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For many technological applications of superconductors the performance of a material is deter-
mined by the highest current it can carry losslessly — the critical current. In turn, the critical
current can be controlled by adding non-superconducting defects in the superconductor matrix.
Here we report on systematic comparison of different local and global optimization strategies to
predict optimal structures of pinning centers leading to the highest possible critical currents. We
demonstrate performance of these methods for a superconductor with randomly placed spherical,
elliptical, and columnar defects.
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1. INTRODUCTION

The most important feature of superconductors for
high-performance applications1 is its ability to carry
large currents with almost no dissipative loss. At the
same time, recent advances have made it possible to
manufacture type-II-superconductor-based cables on in-
dustrial scales making large-scale application possible.2,3

The main dissipative mechanism in these type-II super-
conductors stems from the motion of magnetic vortices
within the superconducting matrix. These are normal
elastic filaments, carrying quantized magnetic fluxes,4

which appear in these superconductors in magnetic fields
larger than the first critical field — in contrast to type-I
superconductors, which lose their superconducting prop-
erties once the magnetic field enters the material. The
highest amount of current that can be passed through a
superconductor without dissipation is known as the criti-
cal current, which strongly depends on the vortex dynam-
ics and its interaction with non-superconducting defects.
Strictly speaking, the critical current in the presence of
vortices is always zero at finite temperatures due to ther-
mal creep, but it is conventionally defined as the current
at which the dissipation/voltage reaches some threshold
value. At sufficiently large currents the dissipation and
associated heating of the superconductor will ultimately
lead to the loss of superconductivity.

Despite all technological advances, typical critical cur-
rents are still way below the theoretical limit and from
an economic point of view, too low to be competitive
with conventional cables for large-distance energy trans-
port. An obvious way to improve the critical current in
existing superconductors is to impede the vortex motion
more effectively. This can be accomplished by placing
defects, which can “pin” magnetic vortices and thus pre-
vent their motion,5,6 in a sophisticated way. The entirety
of all defects is also called the pinning landscape (or pin-
scape), which in conjunction with intrinsic material inho-
mogeneities and the sample geometry define the critical

current of a given sample.

This defines the task, which we consider in this work:
the optimization of the pinscape for highest possible crit-
ical currents. More precisely, we concentrate on defects
or pinning centers, which can be controlled during the
fabrication of a sample, like self-assembled inclusions7,8

or irradiation defects.9–11 The efficiency of the pinscape
strongly depends on the shape, size, and arrangement of
individual pinning centers. Indeed, bigger defects ensure
a larger pinning force, but, at the same time, reduce the
effective cross-section of the superconductor needed for
current flow. The optimal pinscape also depends on the
intended application, particularly on the type of super-
conductor and on the value and the direction of external
magnetic fields. The question we address in this paper is,
how one can find the best pinscape most effectively. This
systematic prediction of optimal pinscapes for a given ap-
plication aims at replacing the traditional trial-and-error
approach.9

Here, we test several optimization strategies allow-
ing for a systematic improvement of the critical cur-
rent in superconductors. We compare the efficiency of
a global method (particle swarm optimization) and three
local methods (Nelder-Mead method, pattern search, and
adaptive pattern search) for a typical critical current op-
timization problem. The critical current for a given pin-
scape is calculated using a GPU-based iterative solver
for the time-dependent Ginzburg-Landau (TDGL) equa-
tion describing type-II superconductors.12 This model
correctly captures the vortex dynamics5,6,13 in supercon-
ductors in the vicinity of the critical temperature and
is capable of reproducing experimental critical currents
for a given pinscape.8,9,14–16 In addition, we provide a de-
tailed analysis of these methods applied to several bench-
mark functions for comparison.

The article is organized as follows. In Sec. 2 we formu-
late the general optimization problem and describe the
optimization methods studied here. In Sec. 3 we present
a detailed comparison of the efficiency of the chosen opti-
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mization strategies on benchmark functions and discuss
results in Sec. 3.4. In Sec. 4 we briefly describe the TDGL
model for superconductors and define three physically
relevant optimization problems in Sec. 5 with discussion
in Sec. 6. Finally, we summarize our results in Sec. 7.

2. OPTIMIZATION METHODS AND PROBLEM
FORMULATION

Optimization methods are divided into two classes: lo-
cal and global methods. Examples of global search meth-
ods include particle swarm optimization (PSO), cuckoo
search, simulated annealing, etc. We chose to focus on
PSO because of its straightforward parallelizability. Sim-
ulated annealing and cuckoo search were rejected because
it is computationally prohibitive in higher dimensional
spaces as it does not use any information about prior
steps taken. However, PSO uses global and individual
information to make directed movements in parameter
space. We compare this global PSO method to three
local methods: pattern search (aka coordinate descent),
adaptive pattern search, and the Nelder-Mead method
(aka downhill simplex method). The pattern search and
Nelder-Mead methods are standard local methods and
their analysis, convergence properties, and pitfalls have
been widely studied.17–23 The adaptive pattern search
method is a recent improvement on the traditional pat-
tern search.24 These methods can be used in conjunc-
tion with some more sophisticated methods, or routines,
such as multi-level single linkage, which begins with many
different initial starting points, and collects them into
multiple sets, which depend on whether they are suffi-
ciently close to a previously found local optimum. If they
are not close to any previously found optimum, a local
search is started.25,26 The primary use behind this type
of routine is to terminate local searches, which are falling
into the basin of attraction of an optimum point already
found, which reduces the computation time and number
of function evaluations. As an alternative to this method,
one can create a global/local hybrid, where first a global
method (e.g. PSO) is used to search through parame-
ter space and when a sufficient number of particles are
within a specified distance, we switch to a local method
at the points with greatest particle swarm densities.

The general optimization problem of a function f can
be formulated as follows

xopt = arg min
x∈Ω
{f(x)}, fopt = min

x∈Ω
{f(x)}, (1)

where x ∈ Ω is a set of parameters in parameter space Ω.
x defines all variable properties in the system, which in
turn, defines the objective function f(x). In the case of
a superconductor, the parameter set x can, e.g., deter-
mine the pinscape of the system and the corresponding
objective function is f(x) = −Jc(x), where Jc(x) is the
critical current of the superconductor with pinscape x.
Note, that the minimization of this f(x) is equivalent to
the maximization of Jc(x).

2.1. Particle swarm optimization

The PSO algorithm is a meta-heuristic global opti-
mization algorithm.27,28 Its convergence properties have
been studied in a simplified form, where a single parti-
cle was used and the randomness in the algorithm was
replaced by its averaged value.29 It performs well on all
test problems, but is typically outshone by local meth-
ods when there was only a single minimum. The utility
of this method is best seen on functions with multiple
local optima, see Fig. 1(c). This test function is relevant
for problems having multiple local extrema, such as the
problem of periodically arranged pinning centers in su-
perconductors. In that case, many local maxima of Jc

exist at integer values of the ratio of number of pinning
centers to number of vortices.16

The PSO has four main control parameters given by
q = {S, ω, φp, φg}, where S is the swarm size, ω the
inertia of the individual particle (its tendency to move in
its current direction), φp and φg are the weights for the
particle to move towards its individual and the global op-
timum in parameter space, respectively. The pseudocode
for PSO is presented in Listing 1.

Listing 1 Particle swarm optimization

1: input: Lower and upper limits, L and U
2: input: Parameters S, ω, φp, and φg

3: input: Parameters Kexit from [1, S] and Dexit

4: for i = 1, . . . , S do
5: Uniformly distributed particle position xi ← Un(L,U)
6: Particle velocity vi ← Un(L−U,U− L)
7: Particle best known position pi ← xi
8: end for
9: Best global position g = arg min

i
f(pi)

10: repeat
11: for i = 1, . . . , S do
12: rp ← Un(0, 1), rg ← Un(0, 1)
13: vi ← ωvi + φprp(pi − xi) + φgrg(g − xi)
14: xi ← xi + vi
15: if f(xi) < f(pi) then
16: pi ← xi
17: if f(pi) < f(g) then
18: g← pi
19: end if
20: end if

21: Distance from global best position di ←
∥∥∥xi − g

U− L

∥∥∥
2

22: end for
23: Sort d1, d2, . . ., dS in ascending order

24: d̄←
1

Kexit

Kexit∑
i=1

di

25: until d̄ < Dexit

26: output: g

The objective function is updated independently for
each particle, which makes PSO parallelizable. In this
way, a large architecture can make this method highly
efficient for multimodal surfaces, where a large swarm
size can be way more efficient in converging towards a
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global solution than local methods.

The biggest challenge is in determining an appropriate
exit criterion for the routine. We use

(i) the change, |f(gbest)− 〈f(g)〉M |, in the best found
objective function value, f(gbest), with f(g) aver-
aged over the last M iterations of PSO, 〈f(g)〉M ;
or

(ii) the average distance of the particle from the swarm

global best position K−1
exit

∑Kexit

i=1 ‖(xi − g)/(U −
L)‖2, where the sum is taken over Kexit particles
with the best objective values, see lines 21, 24, and
25 in Listing 1. A small variant would be to use pi
instead xi of each respective particle, which would
be less sensitive to the exploratory nature of PSO
(through the inertial term ωvi).

The first exit criterion avoids taking an unnecessary
amount of evaluations if there is no sufficient improve-
ment (the method could then be terminated, switched to
a local method, or restarted). The second was done to
avoid cases where there may be many local optimum and
so a few particles get trapped among them. This avoid
premature stopping if many particles are spread out in
parameter space and the improvement in g is slow. We
stop when a certain proportion of the swarm has been
attracted to the best found point. A higher proportion
means more evaluations but also a higher probability that
we converged to the correct optimum. Therefore, there
is a balance between speed and accuracy. In the test-
ing on the benchmark functions, we found no significant
difference in accuracy for Kexit > S/2, but a difference
in speed. In the simulations presented below we chose
Kexit = 0.7S.

2.2. Pattern search

Pattern search is a straightforward method, which
starting from a random point, evaluates 2n + 1 points
(including the initial point) where n is the dimension of
the parameter space, by moving a distance along each
dimension in the search space. It then moves to the
point which improves the function the most. The method
then evaluates 2n− 1 new points (it does not need to re-
evaluate the point its on or the point it came from). If
no improvement is made, the step size is reduced. Once
the step size is below some threshold, it exits out of the
loop. Along with its simplicity comes its ability to con-
verge to non-stationary problems on some relatively sim-
ple problems.30 It has a particularly difficult time with
functions with coordinate systems which are highly cor-
related, e.g., roughly speaking, the function gradient is
not along any of the main coordinate axes, such as the
Rosenbrock function shown in Fig. 1(b).

2.3. Adaptive pattern search

The adaptive pattern search method is a recent modifi-
cation of pattern search. The algorithm works similar to
pattern search, however, while searching the parameter
space, it adapts the coordinate system to achieve faster
convergence, see Listing 2 adapted from Ref. 24. The
presented adaptive encoding is similar to principal com-
ponent analysis (PCA). The covariance matrix C and
the transformation matrix B are updated using the most
successful µ points. The transformation matrix modifies
the coordinates to make them as uncorrelated as possible.
Unlike PCA which typically looks to reduce dimension-
ality by retaining only eigenvectors corresponding to the
largest eigenvalues, adaptive encoding retains all compo-
nents.

Listing 2 Adaptive encoding

1: input: Parameters µ, σ, ks, and ku
2: input: µ best points x1, . . ., xµ
3: if Initialize then

4: wi ←
1

µ
, cp ←

1
√
n

, c1 ←
1

2n
, and cµ ←

1

2n
5: p← 0
6: C← I; B← I

7: m←
µ∑
i=1

xiwi

8: else
9: m− ← m

10: m←
µ∑
i=1

xiwi

11: z0 ←
√
n

‖B−1(m−m−)‖ (m−m−)

12: for i = 1, . . . , µ do

13: zi ←
√
n

‖B−1(xi −m−)‖ (xi −m−)

14: end for
15: p← (1− cp)p +

√
cp(2− cp)z0

16: Cµ ←
µ∑
i=1

wiziz
T
i

17: C← (1− c1 − cµ)C + c1pp
T + cµCµ

18: BHDDBH ← eigendecomposition(C)
19: B← BHD
20: end if
21: output: p, B, C

Apart from the adaptive encoding, adaptive pattern
search is very similar to pattern search. Suppose, we
have an n-dimensional optimization problem, it ini-
tially searches in each coordinate direction, indepen-
dently recording the new optimal as it progresses (in con-
trast to the generic pattern search we employed, which is
not done sequentially). Then it keeps the best µ points,
µ < 2n+ 1, and Listing 2 is called. This transformation
is updated after each sweep of all n dimensions (2n − 1
points) and applied in the next iteration. There are four
parameters q = {µ, σ, ks, ku} which control the success
and efficiency of this method: µ is the number of points
used in the adaptive encoding function call, σ is the ini-
tial step size, and ks (ku) are the increase (decrease) of
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the step size upon successful (unsuccessful) improvement
of the function value. The convergence rate was observed
to be most sensitive to the parameter µ. The utility of
this method is best seen when applied to the Rosenbrock
function, where pattern search needs over 20,000 itera-
tions to converge in a two-dimensional parameter space,
while the adaptive pattern search method typically con-
verged in less than 1,000 iterations.

The key for the method’s improved performance on
Rosenbrock-type functions, is the adaptive encoding
part of the algorithm. At this point we remark that
the adaptive pattern search is typically a more effi-
cient/performing method compared to the generic pat-
tern search, but comparison to the latter offers a useful
way to measure the overall shape of the optimal solution.
We can logically deduce from the ratio of performance be-
tween these two methods, that if adaptive pattern search
is orders of magnitude better than pattern search, then
this implies that the parameters of interest are highly
correlated.

2.4. Nelder-Mead method

The Nelder-Mead method (or downhill simplex) was
chosen for its relative simple structure and its indepen-
dence on the choice of the chosen coordinate system (it
does not move along each dimension sequentially). This
is most easily seen in comparing the method against the
Rosenbrock function. This method utilizes simplexes,
which are polytopes with n + 1 points (or vertices) in
n dimensions (i.e., triangles for n = 2, or tetrahedrons in
n = 3).

Over time, many variants of Nelder-Mead have been
conceived.31–33 Following Ref. 33, Listing 3 describes the
general Nelder-Mead method. Here we used standard
values for parameters α = 1, γ = 2, ρ = 1/2, and σ =
1/2. The exit criteria in line 25 is satisfied when the
points are within a certain distance and is defined by the
“volume”

V(x1, . . . , xn+1) =
|det(V)|
n! ∆n

,

where ∆ = min ‖xi − xj‖ and matrix V = (ẋ1, . . ., ẋn)
consists of n vectors ẋi = xi+1 − x1. This choice of the
exit criteria was justified in Ref. 33.

Listing 3 Nelder-Mead method

1: input: Lower and upper limits, L and U
2: input: Parameters α, γ, ρ, and σ
3: Vertices x1, . . .xn+1 ← Un+1(L,U)
4: repeat
5: Order the vertices f(x1) 6 f(x2) 6 . . . 6 f(xn+1)

6: Centroid of n best points x0 ←
1

n

n∑
i=1

xi

7: Reflected point xr ← x0 + α(x0 − xn+1)
8: if f(x1) 6 f(xr) < f(xn) then
9: xn+1 ← xr

10: else if f(xr) < f(x1), then
11: Expanded point xe ← x0 + γ(xr − x0)
12: if f(xe) < f(xr) then
13: xn+1 ← xe

14: else
15: xn+1 ← xr

16: end if
17: else
18: Contracted point xc ← x0 + ρ(xn+1 − x0)
19: if f(xc) < f(xn+1) then
20: xn+1 ← xc

21: else
22: xi ← x1 + σ(xi − x1) for all i > 1
23: end if
24: end if
25: until V(x1, . . ., xn+1) < ε
26: output: x1

3. TESTING ON BENCHMARK FUNCTIONS

The above mentioned optimization methods are tested
on the three benchmark functions shown in Fig. 1: the
sphere function, the Rosenbrock function, and the Ras-
trigin function. These were chosen for their similarity
to previously obtained critical-current surfaces in super-
conductors for low-dimensional sets of parameters. We
expect scenarios where either a single optimum or multi-
ple local with one global extrema exists. As a particular
and practical example, the behavior of the solvers on the
Rosenbrock function is related to the optimization of a
pinscape consisting of spherical defects with two param-
eters being the number and diameter of the defects. In
this case, it turns out that the Rosenbrock-type Jc sur-
face can be removed by replacing the number of defects
by the volume fraction. In general, however, one cannot
be sure that an appropriate transformation exists or can
even be found.

The study was broken up as follows: optimal param-
eters for the PSO and adaptive pattern search are ob-
tained using the three benchmark functions. These were
found by overlaying each respective optimization routine
with PSO. For example, adaptive pattern search has tun-
ing parameters q = {µ, ks, ku, σ}, see Sec. 2.3. The
nested PSO algorithm then searches through this param-
eter space in an attempt to find the optimal parameters
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Figure 1: Examples of different test function with one global minimum. (a) Sphere function, a simple multidimensional
parabola. (b) Rosenbrock function, a quartic multidimensional polynomial with shallow valley not along one of the coordinate
axes. (c) Rastrigin function, a periodic function with many local extrema.

for the algorithm. We initially considered the function

Ēf (q) =
1

M

M∑
i=1

Ef,i(q), (2)

where Ef,i is the number of function evaluations required
to find the global optimum for a function f , q are the
parameters used for the optimization routine, and M are
the total number of simulations which successfully found
the global optimum. However, this is not the most use-
ful measure as it does not take into account the rate
at which the algorithm successfully finds the global op-
timum. Indeed, defining rf (q) as the rate at which a
correct solution is found (to within a specified tolerance)
for a set of the method parameters q. Then, it may turn
out that Ēf (q1) < Ēf (q2), but rf (q1)� rf (q2) for some
certain q1 and q2. It then may happen that we would
require many more runs for q1 so that q2 was actually
the better choice. Therefore, we make a refinement to
Eq. (2), and obtain the optimal parameters qopt for each
optimization method by solving the following auxiliary
optimization problem:

qopt = arg min
q
{Ff,α(q)}, (3a)

Ff,α(q) = Nf,α(q)Ēf (q) (3b)

Nf,α(q) =
log(1− α)

log[1− rf (q)]
, (3c)

where Nf,α is the number of iterations needed to be at
least α sure that we have found the global solution and
Ēf (q) was defined by Eq. (2). In this work, we used
α = 0.99. The dimensionality in the function was ab-
sorbed into the optimization problem, and an analysis of
the problem dimensionality and number of iterations was
tested.

We sampled 103 different starting configurations x,
where xi ∈ [−10, 10] for the algorithms and then ran
the nested PSO algorithm 10 times for each dimension
and each benchmark function. The best parameters
were recorded. Once these were obtained, we tested all
the algorithms mentioned using the same starting points

(when possible) and compared the performance. The al-
gorithms each had a maximum iteration number of 103n2

where n = |Ω| (the exception being PSO, where we used
max(103n2, 100S) to ensure at least 100 possible itera-
tions of PSO) is the dimension of the original optimiza-
tion problem (1), and would exit out of the loop with a
tolerance of 10−3n2.

3.1. Sphere function

The sphere function shown in Fig. 1(a) is defined by

f(x) =

n∑
i=1

x2
i . (4)

Tables I and II show a tabulated view of the effectiveness
of the chosen methods to find the extremum of this func-
tion in the given number of iterations. The function is
very simple and the coordinates are uncorrelated. Thus,
a wide range of parameters actually turned out to be
similarly effective. A comparison of the method’s perfor-
mances is presented in Fig. 2 by using 100 random initial
starting configurations and employing Eq. (3).

n {S ω φp φg} Ff,α
2 5 0.22 0.93 1.93 84.7
3 5 0.36 1.35 1.68 131.3
4 8 0.23 0.80 1.96 183.7
5 10 0.18 0.99 1.96 235.5
6 9 0.36 1.55 1.55 290.5
7 12 0.27 1.18 1.75 348.4

Table I: Optimal PSO parameters qopt = {S, ω, φp, φg} and
Ff,α(qopt) for the sphere function.
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n {µ σ ks ku} Ff,α
2 1 0.21 1.00 0.24 44.3
3 2 0.22 1.00 0.33 64.0
4 4 0.12 1.00 0.29 82.0
5 2 0.36 1.00 0.29 99.5
6 3 0.21 1.00 0.33 114.9
7 13 0.25 1.00 0.33 128.7

Table II: Optimal adaptive pattern search parameters qopt =
{µ, σ, ks, ku} and Ff,α(qopt) for the sphere function.
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Figure 2: A comparison of each methods efficiency as a func-
tion of dimension for the sphere function.

3.2. Rosenbrock function

The Rosenbrock function shown in Fig. 1(b) is a stan-
dard test for optimization methods and is given by

f(x) =

n−1∑
i=1

[
100(xi+1 − x2

i )
2 + (1− xi)2

]
. (5)

Optimization of this function demonstrates the utility
of coordinate independent local search methods (like
Nelder-Mead or adaptive pattern search). This is due to
the fact that the minimum is contained inside a parabolic
valley which requires constant shrinking of the step size
for pattern search to make progress. Consider the 2D
case

f(x, y) = 100(y − x2)2 + (1− x)2.

A change of variables to the (u, v) plane given by u = 1−x
and v = y − x2 leads to elliptical level sets g(u, v) =
u2 + 100v2, which is much more favorable to coordinate-
dependent methods. In practice it is usually difficult or
impossible to find the appropriate transform converting
to elliptical level sets. Nevertheless, this gives a useful
test of the morphology of the surface of Jc by comparing
iterations between coordinate-dependent and coordinate-
independent methods.

Tables III and IV show the effectiveness of the PSO and
adaptive pattern search methods to minimize the Rosen-
brock function in a given number of iterations. As we
can see from the table, the PSO method is much slower
than Nelder-Mead and adaptive pattern search. The op-
timization of parameters for PSO have revealed that the
dimensionality and swarm size are (perhaps not surpris-
ingly) correlated. As the dimensionality increases, the
optimal swarm size (holding other parameters fixed) in-
creases. To verify this, we sampled 100 random starting
points for swarm sizes between 10–200; the results are
shown in Fig. 4.

n {S ω φp φg} Ff,α rf Nf,α
2 28 0.25 −0.21 1.58 823 0.99 1
3 34 0.29 −0.15 1.73 2942 0.95 2
4 40 0.35 −0.17 1.59 9352 0.73 4
5 49 0.28 −0.21 1.67 15650 0.61 5
6 61 0.30 −0.20 1.70 22339 0.56 6
7 73 0.27 −0.19 1.68 39277 0.53 7

Table III: Optimal PSO parameters qopt = {S, ω, φp, φg},
Ff,α(qopt), rf (qopt), and Nf,α(qopt) for the Rosenbrock func-
tion.

n {µ σ ks ku} Ff,α rf Nf,α
2 2 0.28 1.67 0.43 227 1.00 1
3 3 0.15 1.48 0.46 392 1.00 1
4 4 0.22 1.81 0.38 781 0.94 2
5 5 0.14 1.71 0.45 1384 0.92 2
6 6 0.37 1.96 0.36 1775 0.93 2
7 7 0.10 2.77 0.34 2993 0.92 2

Table IV: Optimal adaptive pattern search parameters qopt =
{µ, σ, ks, ku}, Ff,α(qopt), rf (qopt), and Nf,α(qopt) for the
Rosenbrock function.
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Figure 3: A comparison of each methods efficiency as a func-
tion of dimension for the Rosenbrock function.
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Figure 4: The optimal swarm size, S, of the particle swam
optimization on the Rosenbrock function as a function of di-
mension, n while holding the other parameters fixed {ω, φp,
φg} = {0.3, −0.2, 1.7}.

3.3. Rastrigin function

The third test function we consider here, is the Rastri-
gin function [see Fig. 1(c)], which is the sum of a sphere
function and periodic oscillations, having multiple min-
ima. This type of objective function is similar to the ob-
jective function of superconductors having periodic pin-
scapes. It is defined by

f(x) = 10n+

n∑
i=1

[
x2
i − 10 cos(2πxi)

]
. (6)

This is where PSO performs particularly well compared
to the local search methods. Table V shows its effective-
ness to solve the Rastrigin function optimization problem
in the given number of iterations. The local methods do
a comparatively poor job as can be seen in Table VI and
Fig. 5. The optimal swarm size also grows rapidly with
increasing dimensionality and we sampled 100 random
starting points for swarm sizes between 50 and 1,000;
the results are shown in Fig. 6.

n {S ω φp φg} Ff,α rf Nf,α
2 50 0.25 2.00 1.00 934 1.00 1
3 145 0.58 2.08 0.89 4514 1.00 1
4 265 0.58 2.21 0.75 10953 1.00 1
5 365 0.48 2.22 0.77 20410 1.00 1
6 650 0.5 2.25 0.67 43939 0.998 1
7 945 0.51 2.29 0.65 81779 0.993 1

Table V: Optimal PSO parameters qopt = {S, ω, φp, φg},
Ff,α(qopt), rf (qopt), and Nf,α(qopt) for Rastrigin function.

n {µ σ ks ku} Ff,α rf Nf,α
2 3 0.25 1.79 0.33 1051 0.22 19
3 1 0.37 1.94 0.31 7972 0.04 113
4 1 0.39 1.69 0.29 27017 0.01 327
5 2 0.62 1.00 0.45 132134 0.004 1149
6 6 0.3 6.59 0.29 197052 0.003 1532
7 7 0.41 5.93 0.11 584564 0.001 4603

Table VI: Optimal adaptive search parameters qopt = {S, ω,
φp, φg}, Ff,α(qopt), rf (qopt), and Nf,α(qopt) for Rastrigin
function.
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Figure 5: A comparison of each methods efficiency as a func-
tion of dimension for the Rastrigin function.

3.4. Results of benchmark function optimizations

The optimization of parameters for adaptive pattern
search and PSO has led to some interesting results. First,
the nested PSO algorithm finds many different “good”
choices for the parameters needed. This is to be expected,
since each problem is unique, and it would be surprising if
multiple sets of parameters did not yield similar results.
What was surprising, is the sensitivity of the parame-
ters to small deviations from optima that were obtained
on Rastrigin’s function. A good example would be in a
particular optimization run of adaptive pattern search’s
parameters for n = 6. We found that the set {µ, σ, ks,
ku} = {6, 0.3, 6.59, 0.29} was the best for that particular
run found with 2 · 105 function evaluations needed. Just
changing one of these parameters slightly to {6, 0.3, 6.59,
0.39}, needs 4.25 · 105 function evaluations.

This sensitivity was not observed in the other two
benchmark functions, meaning that the sensitivity of
these parameters for the optimization routines are highly
dependent on the type of function, being particularly sen-
sitive to functions with multiple optima. At the other
end of this spectrum, it was observed that many differ-
ent sets of parameter values led to a minimal amount
of evaluations. Essentially, there was not a large differ-
ence between the best observed set, which is reported in
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Figure 6: The optimal swarm size, S, of the particle swam
optimization on the Rastrigin function as a function of di-
mension, n while holding the other parameters fixed (ω, φp,
φg) = (0.4, 2.0, 1.0).

Tables I and II, and other choices. From this we can con-
clude that surfaces with uncorrelated dimensional space
and with small number of optima are more likely to be
insensitive to the choice of parameters and hence do not
need to be tuned for the particular problem.

The Rastrigin function is particularly useful in ana-
lyzing the effect multiple optima have on local methods.
One can find the number of extrema as a function of di-
mension size n. The derivative of the Rastrigin function
in each respective coordinate is set to 0 and is given by
xi + 10π sin(2πxi) = 0. We recall that the bounds for
our benchmark functions are xi ∈ [−10, 10]. It is easy
to see that due to symmetry, we only need to consider
xi > 0. We further note that solutions are not possible
for xi > 10π and for each oscillation period, one obtains
two extrema. Since the period is 1, this implies 10 min-
ima (20 extremum which by symmetry has 10 maxima
and 10 minima) within the above bounds. Furthermore,
symmetry implies 10 more in the negative direction plus
the obvious xi = 0 (global) minimum, which results in 21
minima total. It then follows that the number of minima
in our problem for n dimensions is 20n + 1 ≈ 20n.

Another useful metric of an optimization routine is the
probability that a found optimum is the global optimum.
For this we can consider any local method which is run
R times, and suppose the method has an equal probabil-
ity to converge to any of the m minima (in general this
need not be true). We also assume m� 1, and we want
to be α = 0.99 sure we have found the global solution.
This would require R ≈ 4.6m [or R = O(m)]. Thus the
number of local runs should scale approximately linearly
with increasing minima. With just n = 2 for the Rastri-
gin function for example would imply that a local method
would need to be run R ≈ 2000 times to be 99% sure we
have converged to the global solution. Again, it is impor-
tant to note that this number assumed each extremum
was equally likely, that is, each of their respective basins

of attractions were the same size. This assumption in
general is not true, but it provides an insight into how
many runs of a local method would be needed to be confi-
dent that the routine has found the global optimum. For
example, suppose a local method converges in 50 evalua-
tions on average to a local extremum. In two dimensions
this would require on average close to 100000 total eval-
uations of the objective function. Compare this with the
number needed for PSO. In reality this turns out to be an
overestimation, the total number of evaluations for local
methods are far lower, but this analysis provides some
insight as to why they suffer at this level and how the
number of evaluations will scale with increasing number
of optimums.

In contrast, PSO and other global methods are more
robust to the number of local optima as can be seen by
comparing Figs. 3 and 5, the number of function eval-
uations is on the same order for both Rosenbrock and
Rastrigin functions. A possible reason why PSO behaves
similarly for Rosenbrock and Rastrigin is because there is
only a ”1D path” towards the minimum for Rosenbrock,
while the sphere function has a 50% chance to lower the
objective in each direction. Therefore, particles are as
likely to become stuck in the Rosenbrock valley as they
are in a Rastrigin local minimum.

The PSO optimal parameters also provide some insight
into the nature of the function. It helps to first interpret
what each parameter does. Increasing S obviously leads
to a greater chance of finding the best solution, the cost is
an increase in function evaluations. The inertial weight
ω < 1 is not a coincidence. As the particles approach
the global best, vi ← ωvi and this has a fixed point at
vi = 0. The φp and φg are quantities which affect the
exploratory nature of the algorithm and the weight asso-
ciated with the global information that the swarm pro-
vides to each individual particle. As φg → 0 each of the
particles behave more independently and their movement
becomes more individualized. As φp → 0, one essentially
tells each particle to only trust the group on the correct
direction to go.

Armed with this interpretation, one can understand
some of the results from the tables in Sec. 3. The sphere
function and Rosenbrock both have few minima (sphere
has only one, and the Rosenbrock has no more than two
for n 6 7). Therefore we expect φg > φp. However, the
results are different in Table V, which shows φp increasing
and φg decreasing as n (number of optima) increases.
This makes sense for multiple optima, since the swarm
should behave more independently and not get caught
among the many local optima. On the other hand for
φg = 0 it would take very long to converge (e.g. simulated
annealing).
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4. MODEL FOR THE CRITICAL CURRENT IN
SUPERCONDUCTORS

Here we define the objective function for the optimiza-
tion problem in superconductors mentioned before. For
the description of the vortex dynamics in strong type-
II superconductors, we use the TDGL equation for the
superconducting order parameter ψ = ψ(r, t),

(∂t + iµ)ψ = ε(r)ψ − |ψ|2ψ + (∇− iA)2ψ + ζ(r, t), (7)

which is solved numerically. Here µ = µ(r, t) is the
chemical potential and A is the vector potential asso-
ciated with an external magnetic field B as B = ∇×A.
The temperature-induced noise is simulated using a δ-
correlated Langevin term ζ(r, t) (in this work we use
noise of approximately 1 K). The unit of length is given
by the superconducting coherence length ξ, the unit of
magnetic field by the upper critical field Hc2, and the
corresponding unit of current is J0 (in this unit, the de-

pairing current is given by Jdp = 2/
√

27). See Ref. 12 for
the details of TDGL model implementation and physical
units. The current density is given by the expression

J = Im
[
ψ∗(∇− iA)ψ

]
−∇µ. (8)

To determine the critical current value — the maxi-
mal current, which can flow through the superconduc-
tor without dissipation, — we use a finite-electrical-field
criterion. Specifically, we choose a certain small exter-
nal electric field, Ec = 10−4, which measures the dis-
sipation and adjust the applied external current, J , to
reach this electrical-field/dissipation level on average dur-
ing the simulation. The time-averaged value of exter-
nal current over a steady state gives the critical current,
Jc = 〈J〉.

The critical current in the presence of an external
magnetic field is mostly defined by the pattern of non-
superconducting defects, including their sizes, shapes,
and spatial distribution, which prevents vortices from
moving under the influence of the Lorentz force, fL =
J×B.

The pinscape is characterized by a set of parameters x,
which corresponds to the objective function

f(x) = −Jc(x) (9)

used in optimization problem (1). Each element x of
the parameter space Ω describes the pinscape in the su-
perconductor, e.g. the shape of each defect and their
spatial distribution. The optimal configuration of the
defects xopt corresponds to the minimization of the ob-
jective function, fopt = f(xopt).

Knowledge of the shape and behavior of the function
Jc(x) is not known a priori. In addition if we consider,
for example, a random placement of defects in the do-
main, each realization can yield slightly different values
for Jc — for the same x (if it does not describe the po-
sitions of all defects explicitly), such that averaging is

required. In that case one can expect, as the number
of random simulations tends to infinity, Jc approaches a
“true” value due to self-averaging. For a finite number
of trials it leads, however, to a noisy Jc surface. This can
create difficulties for local methods to converge to the
global solution. A modification of the local methods to
multi-level starting points, helps to overcome the noise
in these types of problems.

To obtain the critical current Jc(x), we solve the
TDGL equation in the domain of interest with a spec-
ified parameter set x. Each evaluation of Jc is relatively
expensive (typically, a few GPU-hours), but can be per-
formed independently for different x. In order to reduce
noise in Jc, one can (i) average it over several realiza-
tions of random positions of defects and/or (ii) increase
the system size. Both techniques naturally increase the
computation time of Jc. The final value defines the ob-
jective function for the optimization problem.

5. OPTIMIZATION OF THE CRITICAL
CURRENT

The objective function in Eq. (9) is then used to solve
the general optimization problem for the pinscape de-
fined in Eq. (1). Typical pinscapes with like defects are
described by parameter spaces Ω having n = 2 to 8 di-
mensions. Here we consider three particular and impor-
tant cases for n = 2, 3, 4 to analyze the described op-
timization strategies. For practical applications also the
robustness of an optimum is important, since e.g. the size
and shape of defects cannot be controlled exactly in an
experiment. Therefore, the found optimal critical current
should be relatively insensitive to small perturbations in
the optimal pinscape xopt. In the examples studied here,
this condition is fulfilled.

For the simulations needed to obtain the critical cur-
rent for a given pinscape, we use a three-dimensional su-
perconducting sample with dimensions 64 × 64 × 64 in
units of coherence length ξ with (quasi-)periodic bound-
ary conditions. The external current J is applied in the
x-direction, perpendicular to the magnetic field B in the
z-direction. All defects are modeled by local variation
of the critical temperature, such that defects are regions
being in the normal state. To this end the system is
discretized by a regular cubic grid with grid resolution
of half a coherence length. As demonstrated in earlier
works,8,9 this resolution is sufficient to capture the in-
volved physical processes correctly. A pattern generator
then creates the pinscape according to the defining pa-
rameter set x, by assigning each grid point either to the
superconductor or to the defect, distinguished by a high
or low local Tc value. Defect regions with low Tc values
typically consist of many connected grid point.

First, we consider randomly placed spherical defects
(typically self-assembled inclusions in real sample) in a
three-dimensional system. All inclusions have the same
diameter, such that the parameter space for this prob-
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Figure 7: Pinscapes for optimization. (a) Randomly placed spherical inclusions for problem (10a). (b) Spheroidal inclusions
for problem (10b). (c) Mixture of spherical and columnar inclusions for problem (10c).

lem is defined by the defect density ρs within the sample
and their diameter Ds. As mentioned before, this set
of parameters is not unique, such that the same pinscape
could be described by a different x (e.g., the diameter and
total number of defects). This two-parameter pinscape
problem was considered recently in Ref. 34 by sampling
of the parameter space, which was possible in that case.

Another example of a two-parameter problem would
be a system with two kinds of defects having fixed shape,
e.g., a superconductor having columnar defects of fixed
diameter imprinted (typically introduced by high-energy
heavy-ion irradiation in a real sample), which already
had intrinsic (usually chemically grown) nano-rod pin-
ning centers.9 In this case the parameter space will be
defined by the concentration ρc of columnar defects and
the concentration ρn of the intrinsic nano-rod defects,
i.e., x = (ρc, ρn).

For the first problem we consider here, the pinscape is
defined by

x = (ρs, Ds), Ns =

⌊
6LxLyLzρs

πD3
s

⌋
, (10a)

whereNs is the number of identical spherical inclusions to
be placed randomly [see Fig. 7(a)] and b·c denotes the in-
teger rounding function. In the second, three-parameter
(3D) optimization problem shown in Fig. 7(b) we replace
the spherical defects by spheroidal defects, which have
a different diameter in z-direction than in the xy-plane,
i.e., it is described by two different diameters — Dxy in
the xy plane and Dz in z direction. In this case the
pinscape is defined by

x = (ρe, Dxy, Dz), Ne =

⌊
4LxLyLzρe

πκD2
xyD̃z

⌋
, (10b)

where D̃z = min{Dz, Lz} and κ = 1−D̃2
z/3D

2
z — the for-

mer definitions take into account periodic boundary con-
ditions in z-direction, when the z-diameter grows beyond
the simulation cuboid. In the final, four-parameter (4D)
problem, we consider two types of defects described by
a single parameter and their respective volume fractions,
namely spherical and columnar (cylindrical) inclusions,

see Fig. 7(c). The respective pinscape control parame-
ters are then ρs, Ds for spheres and ρc, Dc for columns,
i.e.,

x = (ρs, Ds, ρc, Dc), Nc =

⌊
4LxLyρs

πD2
xy

⌋
, (10c)

where Ns was defined in Eq. (10a). In the following we
discuss the results for these three optimization problems
as well as the benchmark function optimizations.

6. RESULTS OF CRITICAL CURRENT
OPTIMIZATIONS

Figures 8, 9, and 10 show the optimization “paths” for
all four optimization methods for the 2D [Eq. (10a) with
parameter space dimension n = 2], 3D [Eq. (10b) with
n = 3], and 4D [Eq. (10c) with n = 4] problems, respec-
tively. These plots show the values of the currently best
critical current and the associated parameter set x as
function of number of evaluations of the objective func-
tion (solid lines). If a new optimal value is found it is
marked by circles, while all other evaluations (with ob-
jective values above the current minimum) are marked
by gray dots. The optimal values are shown by dashed
horizontal lines. Note, that the pattern search algorithm
is not sequential, meaning that a minimum is only calcu-
lated after a certain number of evaluations (up to 2n+1),
which defines an iteration of the method. The iterations
are marked by vertical dotted lines in the plots. If the
number of evaluations per iteration is less that 2n + 1,
the remaining objective values were calculated before and
are just looked up in a database. Iterations are shaded
according to the step sizes in parameter space. The op-
timization results are summarized in Table VII. In the
2D case for randomly placed spherical inclusions, the op-
timal values reproduce the ones of Ref. 34 at magnetic
field B = 0.1Hc2. In the 3D case for spheroidal inclu-
sions, the optimal pinscape corresponds to an infinite size
in z direction (larger then the system size), i.e., when
the spheroids have “evolved” to columnar inclusion, and
the optimal value of the critical current is increased by
∼ 50%. In the 4D case, for a combination of the columnar
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(c) Nelder-Mead method
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(d) Particle swarm optimization
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Figure 8: Optimization procedure for the two-parameter (2D) problem (10a) with monodisperse spherical defects characterized
by the volume fraction ρs occupied by them and their diameter Ds. Critical current Jc and optimization parameters are shown
as a function of number of objective function evaluations for (a) pattern search, (b) adaptive pattern search, (c) Nelder-Mead
method, and (d) particle swarm optimization. The 2D optimization problem has an objective function close to a sphere-
type (4).34 Thus one can expect that all methods converge to the same optimum marked by horizontal dashed line. However,
due to sample fluctuations there are still visible differences in the optimal parameters which need much longer times to resolve.
Vertical dotted lines in panel (a) separate different iterations; darker background color corresponds to smaller step size. PSO
exit criterion causes over 300 additional evaluations for marginal improvement.

and spherical defects, the 3D result is confirmed, since
the volume fraction for the spheres vanish and the best
pinscape turns out to be consisting of columnar defects
in z direction only. The diameter and volume fraction
of the best columnar defects in the 3D and 4D cases is
accordingly the same.

As mentioned before, in order to obtain a good criti-
cal current value for randomly placed inclusions, either
a large number of random realizations or much larger
systems are needed. While the latter is easier to run,
we chose the former for performance reasons, such that

a single objective function evaluation requires averaging
the critical current over many pinscapes, described by
the same x. However, even with a large number of real-
izations, the critical current as a function of x can still
be quite noisy. In the worst case this leads to local meth-
ods failing to reach the optimal solution. In contrast to
that, global methods like PSO are much more resistant
to noise in the objective function.

First, let us analyze the two parameter optimization
more closely (see Fig. 8). All optimization methods con-
verge to the same optimal pinscape. However, the opti-
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(b) Adaptive pattern search
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(c) Nelder-Mead method
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(d) Particle swarm optimization
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Figure 9: Optimization procedure for the three-parameter (3D) problem (10b) with spheroidal defects characterized by the
occupied volume fraction ρe as well as defect diameter in Dxy in xy plane along applied current and diameter in Dz in z
direction along applied magnetic field. Critical current Jc and optimization parameters are shown as a function of number of
objective function evaluations for (a) pattern search, (b) adaptive pattern search, (c) Nelder-Mead method, and (d) particle
swarm optimization. Optimal diameter in z direction is larger then system size Lz = 64 for all methods, which indicates that
in the bulk sample optimal z-diameter Dz is infinite and spheroidal defects transform into columnar defects along z-axis.
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(b) Adaptive pattern search
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(c) Nelder-Mead method
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(d) Particle swarm optimization
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Figure 10: Optimization procedure for the four-parameter (4D) problem (10c) with mixed pinscape containing spherical
particles (characterized by volume fraction ρs and diameter in Ds) columnar defects along z axis (volume fraction ρc and
diameter in Dc). Critical current Jc and optimization parameters are shown as a function of number of objective function
evaluations for (a) pattern search, (b) adaptive pattern search, (c) Nelder-Mead method, and (d) particle swarm optimization.
PSO and adaptive pattern search converge to the pinscape containing columnar defects only.
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n x = {ρs Ds} Jc [J0] Jc [Jdp]

2 0.22 3.5 0.0235 0.061

n x = {ρ Dxy Dz} Jc [J0] Jc [Jdp]

3 0.20 3.0 ∞ 0.035 0.091

n x = {ρs Ds ρc Dc} Jc [J0] Jc [Jdp]

4 0.00 — 0.20 3.0 0.035 0.091

Table VII: Optimal parameters of the pinscape for maximal
critical current in the superconductor.

mization “paths” are quite different as one could expect:
although all methods reach a critical current value close
to the optimum after about 10–20 evaluations — indi-
cating a robust, relatively flat peak in parameter space,
the actual optimal configuration takes quite a while to
be reached: It takes about twice as many evaluations for
the local methods and an order of magnitude more for
the global PSO method. Note, that defining an appro-
priate exit criterion for the optimization can be challeng-
ing, since the improvement in the critical current can be
marginal, while the configuration can still change notice-
ably, as is clearly seen in the Nelder-Mead path.

Increasing the parameter space to three dimensions,
(Fig. 9), shows that all methods need more evaluations
as expected (scaling roughly linear with the dimension)
and again the local methods reach a close to optimal
critical current significantly faster than PSO. However,
one can see that the local methods already start to have
convergence problems, which is most likely a result of the
noise in the objective function. The figure shows that
the adaptive pattern search is a bit more efficient dealing
with this noise than simple coordinate decent. However,
in this case all methods still reach a configuration close
to the optimal one.

An obvious observation is that increasing the param-
eter space, cannot lower the optimal value of the objec-
tive function. Indeed, the chosen examples are in a sense
supersets of each other with higher dimensionality of Ω,
such that the best Jc value either increases or remains the
same. When going over from the 3D to 4D optimization
problem, we kept the result for the optimal z-diameter
of the defects, i.e., that the optimal defects are cylin-
ders, but added back spherical defects to the system. In
the 4D case one could then imagine three different sce-
narios for the global optimal configuration: coexistence
of both defect types, only cylindrical defects remain, or
only spherical are optimal. Due to the results of the 3D
problem, the latter is rather unlikely, since vortices and
columnar defects are well aligned and the pinning poten-
tial of the defects are therefore “optimal.”

As seen from Fig. 10, the local methods converge to
different optimal solutions. The coexistence scenario ap-
pears to be a good pinscape. However, the largest Jc

value is still below the cylinder-only solution. One can

expect that the optimal configuration is dependent on the
angle between applied magnetic field and the main axis of
the cylindrical defects. If they deviate from the parallel
setup we studied here, the coexistence of spherical and
columnar defects might be optimal, but it is clear that
at a 90◦ angle between field and columns only spherical
defects would “survive” in an optimization problem (for
isotropic superconductors).

When we compare our results for the Jc optimization
to the studied test functions before, we can conclude,
that the Jc surface for the chosen parameters is roughly
uncorrelated, since the number of evaluations required for
adaptive pattern search and pattern search to converge
are nearly the same.

Overall, we see that the PSO algorithm works reliable
in all cases, at the cost of about 10 times more evalu-
ations needed to reach the optimum, where often many
evaluations, on the order 102–103, are yielding only a
marginal gain in the objective function (< 1%). The lo-
cal methods start to fail in higher dimensional parameter
spaces, most likely due to noise in the objective function.
As mentioned before, combining the local searches with
a global method can potentially reduce the overall num-
ber of evaluations. Another way to mitigate this problem
is to use more realizations or larger system sizes, which
should smooth out the error from the random placement
of defects.

Another benefit of using a global method such as PSO,
is that it consistently finds better solution than the local
methods. In higher dimensional spaces n & 4, taking a
larger swarm size S becomes necessary to ensure conver-
gence. The local methods, however, converge faster. But
in any case there is no guarantee that the found con-
figuration is the optimum. One could only estimate a
probability that the found result is close to the optimal
one.

Finally, we remark that larger oscillations in the op-
timization paths for the local methods in higher dimen-
sions suggest a flatter global maximum of Jc or a more ro-
bust critical current when one deviates from the optimal
configuring. This is particularly important for practical
applications.

7. CONCLUSIONS

We have tested various methods for optimization prob-
lems and determined that particle swarm optimization
and adaptive pattern search performed the best on the
benchmark functions as well as in the physical optimiza-
tion problem presented. Particle swarm optimization in
particular does a relatively good job at handling the noisy
surface of the objective function, but takes a long time to
converge, where a significant amount of time is used for
marginal improvement. This is a result of the difficulty
to define an exit criterion. On the other side, adaptive
pattern search can get caught in local extrema, which
are either physical or a result of the noise. However, the
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number of evaluations are often much less (on the order
of 7–10 times). As mentioned before, a multi-level lo-
cal method could be used to mitigate this, which should
make adaptive pattern search competitive with particle
swarm optimization. Although we presented only some
results for the pinscape optimization in superconductors,
our studies of different optimization strategies can be im-
portant for a variety of different physical systems where
the evaluation of the objective function is expensive, e.g.,
requiring first principle calculations or molecular dynam-
ics simulations.
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