOI: 10.1103/PhysRevE.96.020101

http://dx.doi.org/10.1103/PhysRevE.96.020101


Period proliferation in periodic states in cyclically sheared jammed solids

Maxim O. Lavrentovich∗ and Andrea J. Liu
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

Sidney R. Nagel
Department of Physics, James Franck and Enrico Fermi Institutes,

University of Chicago, Chicago, Illinois 60637, USA

Athermal disordered systems can exhibit a remarkable response to an applied oscillatory shear:
after a relatively few shearing cycles, the system falls into a configuration that had already been
visited in a previous cycle. After this point the system repeats its dynamics periodically despite
undergoing many particle rearrangements during each cycle. We study the behavior of orbits as we
approach the jamming point in simulations of jammed particles subject to oscillatory shear at fixed
pressure and zero temperature. As the pressure is lowered, we find that it becomes more common
for the system to find periodic states where it takes multiple cycles before returning to a previously
visited state. Thus, there is a proliferation of longer periods as the jamming point is approached.
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Oscillatory sheared athermal particle packings or sus-
pensions can fall into periodic “absorbing states” [1] in
which the system returns to a configuration previously
visited during the shearing process at the same point
in the cycle. Once it returns to that configuration, the
dynamics repeats itself indefinitely. At low densities in
the absorbing state, the particles follow the flow without
ever making contact with one another so that the system
moves back and forth along a flat direction in the energy
landscape [2–4], and particles return to their original po-
sitions after a single shear cycle: T = 1. As the strain
amplitude γt increases beyond some value γ∗t , particles
can no longer avoid each other and the system undergoes
a dynamical “absorbing state” transition from the ab-
sorbing phase to a phase in which the system continually
visits new configurations. Models [3, 5–8] have linked
this transition to variants of directed percolation [8–10],
which represents a broad class of non-equilibrium phase
transitions [1].

Athermal glasses such as Lennard-Jones glasses, by
contrast, have an extensive entropy of energy minima
that are not flat [11–13]. At very small strain amplitudes,
they exhibit elastic behavior in which they explore dif-
ferent configurations within the same energy minimum.
As γt increases so that the system can explore more than
one minimum, one might expect the system to meander
indefinitely around a hopelessly intricate energy land-
scape as the system is driven in an oscillatory fashion.
Yet, remarkably, these systems can fall into absorbing
states–they can find their way back to previously visited
energy minima even as they undergo multiple particle
rearrangements. Thus these systems explore many such
minima [14–17] over and over again. Finally, when γt is
increased to γ∗t , the system undergoes an absorbing state
transition to a phase in which the system never returns
to previously visited minima.
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In this paper we investigate the fate of absorbing states
in packings of jammed spheres in two dimensions that can
be tuned to the jamming transition, where the system
loses rigidity [18, 19]. Far above this transition, absorb-
ing states have a one-cycle period, so that the system
returns to the same set of minima in each cycle. With
increasing amplitude γt, the number of minima explored
before the system falls into an absorbing state increases
so that there is a diverging time scale τa required for the
system to fall into an absorbing state at γ∗t .

As the system approaches the jamming transition, the
τa for the system to reach an absorbing state increases
only weakly, by a factor of three over two orders of mag-
nitude of pressure. However, the nature of the absorb-
ing state changes markedly–there is an increase in the
number, T , of applied shear cycles between returns to
a previous minimum. That is, there is a proliferation
of higher-order periods, i.e., T > 1, so that the same
set of minima are explored in every set of T consecutive
shear cycles. This result is consistent with the observa-
tion of multi-cycle periods in systems at densities just
below jamming [20] as well as in frictional sphere pack-
ings very near jamming [16]. Here we show that as the
jamming transition is approached from the high-density
side, the distribution of periods shifts systematically to
higher T while the value of γ∗t decreases far more weakly
than the typical strain between rearrangements. As a
result, the number of minima visited in each period in-
creases quite rapidly, not only because the number of
minima visited per cycle increases, but also because the
number of cycles per period also increases. Although we
work in two dimensions in this paper, an analogous phe-
nomenon is expected in three dimensions, where we also
find the absorbing states and the jamming transition.

Simulations.— In our simulations, we study N parti-
cles (in two dimensions) interacting with a pair potential
Uij acting between pairs of particles i and j (with radii ai
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FIG. 1. (a) The enthalpy H as a function of time. An os-
cillatory strain with amplitude γt = 0.15 is applied quasi-
statically to a system of N = 64 particles. (b, c) The proba-
bility Pactive of a system (with N = 256) to still be “active”
and not in a periodic cycle versus the number of applied shear
cycles t, for a fixed γt = 0.05 in (b) and for a fixed pressure
p ≈ 0.004 in (c). The error bars for the γt = 0.09 data are
smaller than the symbol sizes.

and aj) located at positions ri and rj (i, j = 1, 2, . . . , N):

Uij(rij) =
ε

α

∣∣∣∣1− rij
Aij

∣∣∣∣−α Θ(Aij − rij), (1)

where ε is a characteristic energy, rij = |ri − rj |, Aij =
ai + aj , and Θ(x) is the Heaviside step function. We use
Hertzian interactions with α = 5/2 instead of the har-
monic potential so that there is no discontinuity in the
second derivative of the potential at the point of contact.
We study a mixture of particles with radii distributed
uniformly between a and 1.4a all with the same mass m.
The units of length, mass, and energy are a, m, and ε.
The initial particle configurations were prepared by ran-
domly placing the particle centers within the simulation
box and then quenching to zero temperature using a fast
inertial relaxation engine algorithm [21] to relax the to-
tal energy. The particle packing fraction was adjusted
to yield the desired pressure p, as in Ref. [22], and the
enthalpy (the appropriate thermodynamic potential for
fixed pressure) was minimized at fixed pressure.

We shear our configurations at fixed pressure, p, so
that we can maintain the distance to the jamming tran-
sition during a shear cycle. (Different particle configura-
tions at the same packing fraction φ will generically have
different values of the critical packing fraction φc [23, 24],
so a constant volume ensemble does not keep the distance
|φ − φc| constant.) To apply quasistatic shear at a con-
stant pressure, we deform the system using a small strain
step δγ ∼ 10−5-10−6, and then minimize the enthalpy af-
ter each step. The minimization process varies both the
relative particle coordinates ri − rj and the system vol-

ume V . The volume is varied by minimizing over an over-
all scaling factor βV of the particle positions (ri → βV ri).
Note that such a factor corresponds to a variation δV in
the system volume V , with βV =

√
1 + δV/V . Dur-

ing the minimization process, βV remains close to one
for the small strain steps. The simulation box is taken to
have Lees-Edwards periodic boundary conditions. A sim-
ilar procedure was used to generate packings at constant
shear stress [25]. Note that by lowering p, we are able to
approach the jamming point (since for our pair potential
in Eq. 1, we expect that p ∝ |φ − φc|α−1 = |φ − φc|3/2
[23]). For each pressure and training amplitude, we av-
erage results over 300 to 1000 different initial configura-
tions, until the quantities of interest have converged.

The strain is applied in both directions: the simula-
tion box is sheared in one direction to a strain of γt, then
in reverse to −γt, and then back to zero again. The re-
sultant enthalpy during the repeated application of such
cycles is plotted in Fig. 1(a) for a single system. We
see that cyclic shear forces the system into a periodic
state with T = 1 after a four-cycle transient. After the
system becomes periodic, the enthalpy experiences vari-
ous “jumps,” indicating the presence of rearrangements
during which the system passes from one enthalpy min-
imum to another. (We identify a rearrangement as any
strain step during which the enthalpy changes by more
than five times the typical enthalpy change. As long as
the strain steps are small enough, this procedure cap-
tures rearrangements and is insensitive to the particular
threshold.) We are interested in the behavior of these
systems as we increase the amplitude γt and vary the
pressure p.

We check that each absorbing state we find is per-
fectly periodic after some number of strain cycles, with
net particle displacements equal to zero within numerical
noise. However, to calculate the period T of these peri-
odic states robustly, we track the enthalpy H in strobo-
scopic snapshots taken at the end of each strain cycle. As
soon as a cycle has the same H as a previous cycle (i.e.,
the enthalpy difference is 10−5 times smaller than a typi-
cal enthalpy change during a shear cycle), then we count
the number of intervening cycles to find T . We also verify
that H is the same every T cycles for the remainder of
the run. We use enthalpy rather than particle positions
to calculate the period T , for two reasons. First, the
method automatically excludes rattler particles, which
do not contribute to the enthalpy but can complicate
analysis in terms of particle positions because they do
not have to return to the same position in each period
even if the rest of the system has fallen into an absorbing
state. Second, the method is less sensitive to numerical
errors because small position fluctuations around the pe-
riodic states may lead to periodicity counts that depend
sensitively on the threshold. Such small fluctuations in
the particle positions during a cycle were observed in sim-
ulations of frictional particle packings [16]. Finally, we
checked this enthalpy method by also tracking the sum
of all particle displacements after each cycle. We find
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FIG. 2. Characteristic time τa to reach a periodic state, as
a function of the training amplitude γt at fixed pressure p ≈
0.004 (a) and as a function of p at fixed γt = 0.05 (b). In (a),
we see that τa appears to diverge at a critical amplitude γ∗

t ≈
0.13 (dotted line). The dashed line shows a fit to a(γ∗

t −γt)−ν ,
with ν = 2.4±0.3 and a = 0.0043. In (b), τa grows very slowly
as p decreases. The dashed line shows a linear fit to the data
τa = a log p+ b with a = −0.88 and b = −0.38.

that after T cycles in the absorbing state this total dis-
placement is either zero within numerical noise or a small
fraction of a single particle radius (below 20%), meaning
the particle configurations are nearly identical.

Results.— Figures 1(b,c) show that Pactive, the fraction
of systems in the active (non-periodic) state, drops in
an approximately exponential fashion to zero with the
number of applied cycles. This occurs both as we send
the pressure p to small values at fixed γt [Fig. 1(b)] and as
γt is increased at fixed p [Fig. 1(c)]. We may extract the
characteristic time to approach a periodic state, τa, from
Figs. 1(b,c) by fitting the exponential decays (τa being
the inverse of the decay constant), to yield the results in
Fig. 2. The errors are estimated by fitting τa to different
parts of the Pactive versus t curves [see Fig. 1(b,c)]. We
see in Fig. 2(a) that the relaxation time τa appears to
diverge as τa ∼ (γ∗t − γt)−ν with a critical exponent ν =
2.4± 0.3 at a finite critical training amplitude γ∗t ≈ 0.13.
If γt is larger than the critical value γ∗t , the particles
fail to return to a previously visited configuration before
the end of the simulation run. This is consistent with
previous work on sheared packings above jamming [14].
When the pressure p is lowered, τa increases only slightly,
consistent with τa ∼ ln(1/p), as shown in Fig. 2(b).

To investigate how system dynamics changes during
the training protocol, we study the rearrangements in the
first training cycle compared to those found in the even-
tual absorbing states. The simplest way to quantify any
differences is to measure the number, Nr, and magnitude
∆H of enthalpy drops during a cycle. We first compare
the average change in enthalpy ∆H per rearrangement as
a function of the training amplitude. Figure 3(a) shows
that magnitude of the enthalpy drops are suppressed by
roughly a factor of 2 after the system has been trained
into a periodic state. We also estimate ∆H from systems
under a continuous, steady-state shear at a fixed pressure
p ≈ 0.004. In this case, we find an average enthalpy drop
of ∆Hcon. ≈ 4.6×10−4. This is larger than both the first

FIG. 3. Comparison for a system with N = 256 of the first
training cycle (red Xs) with the eventual periodic cycle (pur-
ple diamonds and blue squares) into which it settles, for fixed
pressure p ≈ 0.004 and varying training amplitude γt in (a,b)
and for a fixed γt = 0.05 (and varying p) in (c,d). We plot the
average enthalpy drops ∆H during particle rearrangements in
(a,c) and the number of rearrangements Nr in (b,d). In (b),
the dashed line shows a linear fit through the first cycle data:
Nr = 480γt. In (c, d), the dashed lines show power-law fits to
the first cycle data, with ∆H = 0.11p1.17 and Nr = 3.5p−0.33,
respectively. The errors in the data points are smaller than
the symbol sizes.

training cycle and absorbing state enthalpy drops shown
in Fig. 3(a): For example, the first training cycle drops
range from 0.97× 10−4 to 2.8× 10−4 in the data shown.
We expect that the first training cycle drops will con-
verge to ∆Hcon. as we increase the training amplitude,
but our amplitudes are less than 0.1 and far from this
convergence.

Figure 3(b) shows that the average number of rear-
rangements per cycle, Nr, does not vary appreciably be-
tween the first cycle and the periodic state. Also, Nr
scales linearly with the training amplitude γt. Therefore,
we may think about these rearrangements occurring at
a constant rate, with an average yield strain separating
successive rearrangements

γy ≈ 4γt/Nr, (2)

(since 4γt is the total strain during a cycle). Figure 3(b)
shows a linear fit γy ≈ 8.3 × 10−3 for the first cycles in
systems with p ≈ 0.004 (dashed line). Our strain step
size δγ ∼ 10−5 was chosen to be much smaller than this
value.

Figure 3(c) shows that the average enthalpy drop dur-
ing a rearrangement in the first cycle increases with the
pressure: ∆H ∼ p1.17±0.06. As in Fig. 3(a), we find a rel-
atively small suppression of ∆H for the periodic states
compared to the first training cycle, with the biggest dif-
ferences (suppression by about a factor of 2) occurring
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at higher pressures. Figure 3(d) shows that at fixed am-
plitude of strain, Nr ∼ p−0.33±0.09. This is consistent
with an argument based on using the scaling properties
near the jamming transition. The static shear modulus
G scales with the distance to the jamming point accord-
ing to G ∼ (∆φ)α−3/2 ∼ p2/3 for Hertzian interactions,
α = 5/2 [23]. Next, the yield stress σy that induces a re-
arrangement should be given by σy ∝ (∆φ)α−1 ∝ p [26]
in the quasistatic limit. Therefore, the yield strain sat-
isfies γy ∼ σy/G ∼ p1/3. In a cycle, then, we would
expect the number of rearrangements to scale according
to Eq. 2: Nr ∼ 1/γy ∼ p−1/3, in reasonable agreement
with our results.

In summary, Fig. 3 shows that the absorbing states ex-
plore many different minima in the landscape, and that
enthalpy drops during transitions between minima are
not appreciably smaller than those in the initial training
cycle. Similar behavior was recently observed in finite-
temperature simulations of Lennard-Jones glasses [27],
where the avalanche size statistics provide no signal of
the absorbing-state transition. Together, these results
show that even multiple, quite extended particle rear-
rangements with large enthalpy drops are precisely can-
celled out so that the system returns to the same config-
uration at the end of each period. The presence of these
delicate balances likely leads to sensitivity to perturba-
tions in particle positions as observed in constant-volume
simulations [14]. Nevertheless, our results show that the
statistics of the absorbing states depend systematically
on pressure and training amplitude.

FIG. 4. The fraction of N = 256-particle systems, P (T ) that
have settled into a periodic cycle with period T , at training
amplitude γt = 0.05 and pressures p ≈ 0.04 (blue squares),
p ≈ 0.004 (green triangles) and p ≈ 0.0004 (red circles). Lines
are to guide the eye. We also include results at p ≈ 0.004 at
a higher training amplitude of γt = 0.07 (open purple pen-
tagons). The fraction of systems with multi-cycle periods
increases with decreasing p.

By studying the periodicity of the absorbing states, we
find a qualitative change in the dynamics that arises as
the system approaches the jamming transition (p → 0).
Figure 4 shows that as p is lowered, the system settles
into periods with higher numbers of cycles T . That is,

the system must undergo multiple cycles of the applied
shear before it returns to the same configuration.

It has been suggested that period proliferation occurs
with increasing γt [14]. We do not observe this; when
the training amplitude is raised at a fixed pressure, the
periodicity of the absorbing states remains roughly the
same, as shown in Fig. 4, where two distributions for
γt = 0.05 and γt = 0.07 are shown (green triangles and
purple pentagons) for a fixed pressure: p ≈ 0.004. The
two distributions are the same within the simulation er-
ror, suggesting that it is primarily the pressure that con-
trols the periodicity increase, not training amplitude. We
also checked that we had a similar distribution at an even
higher amplitude γt = 0.09 using 500 runs, although our
simulations did not all run long enough to find the ab-
sorbing state [as expected from the rapidly increasing
time τa shown in Fig. 2(a)]. Therefore, we have two
ways in which we may lose the simplest mode of period-
icity, T = 1: There can be a proliferation of higher T
periodicities as p→ 0 and there can be a diverging time
τa to reach the absorbing state as |γt − γ∗t | → 0.

Multi-cycle periods have been observed before in sim-
ulations of systems near the jamming transition, either
below jamming [20] or near jamming in packings of fric-
tional particles [16]. Our results show that the period-
icity of absorbing states can be tuned systematically by
varying the pressure, or equivalently, the distance from
the jamming transition.

Note that at p ≈ 4× 10−4, Fig. 3(d) shows that there
are approximately 50 rearrangements per cycle, when av-
eraged over all absorbing states studied. Some of these
absorbing states have T ≥ 5, so that the system can visit
250-300 minima before repeating itself.

Discussion.— In summary, we have characterized
changes in the properties of absorbing states on approach
to the jamming point. Remarkably, the absorbing states
are similar in their statistics to the states visited during
an initial shear cycle: absorbing states can have large
rearrangements which must precisely cancel to yield a
periodic state. Lowering the pressure does not appear to
lower the probability of finding an absorbing state. Even
the time needed for the system to fall into an absorb-
ing state increases only gradually with decreasing pres-
sure. Instead, we find that the absorbing states become
more complicated. There is a proliferation of multi-cycle,
T > 1, absorbing states as the system approaches the
jamming transition. Multi-cycle absorbing states are also
observed in systems that approach the jamming transi-
tion from the low-density side [20]. The possibility that
the jamming transition might correspond to the point of
maximum period proliferation is intriguing. The nature
of the absorbing state gives us indirect information about
the energy landscape; perhaps future studies will make
this connection explicit.
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