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Abstract

The main objective of this paper is to extend an isothermal incompressible two-phase lattice

Boltzmann equation method to model liquid-vapor phase change problems using a sharp interface

energy solver. Two discrete particle distribution functions, one for the continuity equation and the

other for the pressure evolution and momentum equations, are considered in the current model.

The sharp interface macroscopic internal energy equation is discretized with an isotropic finite

difference method to find temperature distribution in the system. The mass flow generated at

liquid-vapor phase interface is embedded in the pressure evolution equation. The sharp interface

treatment of internal energy equation helps to find the interfacial mass flow rate accurately where

no free parameter is needed in the calculations. The proposed model is verified against available

theoretical solutions of the two-phase Stefan problem and the two-phase sucking interface problem,

with which our simulation results are in good agreement. The liquid droplet evaporation in a

superheated vapor, the vapor bubble growth in a superheated liquid, and the vapor bubble rising

in a superheated liquid are analyzed and underlying physical characteristics are discussed in detail.

The model is successfully tested for the liquid-vapor phase change with large density ratio up to

1000.

PACS numbers: 47.11.j, 47.55.t, 64.70.fm, 44.35.+c

Keywords: Lattice Boltzmann Method, Phase Change, Heat Transfer

∗ thlee@ccny.cuny.edu

1



I. INTRODUCTION

The heat transfer mechanisms involving the liquid-vapor phase change provide ample

cooling for many industrial application because of the considerable heat transfer associated

with the latent heat of the liquid [1]. Liquid-vapor phase change characteristics have been

extensively investigated theoretically, numerically, and experimentally by many researchers.

By using numerical tools, the phenomena that are difficult to observe experimentally due

to complicated physical processes during boiling such as very small spatial scales and fast

temporal changes can be successfully studied. A fully detailed numerical simulation of

liquid-vapor phase change can be achieved by simultaneously coupling many physical effects

none of which can be ignored. The mass, momentum, and energy conservation equations

must incorporate the effects of surface tension, latent heat, interfacial mass flow rate, abrupt

change of material properties, and phase interface dynamics. One of the most challenging

problems in numerical simulations of liquid-vapor phase change is accurate representation

of the motion of the phase interface in the presence of phase change.

Numerical simulation of boiling has been carried out using sharp interface and diffuse

interface techniques. In the sharp interface approach, liquid-vapor phase change has been

simulated with front tracking method [2], Volume of Fluid method (VOF) [3–6], and level

set method [7–9]. Recent attempts to simulate boiling with diffuse interface approaches

such as diffuse interface method [10, 11], phase field method [12, 13], and Lattice Boltzmann

Equation (LBE) method [14–18] offer new capabilities in dealing with complex interface

morphologies and topological changes, near-critical fluid, and motion of a contact line along

a solid surface [19].

LBE methods have shown great success in simulating two-phase fluid flows with its meso-

scopic nature [20–23]. In order to enable liquid-vapor phase change in LBE methods, either

they are equipped with the non-ideal gas equation of state (EOS) [14, 15, 17] or an interfa-

cial source term is added to governing equations [16, 18]. While using EOS seems to offer

a more straightforward path to simulate phase change problems, it exhibits difficulties in

simulating systems away from the critical temperature. Adding an interfacial source term

due to phase change to corresponding governing equation is promising in terms of enabling

phase change problems with a large liquid-to-vapor density ratio and a better control over

mass flux at the interface. In almost all recent numerical works on modeling liquid-vapor
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phase change using LBE methods [16, 18], the interfacial source term is spread over a dif-

fuse phase interface offering little control over the phase interface temperature. The sharp

interface treatment of the interfacial source term by macroscopic internal energy equation

provides a more accurate estimation of the mass flux at the phase interface and a better

control over the phase interface temperature.

Furthermore, the benchmark problems with available theoretical solutions utilized for val-

idation of phase change models in most recent studies include single-phase Stefan problems

with different thermal configurations [3, 5, 18]. Although validation of these benchmarks

proves some capabilities of the phase change models, by using more relevant benchmarks

such as two-phase Stefan and two-phase sucking interface problems, the validations become

more comprehensive, which provide situations close to a real boiling. In both two-phase Ste-

fan and sucking interface problems, all liquid and vapor pertinent thermophysical properties

are employed in the theoretical solution [24].

In this study, the original two-phase LBE method of He et al. [20] (as an Eulerian-based

approach for phase interface tracking) modified by Lee and Lin [25] and also equipped with

the a potential form of surface tension [26] to eliminate the parasitic currents, is extended to

model liquid-vapor phase change heat transfer. This modification is denoted as a pressure-

based approach, in which an interfacial mass flow rate is added as a source term in the pressure

evolution equation. The temperature distribution in the system is obtained by solving the

sharp interface macroscopic energy equation discretized with an isotropic finite difference

scheme. This paper is organized as follows. Section II describes the phase change model

and the LBE method. In section III, the proposed phase change model is verified against

theoretical solutions of two-phase Stefan and two-phase sucking interface problems, and a

liquid droplet evaporation in a superheated vapor, a vapor bubble growth in a superheated

liquid, and a vapor bubble rising in a superheated liquid are studied in detail. The concluding

remarks are reported in section IV.

II. PHYSICAL MODEL AND NUMERICAL ALGORITHM

In this section, the phase change model, and the discrete and lattice Boltzmann equations

are presented.
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FIG. 1: A schematic of a liquid-vapor system with the phase interface.

A. Liquid-Vapor Phase Change Model

Consider a volume element Ω containing a part of the phase interface with the surface

area of S between liquid and vapor in Fig. 1. The unit normal vector to the phase interface,

mass flux, local density, liquid bulk density, and vapor bulk density are denoted by n = ∇ρ
|∇ρ|

,

ṁ′′, ρ, ρl, and ρv, respectively. The volume fraction, φ = (ρ−ρv)/(ρl−ρv), is based on liquid

phase, therefore φl = φ and φv = 1 − φ (0 ≤ φ ≤ 1) where the subscripts l, and v refer to

liquid and vapor, respectively. For fluid flows with phase change, the same approach in [27]

is utilized for the continuity equation in each phase except an extra source term (±ṁ′′′)

corresponding to the mass flow rate per unit volume is added for each phase [4, 18]. The

continuity equation can be derived by combining the continuity equations for liquid and

vapor phases,

∇ · u = ṁ′′′

(

1

ρv
− 1

ρl

)

, (1)

where u is the macroscopic velocity. The divergence of velocity in Eq. (1) is zero everywhere

except for nodes around the phase interface called Interface Neighboring (INB) nodes, as

shown in Fig. 2. The divergence of velocity at the phase interface corresponds to volume

change due to phase change, which is positive in the case of evaporation and negative in the

case of condensation by convention. The same convention applies to the interfacial mass

flux. By forcing the divergence of velocity described in Eq. (1), the energy balance at the

phase interface is satisfied automatically and it causes the phase interface to move based on

the sign of the mass flux.

The corresponding pressure evolution equation that is to be recovered by the lattice

Boltzmann equation (LBE) described in the next section is derived from the continuity
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FIG. 2: INB nodes (solid blue circles) surrounding the phase interface (open circles: vapor

bulk nodes, solid red circles: liquid bulk nodes).

equation,
∂p

∂t
+ ρ

∂p

∂ρ
∇ · u+ u · ∇p = ρc2s

[

ṁ′′′

(

1

ρv
− 1

ρl

)]

, (2)

where p is the pressure, t is time, and ∂ρp = c2s = 1/3 is the square of lattice speed of

sound. In the low frequency limit, ∂tp and u · ∇p become on the order of the truncation

error and can be ignored recovering Eq. (1) [28]. Therefore, we can force continuity equation

presented in Eq. (1) in the system by recovering the pressure evolution equation in the LBE

framework. Now we can substitute Eq. (2) into the governing LBE for boiling two-phase

flows.

B. Discrete Boltzmann Equations

The tracking of the density of a single-component two-phase fluid is given by the following

discrete Boltzmann equation (DBE) [29–31]:

Dfα
Dt

= −1

λ
(fα − f eq

α ) +
(eα − u) · F

c2s
Γα(u), (3)

where α, fα, f
eq
α , eα, λ, and F are the characteristic direction, discrete particle density distri-

bution function, discrete equilibrium particle density distribution function, particle micro-

scopic velocity in the α-direction, relaxation parameter, and the forcing term, respectively
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and Γα(u)=f eq
α /ρ. The material derivative can be expanded as D/Dt =

(

∂
∂t
+ eα · ∇

)

. The

Maxwell-Boltzmann distribution of f eq
α is expanded up to second order in terms of macro-

scopic velocity O(u2):

f eq
α = tαρ

[

1 +
(eα · u)

c2s
+

(eα · u)2
2c4s

− (u · u)
2c2s

]

, (4)

where tα is the weight in the α-direction [32]. The D2Q9 and D3Q27 lattices are implemented

in this study for two- and three-dimensional problems, respectively. The particle microscopic

velocity in the corresponding α-direction for D2Q9 square lattice is extended from D1Q3

lattice as [29],

eα =



















(0, 0) α = 0,

(cosΘα, sinΘα) α = 1, 3, 5, 7,
√
2(cosΘα, sinΘα) α = 2, 4, 6, 8,

(5)

where Θα = (α − 1)π/4 and with the weights t0 = 4/9, t1 = t3 = t5 = t7 = 1/9, and

t2 = t4 = t6 = t8 = 1/36 [29]. The microscopic velocity and weight in D3Q27 lattice are

extended from D1Q3 method as well.

The following form for the forcing term F can be derived by considering the mean-field

approximation and excluding the volume of molecules [26]:

F = ∇ρc2s −∇p− ρ∇µ+ ρg, (6)

where g is the gravitational acceleration. The non-classical form of the chemical potential

µ = ∂ρE0 − κ∇2ρ is placed in the third term of Eq. (6), which accounts for the separation

of phases and results in a volumetric surface tension force. The bulk energy is given by

E0(ρ) = β(ρ− ρl)
2(ρ− ρv)

2 with κ and β being the gradient parameter and the bulk energy

constant, respectively. In a one-dimensional plane interface at equilibrium, the density

profile across the phase interface can be given by:

ρ(z) =
ρl + ρv

2
+

ρl − ρv
2

tanh

(

2z

D

)

, (7)

where z is the normal distance from the phase interface and D = 4
(ρl−ρv)

√

κ
2β

is the phase

interface thickness. The surface tension can be chosen as a numerical parameter and given

by σ = (ρl−ρv)
6

√
2κβ [33].

Eq. (3) recovers the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0. (8)
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A second distribution function is introduced by the transform, gα = c2sfα+(p− ρc2s) Γα(0),

for pressure and momentum in the system as in [25]. When substituted into Eq. (3), its

material derivative becomes:

Dgα
Dt

= c2s
Dfα
Dt

+

(

Dp

Dt
− c2s

Dρ

Dt

)

Γα(0). (9)

The last two terms inside the parentheses on the right-hand side of Eq. (9) can be re-

cast due to the pressure evolution equation Eq. (2) and the continuity equation Eq. (8),

respectively:
Dp

Dt
= (eα − u) · ∇p− ρc2s∇ · u+ ρc2s

[

ṁ′′′

(

1

ρv
− 1

ρl

)]

, (10)

and

c2s
Dρ

Dt
= (eα − u) · ∇ρc2s − ρc2s∇ · u. (11)

Substituting Eqs. (10) and (11) into Eq. (9) forms the following discrete Boltzmann equation

for pressure and momentum:

Dgα
Dt

= −1

λ
(gα − geqα ) + (eα − u) ·

[

∇ρc2s(Γα(u)− Γα(0))− ρ∇µΓα(u)
]

+ρc2s

[

ṁ′′′

(

1

ρv
− 1

ρl

)]

Γα(0), (12)

in which (eα − u) · ∇p(Γα(u)− Γα(0)) ∼ O(Ma3) is dropped due to the low Mach number

approximation [25]. For simplicity, the gravity term in Eq. (12) and from now on is omitted.

The last term on the right-hand side of Eq. (12) activates phase change in the system.

The macroscopic equations recovered by first and second order Chapman-Enskog expan-

sion of Eq. (12) are the pressure evolution and the momentum equations for non-ideal gases,

respectively:
∂p

∂t
+ ρc2s∇ · u = ρc2s

[

ṁ′′′

(

1

ρv
− 1

ρl

)]

, (13)

and
∂ (ρu)

∂t
+∇ · (ρuu) = −∇p− ρ∇µ+∇ ·

[

η(∇u+∇Tu)
]

, (14)

with η being the dynamic viscosity.

C. Calculation of Interfacial Mass Flux, ṁ′′, and Mass Flow Rate, ṁ′′′

In order to find a correct formulation for the mass flow rate at phase interface ṁ′′′, the

interfacial mass flux ṁ′′ is considered. The mass flux can be obtained by two different sharp
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FIG. 3: Illustration of a phase interface curve in the regular lattice structure with normal

vectors to phase interface (solid blue circles: INB nodes, open circles: vapor bulk nodes,

solid red circles: liquid bulk nodes, open squares: phase interface points. See text for

notations and definitions.).

interface approaches. First approach considers the momentum balance across the phase

interface [9],

ṁ′′ = ρv (uv − uI) · n = ρl (ul − uI) · n, (15)

where ul, uv, and uI are liquid, vapor, and phase interface velocities, respectively. In the

second approach, the mass flux is related to the heat flux difference across the phase interface

by using the energy balance at the phase interface [9],

ṁ′′hfg = qv − ql, (16)

where term hfg refers to the latent heat of vaporization or heat of evaporation. qv and ql

represent the normal heat fluxes at phase interface point in vapor-side and liquid-side of the

phase interface, respectively. Eq. (16) is called Rankine-Hugoniot jump condition [9]. In the

present work, the second approach is implemented to find the mass flux, since the numerical

treatment of Eq. (15) is not preferred because the phase interface velocity in Eq. (15)

in not available unless the interfacial mass flux is added to the system. Using

Eq. (16) enables us to use heat flux from temperature distribution in each side
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of the phase interface and to calculate interfacial mass flux accurately without a

need to recall the phase interface velocity. After finding the interfacial mass flux

and adding it to the system, the phase interface moves in the correct direction

and its velocity can be extracted as well.

The sharp interface treatment of interfacial mass flux lays down its calculation only on the

phase interface location which may not coincide with lattice nodes. The nodes surrounding

the phase interface are referred as INB nodes. The INB nodes located in both liquid and

vapor phases are filtered out using the following criterion,

∃α 6= 0 s.t. [φ(x, t)− φI ]× [φ(x+ eαδt, t)− φI ] < 0, (17)

where φI = 0.5 is the volume fraction at the phase interface and δt is the time step in LBE

framework which is set to 1. In Fig. 2, the INB nodes are shown with solid blue circles

and they all satisfy the condition in Eq. (17). As shown in Fig. 3, consider two INB nodes

on the vapor-side (Nv) and in the liquid-side (N l) of the phase interface connected by eα

characteristic direction. The phase interface point between these two nodes is shown by PI

and is located in Cartesian coordinates xPI
= (xI , yI). The phase interface point can be

described as the location where the phase interface curve crosses the characteristic direction

eα starting from Nv. Phase interface points in the diagonal characteristic directions are

omitted in Fig. 3 for the sake of simplicity. At the phase interface point PI , the liquid

outward unit normal vector is depicted as nl
I and the vapor one has the same magnitude

but with a different sign, (nv
I = −nl

I). The goal is to find the sharp interface heat flux jump

at PI along the normal direction nv
I (or nl

I) and then map it along the eα direction since

the points crossing the lattice structure in the normal direction nv
I or nl

I are not necessarily

coincide with lattice nodes.

The heat fluxes at phase interface point PI in vapor- and liquid-side of the phase interface

can be written as,

qv = −kvn
v
I · ∇T v

I , (18)

ql = −kln
l
I · ∇T l

I , (19)

where ∇T v
I and ∇T l

I are the temperature gradients on the vapor-side and liquid-side of the

phase interface, respectively. The parameters kv and kl are the thermal conductivities. A

constant saturation temperature, Tsat, is assumed in the calculation of heat fluxes at phase
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interface point PI . It should be noted that the sharp interface treatment of the heat fluxes

ensures accurate calculation of the mass flux due to phase change and easy control of the

phase interface temperature.

Using the characteristic direction eα, the normal temperature gradient on the vapor-side

at phase interface point PI can be recast as [34],

nv
I · ∇T v

I =
eα · ∇T v

I

nv
I · eα

. (20)

The proof of Eq. (20) is provided in Appendix A. Eq. (20) uses the directional gradient of

temperature in eα direction to approximate the normal temperature gradient in nv
I direction.

Similar relation can be used for the normal temperature gradient in the liquid-side of the

phase interface. Therefore, the heat fluxes normal to the phase interface at PI in the vapor-

and liquid-side of the phase interface are,

qv = −kv
eα · ∇T v

I

nv
I · eα

, (21)

ql = −kl
eᾱ · ∇T l

I

nl
I · eᾱ

, (22)

where eᾱ = −eα. The normal vectors nv
I and nl

I at PI are not available since they do not

reside on the lattice nodes.

��

�
��

�
��

�

�� direction
��

����� 1 � �� ������

	�
�

	�
�

	�
�

	�

Node

Temperature

FIG. 4: Temperature gradient calculation at phase interface point PI on the vapor-side

using the temperatures of the phase interface (TI), the neighboring lattice nodes (T v
1 and

T v
2 ) in the vapor phase, and the ghost node (T v

0 ).

In order to calculate the temperature gradient at the phase interface point PI on the

vapor-side as shown in Eq. (21), consider the phase interface point PI , two lattice nodes

on the vapor-side of the phase interface Nv
1 and Nv

2 , and a ghost node Nv
0 in Fig. 4 where

δxα = |eα| δt is the spatial step in the characteristic direction α. Ghost nodes are considered
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in the opposite side of each phase to facilitate the temperature gradient calculation. The

temperature at the ghost node T v
0 is calculated in eα direction as in [35] to avoid singularity,

T v
0 =

2TI + (θα − 1)T v
2

1 + θα
, (23)

where TI is the phase interface temperature set to a constant saturation temperature Tsat

in this study, θα is the normalized distance between PI and the first lattice node Nv
1 in eα

direction, and T v
2 is the temperature at the second lattice node Nv

2 . By having the definition

of temperature at the ghost node T v
0 , the temperature gradient at PI on the vapor-side is

calculated with the following second-order formula [36],

eα · ∇T v
I =

(1 + 2θα)T
v
0 − 4θαT

v
1 − (1− 2θα)T

v
2

2δt
. (24)

Since the temperature gradient in Eq. (21) is calculated using the sharp interface approach,

only the temperature of lattice nodes T v
1 and T v

2 on the vapor-side and the temperature of

the ghost node T v
0 are considered in Eq. (24). Likewise, the same treatment is applied for

temperature gradient at PI in liquid-side of the phase interface.

The normal heat flux jump, 〈q〉, at PI is then written as,

〈q〉 = qv − ql = −kv
eα · ∇T v

I

nv
I · eα

+ kl
eᾱ · ∇T l

I

nl
I · eᾱ

. (25)

Substituting Eq. (25) into Eq. (16) yields the following equation for the interfacial mass flux

due to phase change at PI ,

ṁ′′ =
1

hfg

[

−kv
eα · ∇T v

I

nv
I · eα

+ kl
eᾱ · ∇T l

I

nl
I · eᾱ

]

. (26)

The mass flux at PI can be distributed on neighboring nodes along either nv
I or n

l
I , but these

vectors do not generally pass through lattice nodes. Alternatively, we find the component

of mass flux in a given characteristic direction eα.

As shown in Fig. 3, the angle formed by the characteristic direction eα and the normal

vector nv
I at the phase interface point is Φv

α and is calculated by the inner product of the

two vectors,

cos(Φv
α) =

nv
I · eα

|nv
I | |eα|

. (27)

The interfacial mass flux at PI can be mapped in eα direction using the angle Φv
α,

ṁ′′
eα

= ṁ′′ cos(Φv
α). (28)
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FIG. 5: The mass flux at the phase interface point PI distributed by a linear weighting

function on lattice nodes.

With this definition, the component of the mass flux in eα direction in Eq. (28) is expressed

by,

ṁ′′
eα

= ṁ′′ n
v
I · eα

|nv
I | |eα|

. (29)

Finally, Eq. (26) is substituted for the mass flux in Eq. (29),

ṁ′′
eα

=
1

hfg

nv
I · eα

|nv
I | |eα|

[

−kv
eα · ∇T v

I

nv
I · eα

+ kl
eᾱ · ∇T l

I

nl
I · eᾱ

]

, (30)

which can then be further simplified as follows,

ṁ′′
eα

=
1

hfg |eα|
(

−kveα · ∇T v
I + kleᾱ · ∇T l

I

)

, (31)

due to |nv
I | = 1.

The mass flux component ṁ′′
eα

needs to be converted to volumetric mass flow rate ṁ′′′

to be used in Eq. (1) and subsequent equations. Consider a mass flux ṁ′′
eα

at PI as shown

in Fig. 5. It is then distributed to neighboring lattice nodes (N1 and N2) using a linear

weighting function [37],

ṁ′′′
eα

(x) =
1

δx
ṁ′′

eα
Ψ′ (r) , (32)

where ṁ′′′
eα

is the mass flow rate at neighboring lattice nodes around PI and the Ψ′ is the

linear weighting function defined as,

Ψ′(r) =











1− r, if r ≤ 1

0. if r ≥ 1
, (33)

where the non-dimensional argument is set to r = |x− xPI
| /|eα| δt.
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FIG. 6: Illustration of different phase interface points on different characteristic directions

starting from point Nv in the vapor phase.

To summarize, the mass flux is first calculated at the phase interface location PI on a link

between a pair of lattice nodes, one in vapor side and the other in liquid side in eα direction

as depicted in Fig. 5. The mass flux is then distributed on the adjacent lattice nodes (e.g.

N1 and N2) in the eα direction. The distributed mass flux is called the mass flow rate.

The application of the linear weighting function not only distributes the mass flux at

phase interface point but also it finds the link between the sharp interface mass flux and

the mass flow rate at phase interface between liquid and vapor. Another way to distribute

the mass flux at the phase interface point PI is to multiply it by the absolute value of the

gradient of the volume fraction |∇φ| [18]. However, using |∇φ| does not guarantee the same

initial diffusive profile as the phase interface undergoes deformation during the simulation

runtime.

The INB nodes may cross the phase interface curve in multiple eα directions. Conse-

quently, different mass flow rates ṁ′′′
eα

may be found at one lattice node in each eα direction.

A weighted averaging process is needed in this situation. Here we choose ṁ′′′
eα

in the dom-

inant characteristic direction, which is defined as the direction of maximum inner product

(eα · nv
I)/ |eα| or (eα · nl

I)/ |eα| at P v. As an example in D2Q9 lattice structure, the lattice

node Nv crosses the phase interface curve at PI,1, PI,4, and PI,8 in e1, e4, and e8 charac-

teristic directions, respectively as shown in Fig. 6. Three different mass flow rates are then
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obtained as ṁ′′′
e1
, ṁ′′′

e4
, and ṁ′′′

e8
at lattice node Nv, and ṁ′′′

e8
is finally chosen as ṁ′′′

eα
in

Eq. (1).

D. Macroscopic Internal Energy Equation

The sharp interface macroscopic energy equation is considered for solving the temporal

and spatial evolution of the temperature in the vapor and liquid phases:

∂T

∂t
+ u · ∇T = χ∇2T, (34)

where the χ, T , and u are the thermal diffusivity, temperature, and local velocity, respec-

tively. Due to the sharp interface energy solver, the thermal diffusivity in the vapor phase

becomes χv and in the liquid phase becomes χl. The energy jump condition due to phase

change that includes the latent heat hfg and mass flow rate ṁ′′′ is embedded in the defi-

nition of divergence of velocity in Eq. (1). Therefore the local velocity in Eq. (34) carries

information related to latent heat and mass flow rate at the interface and its profiles shows

a jump at the phase interface due to the phase change at the phase interface.

The macroscopic energy equation is then discretized with the explicit Euler method in

time and the 2nd-order accurate isotropic finite difference method [25] in space:

∇T =
∑

α6=0
tαeα[T (x+eαδt)−T (x−eαδt)]

2c2sδt
, (35)

∇2T =
∑

α6=0
tα[T (x+eαδt)−2T (x)+T (x−eαδt)]

c2sδt
2 .

In Eq. (35) on lattice nodes near the phase interface, the T (x + eαδt) or T (x− eαδt) may

point to the temperature in the other phase and thus require the ghost nodes defined for

calculation of the heat flux in Eq. (24) as well.

E. Lattice Boltzmann Equations

The discrete Boltzmann equations for the density in Eq. (3) and the pressure and mo-

mentum in Eq. (12) are discretized along the characteristics over time step δt as in [25]. By

defining the following modified discrete distribution functions,

f̄α = fα +
fα − f eq

α

2τ
− δt

2

(eα − u) · [∇ρc2s −∇p− ρ∇µ)] Γα(u)

c2s
. (36)
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and

ḡα = gα +
gα − geqα

2τ
−δt

2
(eα − u) ·

[

∇ρc2s(Γα(u)− Γα(0))− ρ∇µΓα(u)
]

(37)

−δt

2
ρc2s

[

ṁ′′′

(

1

ρv
− 1

ρl

)]

Γα(0).

The lattice Boltzmann equations at a lattice site (x) can be written as:

f̄α(x, t)− f̄α(x− eαδt, t− δt) = − 1

τ + 0.5

(

f̄α − f̄ eq
α

)

∣

∣

∣

∣

(x−eαδt,t−δt)

(38)

+
δt(eα − u) · [∇ρc2s −∇p− ρ∇µ)] Γα(u)

c2s

∣

∣

∣

∣

(x−eαδt,t−δt)

,

and

ḡα(x, t)− ḡα(x− eαδt, t− δt) = − 1

τ + 0.5
(ḡα − ḡeqα )

∣

∣

∣

∣

(x−eαδt,t−δt)

(39)

+ δt(eα − u) ·
[

∇ρc2s(Γα(u)− Γα(0))− ρ∇µΓα(u)
]
∣

∣

(x−eαδt,t−δt)

+ δtρc2s

[

ṁ′′′

(

1

ρv
− 1

ρl

)]

Γα(0)

∣

∣

∣

∣

(x−eαδt,t−δt)

,

where τ = λ/δt is the non-dimensional relaxation parameter.

The macroscopic variables such as density, momentum, and pressure can be calculated

by taking the moments of modified distribution functions f̄α and ḡα:

ρ =
∑

α

f̄α, (40)

ρu =
1

c2s

∑

α

eαḡα − δt

2
ρ∇µ, (41)

p =
∑

α

ḡα +
δt

2
u · ∇ρc2s +

δt

2
ρc2s

[

ṁ′′′

(

1

ρv
− 1

ρl

)]

. (42)

Viscosity and relaxation parameter are constant in each bulk phase but vary in the interfacial

region. The relaxation parameter is inversely proportional to the volume fraction:

1

τ
=

1

τv
+

(

1

τl
− 1

τv

)

φ(x, t). (43)

where the parameters τl and τv are relaxation parameters for liquid and vapor phases,

respectively. The heat conductivity k, specific heat cp, and thermal diffusivity χ are constant

in each bulk phase and have a jump across the phase interface.

k =
1

2
(kv + kl) +

1

2
(kv − kl) sign[φi − φ(x, t)], (44)
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cp =
1

2

(

cpv + cpl
)

+
1

2

(

cpv − cpl
)

sign[φi − φ(x, t)], (45)

χ =
1

2
(χv + χl) +

1

2
(χv − χl) sign[φi − φ(x, t)]. (46)

The sign function in Eq. (46), sign[φi − φ(x, t)], yields +1 in the vapor phase and −1 in

the liquid phase. The energy equation solver considers a sharp interface with a specified

phase interface temperature and the thermal properties are not smoothed across the phase

interface, instead they have a jump. This approach safeguards the accurate calculation of

the interfacial mass flux which results in the correct movement of the phase interface due to

liquid-vapor phase change.

The proposed LBE model for liquid-vapor phase change is different from the one intro-

duced by Safari et al. [18] in many aspects as described in the following. First, the current

LBE model is based on the single-component two-phase fluid flow approach and the order

parameter is density while in [18], the model is based on the two-component two-phase fluid

flow approach and the order parameter is composition. Second, the non-zero divergence of

velocity in Eq. (1) is forced in the system by the pressure evolution equation, Eq. (13), in

our model while it is added as a volumetric source term to the continuity equation in [18].

Third, the present energy equation is solved using the sharp interface while it is solved using

the diffuse interface in [18]. The sharp interface treatment not only is crucial in calculat-

ing the interfacial mass flux accurately but also gives us a better control over the phase

interface temperature. Accurate calculation of the mass flux is important in the small-scale

boiling. In [18], since the thermal properties such as thermal conductivity and specific heat

are smoothed over the interfacial region, it can not provide exact calculation of the heat

flux and the mass flux. Accordingly, these properties are considered constant in each phase

and exhibit a jump at phase interface in our model. Besides, in [18], the phase interface

thickness is dependent on density ratios (3, 4, and 5 in lattice units for the density ratios of

10, 100, and 1000, respectively) leading to introduction of an additional free parameter in

the system. The phase interface thickness is constant for all simulation cases in the current

study, regardless of density ratio.
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III. NUMERICAL VALIDATION

In this section the current phase change model is used to simulate one-, two-, and three-

dimensional liquid-vapor phase change problems. The computational domain in all cases is

a regular Cartesian lattice grid and the time step δt and grid spacing δx are equal to unity

in lattice units. First, the physical model is verified against available theoretical solutions,

and then the two-dimensional problem of droplet evaporation in superheated vapor and

the three-dimensional problem of vapor bubble growth in superheated liquid and the three-

dimensional problem of vapor bubble rising in superheated liquid are studied in detail.

A. Heat Conduction in Liquid-Vapor Systems

In this section, steady and unsteady heat conduction simulations in liquid-vapor systems

are validated. The main goal is to check the accuracy of the sharp interface energy solver in

the lattice Boltzmann framework which plays an important role in accurate calculation of

the interfacial mass flux. First, the steady state case is discussed followed by the unsteady

one in section IIIA 2.

1. Steady State Heat Conduction

Figure. 7 illustrates the schematic of the heat conduction in a liquid-vapor system. Both

phases are bounded with a constant temperature wall. Initially, the temperature is constant

in each phase (Tl = +1 and Tr = −1) and has a jump across the phase interface. However,

the phase interface temperature located at the midplane is kept constant at TI = 0.81

during the simulation. By neglecting the convection term in the macroscopic internal energy

equation, it is simplified to,
∂T

∂t
= χ

∂2T

∂x2
, (47)

where the thermal diffusivity has a discontinuity across the phase interface as in Eq. (46).

The thermal diffusivity of vapor is 10 times larger than liquid (χv = 0.1, χl = 0.01). The

heat flux is the same everywhere creating zero heat flux jump across the phase interface. The

transient macroscopic equation in Eq. (47) is iterated in time until a steady state solution is

reached. Consider Fig. 8a, which plots steady state temperature profile in current method
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FIG. 7: A schematic of the steady state heat conduction in a liquid-vapor system along

with initial temperature (T ) and heat flux (q) distribution.

against the theory. There is an excellent agreement between the method and theory, and

the sharp interface temperature profile at phase interface is magnified in Fig. 8b. As follows

from this figure, the sharp interface internal energy solver creates a sharp transition in the

temperature profile and assists in exact calculation of the heat flux jump across the phase

interface.

2. Unsteady Heat Conduction

The unsteady heat conduction for the liquid-vapor system shown in Fig. 7 creates a heat

flux jump at the phase interface during the simulation. The initial temperature profile in

this case is slightly different from the steady state case. The left wall is kept at Tl = 1 and

the right boundary is kept at a constant temperature of Tr = −1. The initial temperature

of the liquid and vapor is set to the interface temperature (TI = 0). Accurate calculation

of transient heat flux jump at phase interface is indispensable for calculating mass flux in

boiling. The goal in this section is to use a sharp interface internal energy solver to track

the temperature as well as heat flux jump at phase interface and compare them with theory.

The thermal diffusivities of vapor and liquid are set to 0.2 and 0.1, respectively. Figure. 9a

illustrates the comparison of temperature profiles at a certain time between the current

result and the theory. The same comparison for heat flux is presented in Fig. 9b. In both

temperature and heat flux figures, the results match very well. As the temperature profile
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FIG. 8: (a) Comparison of the temperature distribution in the steady state heat

conduction problem between the current result (symbol) and the theory (line) along with

initial temperature profile (square symbol) and (b) the sharp profile of the temperature

across the phase interface.

evolves with time, the heat flux jump at phase interface decreases and reaches a constant

value eventually. The final heat flux jump becomes 〈q〉 = −5.23× 10−3.

B. Two-Phase Stefan Problem

The classical two-phase Stefan problem construes the temperature distribution in a ho-

mogeneous medium with phase change occurring at the phase interface. An theoretical

solution [24] of this problem with limited applicability can be used to validate the liquid-

vapor phase transition model and to test the convergence of the current model towards

the sharp interface limit. The similar benchmark for most recent studies on liquid-vapor

phase change problems is the single-phase Stefan problem [3, 5] where the theoretical so-

lution does not include the density ratio parameter and the thermophysical properties of

one phase. The two-phase Stefan problem with density effect is considered a more realistic

benchmark for phase change models since the theoretical solution encompasses all liquid and

vapor thermophysical properties and there is no free parameter in the system.

The problem geometry and initial temperature profile is depicted in Fig. 10. In the theory,
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FIG. 9: (a) Comparison of the temperature distribution at t∗ = 1 along with initial

temperature profile (square symbol) and (b) Comparison of the heat flux jump,

〈q〉 = qv − ql, in the unsteady heat conduction problem between the current result

(symbol) and the theory (line).

the liquid and vapor phases initially have a constant temperature, T∞, which is less than

saturation temperature, Tsat = T∞ +∆T∞. The left boundary is a solid wall, which is kept

at a constant temperature Tw higher than the saturation temperature, Tw = Tsat + ∆Tw.

The phase interface temperature is set to Tsat during the simulation. Initially, there is a thin

layer of vapor in the system with 10 lattice grid size to initiate the phase change process.

The initial temperature of liquid and vapor is set from the theoretical solution considering

the initial vapor gap in the system. The simulation parameters in lattice units are listed

in Table I. As the thermal profile evolves with time due to the temperature difference

(∆Tw), the phase interface feels the superheat that triggers the phase change process. The

generated mass flow rate due to volume expansion at the phase interface pushes the liquid to

exit from the right boundary and for that the vapor velocity becomes nearly zero (uv = 0)

during the phase change. A gradient free (open) boundary condition is applied at the

right-side boundary in Fig. 10. The non-dimensional parameters defined in this problem

are Stefan numbers based on vapor thermophysical properties Stv = cpv∆Tw/hfg and liquid

thermophysical properties Stl = cpl∆T∞/hfg. The theoretical solution for the phase interface
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FIG. 10: A schematic of the two-phase Stefan problem with initial temperature profile.

TABLE I: Simulation parameters for benchmark problems (Nx is the lattice size).

ρl/ρv Stv Stl χv χl ∆Tw ∆T∞ Nx

Stefan Problem (ρl/ρv ≈ 1) 1.5 1 1 0.01 0.01, 0.001 1 1 200

Stefan Problem (ρl/ρv ≫ 1) 10, 100, 1000 1 0.005 0.001, 0.01, 0.1 0.0001 1 1 200

Sucking Interface Problem 50, 100, 200 0 0.004 0.006 0.006 0 1 500

location XI(t) and the transient vapor and liquid temperatures are given by [24]:

XI(t) = 2ζ
√
χvt, (48)

Tv(x, t) = Tw − ∆Tw

erf (ζ)
erf

(

ζx

XI

)

, (49)

Tl(x, t) = T∞ +
∆T∞

erfc (ζρvlχvl)
erfc

(

ζxχvl

XI

− ζχvl (1− ρvl)

)

, (50)

where χv = kv/(ρvcpv) is the thermal diffusivity of vapor, χvl =
√

χv/χl, ρvl = ρv/ρl, erf ()

is the error function, erfc () is the complementary error function erfc (x) = 1 − erf (x) and

parameter ζ is the solution of the following transcendental equation [24]:

Stv
ζeζ2erf (ζ)

− Stl

ζρvlχvle(ζρvlχvl)
2
erfc (ζρvlχvl)

=
√
π. (51)

Considering the fact that the theoretical solution assumes no initial vapor profile in the

system, the time variable t and the phase interface location XI(t) in Eqs. (48) and (49) are

modified based on the initial phase interface location XI(0) = 10.
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FIG. 11: Comparison of the temperature distribution in the two-phase Stefan problem

with small density effect (ρl/ρv = 1.5) between the LBE result (symbol) and the theory

(line) for different thermal diffusivity ratios and (b) the sharp profile of the temperature

across the phase interface.

1. Effect of Thermal Diffusivity (ρl/ρv = 1.5)

First, the density ratio is set to ρl/ρv = 1.5 and the effect of thermal diffusivity is

considered. The physical parameters needed to set up the simulations are listed in Table I.

In Fig. 11a, the temperature distribution at time t∗ = 0.2 is compared to theoretical results

for two different thermal diffusivity ratios, χv/χl = 1 and 10. A close look at the temperature

profile at the phase interface in Fig. 11b confirms its sharp distribution. The thermal

boundary layer in the liquid-side of the phase interface is thinner in case of smaller thermal

diffusivity ratio (χv = χl). Additionally, the comparison of the phase interface movement

between the LBE and theoretical results for both thermal diffusivity ratios is depicted in

Fig. 12 in which they show an excellent agreement. For the unit thermal diffusivity ratio

(χv = χl), the phase interface moves faster because the interfacial mass flux is larger. This

is obvious from Fig. 11a where the temperature profile in the liquid-side is more steep for

unit thermal diffusivity ratio, resulting in a larger heat flux jump at the phase interface.

22



t *

X
*
(t

)

0 0.2 0.4 0.6 0.8 1

0.06

0.08

0.1

0.12

0.14

0.16

0.18
χv= 0.01 , χl = 0.01 (Theory)
χv= 0.01 , χl = 0.01 (Current)
χv= 0.01 , χl = 0.001 (Theory)
χv= 0.01 , χl = 0.001 (Current)

FIG. 12: Comparison of the phase interface location in the two-phase Stefan problem with

small density effect (ρl/ρv = 1.5) for different thermal diffusivity ratios.

2. Effect of Density (ρl/ρv ≫ 1)

In Fig. 13a, the LBE result for phase interface location is compared with the theoretical

solution for three density ratios ρl/ρv=10, 100, and 1000. The non-dimensional time is

t∗ = t/ts and the non-dimensional phase interface location is X∗ = XI/Nx where ts is the

total simulation time in lattice units andNx is the lattice grid size in x-direction. The surface

tension and phase interface thickness are σ = 10−3 and D = 5 for all cases, respectively.

The bulk energy constant and gradient parameter for density ratios ρl/ρv = 10, 100, 1000

are β = 0.0036, 0.0024, 0.0024 and κ = 0.0092, 0.0076, 0.0075, respectively. As can be seen

in this figure, the simulation results are in good agreement with theory. Therefore, it is fair

to conclude that even for a large density ratio up to 1000, the model is capable of correct

prediction of the phase interface location meaning the diffusion term in the energy equation

is accurately treated. As the phase interface moves away from the wall, it experiences a

weaker temperature gradient and slows down. This is obvious from the slope of the curves

in Fig. 13a. At any given time in Fig. 13a, the phase interface moves faster for larger density

ratios.

The vapor phase remains stationary during the simulation but the liquid phase is pushed

to the right with a constant velocity calculated from Eq. (15) as ul = uI(1 − ρv/ρl) where

uI is the velocity of the phase interface. In Fig. 13b, the liquid velocity profiles are plotted
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FIG. 13: Comparison of (a) the phase interface location and (b) the liquid velocity (ul) in

the two-phase Stefan problem between the LBE result (symbols) and the theoretical

solution (lines) [24] for different density ratios.

for three different density ratios ρl/ρv = 10, 100, and 1000. We found a good agreement in

Fig. 13b between the LBE result and theoretical solution as well. The liquid velocity at the

right boundary increases with the increasing density ratio.

The temperature profiles with a sharp distribution at the phase interface are shown in

Fig. 14a for three density ratios of ρl/ρv = 10, 100, and 1000 at t∗ = 0.5. The LBE results

match well with theory and all temperature profiles exhibit a sharp distribution at the

phase interface. Additionally, the phase interface with a larger vapor-to-liquid density ratio

moves faster. The temporal evolution of the heat flux jump at the phase interface is plotted

in Fig. 14b, where it shows a decreasing behavior in time for all density ratios. As the

phase interface moves away from the left wall, the temperature slope decreases at the phase

interface which results in a reduced heat flux jump. Since the heat flux jump is calculated

at a moving phase interface, a small fluctuation in the numerical results around the theory

is expected.
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FIG. 14: Comparison of (a) the non-dimensional temperature profiles at t∗ = 0.5 and (b)

the temporal evolution of the heat flux jump in the two-phase Stefan problem between the

LBE result (symbols) and the theoretical solution (lines) [24] for different density ratios.

3. Effect of Phase Interface Thickness

One important parameter in simulations is the phase interface thickness D. In Fig. 15,

the temporal evolution of the phase interface location is shown for different phase interface

thicknesses (D = 4, 5, and 6) with a fixed density ratio of 100. The effect of phase interface

thickness on the location of the phase interface is negligible. Therefore, it is kept constant

(D = 5) for all density ratios in this study, while in [18], the phase interface thickness was

dependent on a density ratio.

4. Convergence Test

In order to test the convergence of the model towards the sharp interface limit, the non-

dimensional phase interface location X∗(t) is plotted against the non-dimensional time t∗

for three initial vapor layer thicknesses (X(0) = 10, 20, and 40) in Fig. 16a. Since the phase

interface location changes with square root of time in Eq. 48, the total simulation time as

well as the lattice size are changed based on the initial vapor layer thickness. In all cases,

the initial vapor layer thickness is 5% of the total lattice size. The solution converges to the
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FIG. 15: Comparison of the phase interface location in the two-phase Stefan problem for

different phase interface thicknesses at ρl/ρv = 100.

theoretical solution as the initial vapor layer thickness increases. Since the system initially

is slightly away from the equilibrium, the mass flow rate calculation has a smaller error if

the initial temperature gradient at the phase interface is less steep and the mass flow rate is

small. The slope of initial temperature profile at the phase interface decreases as the initial

vapor layer thickness increases.

In Fig. 16b, a convergence test is done for different thermal diffusivities of χ = 0.001, 0.002,

and 0.004 at a density ratio of 100. In all cases, the thermal diffusivity of vapor is larger than

the liquid one by two order of magnitude, χv/χl = 100. The error between the theoretical

solution and LBE method decreases as the thermal diffusivity decreases. The reason behind

this is the explicit temporal discretization of the macroscopic energy equation. The current

solution (tn) in the discretization scheme is dependent on previous solution (tn−1) and ob-

viously the error increases when there is a large jump at phase interface location. When

larger thermal diffusivity intensifies the boiling rate, the phase interface jump between two

consecutive time steps increases and the error compared to theoretical results increases as

well.
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FIG. 16: Convergence test toward sharp interface limit for the interface location based on

(a) different initial vapor layer thicknesses X(0) = 10, 20, 30, and 40 and (b) different

thermal diffusivities χ = 0.001, 0.002, 0.004 in the two-phase Stefan problem.

C. Two-Phase Sucking Interface Problem

The next one-dimensional validation benchmark is defined by slightly modifying the first

case in section IIIB in terms of the initial temperature distribution. A schematic diagram

of the problem along with an initial temperature distribution is depicted in Fig. 17. The

left wall is maintained at lower temperature compared to saturation temperature (Tsat =

Tw +∆Tw) and the right boundary is kept at T∞ = Tsat +∆T∞. The only difference is that

the thin thermal layer in the interfacial region (located mostly on the liquid-side) controls

the phase interface velocity. This problem is very close to the real boiling situation where

there is a thin thermal boundary layer in the liquid-side of the phase interface. Due to the

volume expansion of liquid, the phase interface velocity is expected to be higher than that

in the first benchmark [13]. The theoretical solutions of the phase interface location and

liquid temperature are [38]:

XI(t) = 2
ζ

ρvl

√
χvt, (52)

Tv(x, t) = Tw +
∆Tw

erf (ζ/ρvl)
erf

(

ζx

XIρvl

)

, (53)
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FIG. 17: A schematic of the two-phase sucking interface problem and the initial

temperature profile.

Tl(x, t) = T∞ − ∆T∞

erfc (ζχvl)
erfc

(

ζxχvl

XIρvl
− ζχvl

1− ρvl
ρvl

)

, (54)

where ζ is the solution of the following transcendental equation [38]:

e(ζ/ρvl)
2

erf (
ζ

ρvl
)

[

ζ − Stl√
πχvl

e−(ζχvl)
2

erfc (ζχvl)

]

= −Stvρvl√
π

. (55)

Parameters Stl = cpl∆T∞/hfg and Stv = cpv∆Tw/hfg are the Stefan numbers based on

liquid and vapor thermophysical properties. The initial temperature profile is calculated

from Eqs. (53) and (54). The simulation parameters for this problem in lattice units are

listed in Table I. The wall superheat is set to zero in this simulation (∆Tw = 0). The time

evolution of the phase interface location is compared with the theoretical solution for three

different density ratios (ρl/ρv = 50, 100, and 200) in Fig. 18. A good agreement is found

between the LBE results and theoretical solutions. The rate of the phase interface velocity

increase is more pronounced compared to the two-phase Stefan problem in section IIIB due

to the placement of the thermal boundary layer in the liquid-side of the phase interface.

The initial thermal layer in the interfacial region tends to spread as the simulation pro-

gresses. However, this effect is minimized by sucking the thermal layer toward the phase in-

terface [3], which keeps the thermal layer thin (Fig. 19) during the simulation. Fig. 20 shows a

scaling relation pertaining to the relationship between the calculated non-dimensional phase

interface displacement and the Stefan number after a fixed number of iterations. It shows

that the phase interface moves faster with increasing Stefan number and the phase interface

displacement is scaled with the square root of the Stefan number by ∆XI/XI(0) ∼ St0.5l .

The curve is shown by a linear profile in Fig. 20 since it is plotted in log-log scale.
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FIG. 18: Comparison of the phase interface location in the two-phase sucking interface

problem between the LBE result (symbols) and the theoretical solution (lines) [13] for

different density ratios.
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FIG. 19: The temperature profile at different times in the two-phase sucking interface

problem at ρl/ρv = 100.
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displacement and Stefan number after a fixed number of iterations in the two-phase

sucking interface problem.

D. Liquid Droplet Evaporation

In the first three benchmark problems, the surface tension force did not play a role in the

evolution of the phase interface. To test the present model with the effect of surface tension

force, a two-dimensional liquid droplet evaporation problem is simulated.

In Fig. 21a, a circular droplet with an initial radius R0 is placed at the center of the

computational domain. All the boundary conditions are specified as gradient free boundaries

to allow the vapor, generated due to volume expansion at the phase interface, to exit freely

and without any disturbance.

The initial liquid temperature Tl,0 and the vapor temperature Tv,0 are set to the saturation

temperature Tsat and T∞, respectively. During the simulation, the droplet temperature as

well as the phase interface temperature are kept constant at Tsat and the temperature at

the boundaries is kept higher than the saturation temperature T∞ = Tsat +∆T .

In Fig. 21b, the droplet radii at different simulation times (t∗ = 0, 0.29, 0.67, and 1) are

shown. The initial circular droplet shape remains circular at later times which shows that
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FIG. 21: (a) A schematic diagram of the droplet evaporation. (b) Transient radius of the

droplet at t∗ = 0, 0.29, 0.67, and 1 and velocity vectors around the evaporating droplet.

the phase change model is consistent with the volumetric surface tension formulation and

is direction independent. To further prove this point, velocity vectors around the droplet

are shown in Fig. 21b. The velocity vectors generated by interfacial mass flow are all in the

radial direction which shows the uniformity of mass flow rate in that direction.

To investigate the mesh independent solution, the evaporation of a liquid droplet with

five different initial radii of Ri = 12.5, 25, 50, 75, and 100 (lattice unit) are simulated

and the results are shown in Fig. 22. The final shape of the liquid droplet when the non-

dimensional transient radius meets the R∗(t)2 = 0.5 relation is provided in Fig. 22a where

R∗(t) = R(t)/R0. The non-dimensional transient radius, R∗(t), at each time is shown in

Fig. 22b. From the results of both Fig. 22a and Fig. 22b, it is clear that the difference

between the cases with initial radius of R0 = 50, 75, and 100 is negligible. The initial radius

of R0 = 75 is considered for the rest of simulations on the droplet evaporation study to

attain the most accurate result.

The Young-Laplace equation links the pressure difference across the phase interface to

the phase interface shape between two fluids. Although it is essentially important in the

study of static capillary surfaces, it is shown in [39] that in the case of droplet evaporation

this relation also holds under specific circumstances such as slow evaporation rate. This
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FIG. 22: (a) Mesh study in the droplet evaporation problem. (b) Transient radius of the

droplet for five different initial radii.

can be satisfied by having a very slow phase change process where the thermal diffusivity

of vapor is set to χv = 0.01 and the Ja number is set to Ja = 1.0 in lattice units. The

Ja number is defined as Ja = cpv∆T/hfg. The pressure jump across the phase interface is

related to the phase interface curvature by:

∆p = pi − po =
σ

R(t)
, (56)

where pi and po are the pressures inside and outside of the curved phase interface, respec-

tively. After the initial waves and disturbances due to unequilibrium state of the flow,

the pressure inside and outside of the droplet becomes almost constant. The result of the

Young-Laplace equation validation is shown in Fig. 23. The LBE result agrees well with

the theoretical relation in Eq. (56). Another simulation with a higher evaporation rate

(χv = 0.05 and Ja = 1.0) is shown in Fig. 23. Since the rate of evaporation in this case is

higher than the case with χv = 0.01, the deviation from Laplace law is more pronounced. Ad-

ditionally, the numerical results slightly deviate from Laplace law as the radius decreases in

both evaporation rates (χv = 0.01 and 0.05). The most likely explanation is non-uniformity

in pressure inside the droplet. The pressure in the interfacial area has small fluctuations

and will affect the inside pressure (pi) calculation. Finally, the good agreement with the

theory shows that mechanical equilibrium is reached earlier than the thermal equilibrium
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FIG. 23: Comparison of the Young-Laplace law for the evaporating droplet between the

LBE result (symbol) and the theory (line) for two different rates of evaporation

corresponding to χv = 0.01 and 0.05.

in the case of a slow phase change process. The phase interface velocity is very small since

the rate of evaporation is very low and it is in the order of 10−5 for both thermal diffusivity

cases to ensure the mechanical equilibrium during evaporation.

In Fig. 24, the d2 law investigation for droplet evaporation is carried out for different Ja

numbers ranging from 0.25 to 1.0. For all Ja numbers which correspond to different rates

of evaporation, the d2 law is satisfied since the (D/D0)
2 changes linearly as simulation goes

forward in time. At any given time, the rate of evaporation is higher for a larger Ja number.

Effect of different surface tension and relaxation parameters on transient radius of the

droplet during evaporation is studied for three different Laplace numbers (La = σρlD0/µ
2
l )

in Fig. 25. In each case, all other parameters were kept constant except the variable pa-

rameter which is surface tension in Fig. 25a and relaxation parameter in Fig. 25b. In

Fig. 25a, the surface tensions of σ = 0.0005, 0.0008, 0.001 corresponds to Laplace numbers

of La = 1.80, 2.88, 3.60, and the relaxation parameters of τ = 0.05, 0.1, 0.5 corresponds to

La = 288, 72, 2.88 in Fig. 25b, respectively. For both variable surface tension and variable

relaxation parameter, the results are almost the same and the difference is negligible. This

observation matches our expectation since the rate of evaporation is not affected by surface
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FIG. 24: The investigation of the d2 law in droplet evaporation problem for four different

Ja numbers of Ja = 0.25, 0.5, 0.75, and 1.0.

tension and relaxation parameter only.

E. Vapor Bubble Growth in Superheated Liquid

The three-dimensional radial growth of a vapor bubble inside a superheated liquid is the

most reliable benchmark for the verification of a boiling model since the theoretical solution

incorporates the radii of curvature and all thermophysical properties involved in the physics

of problem. This benchmark is very close to a real boiling situation where a tiny vapor

bubble starts to grow in a superheated liquid. An initially saturated vapor bubble (Tsat)

placed inside a superheated liquid (T∞ = Tsat + ∆T ) experiences a thin thermal boundary

layer around its phase interface as depicted in Fig. 26. The schematic of the problem and the

temperature profile are shown in this figure and the thermal boundary layer is sketched with

a light blue donut shape around the vapor bubble. The thin thermal boundary layer activates

phase change at the liquid-vapor interface and the radius of curvature, R(t), increases with

time.

The theoretical solution of this problem is provided in [40] and the transient radius during
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different Laplace numbers (La = σρlD0/µ
2
l ) on transient radius of the droplet during

evaporation.
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FIG. 26: A schematic of the vapor bubble growth problem in a superheated liquid and the

temperature distribution in radial direction where the donut shape with light blue color

represents the thermal boundary layer around the vapor bubble.
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FIG. 27: Transient shape of the vapor bubble at different simulation times (a) t∗ = 0, (b)

t∗ = 0.5, and (c) t∗ = 1.0.

the boiling is calculated by,

R(t) = ζ
√

4χlt, (57)

where the ζ is the solution of the following transcendental equation [40],

2Aρvlζ
2

∫ 1

0

e−ζ2((1−s)−2−2(1−ρvl)s−1)ds− 1 = 0. (58)

The parameter A in Eq. (58) is defined as A = Jal/(1+Jal−Jav), where Jal = cpl∆T/hfg

and Jav = cpv∆T/hfg are Ja numbers based on liquid and vapor properties, respectively.

The integral relation in Eq. (58) is solved numerically in order to find the ζ constant for

each simulation. In theory, a vapor bubble can start to grow from a zero radius. However, a

vapor bubble with a non-zero initial radius is considered in current simulation and the initial

temperature from the theoretical solution is prescribed in the computational domain. The

theoretical equation for temperature distribution in the computational domain as a function

of the radii of curvature is defined as [40],

T (r) =











T∞ − 2A∆Tρvlζ
2
∫ 1

1−
R(t)
r

e−ζ2((1−s)−2−2(1−ρvl)s−1)ds, if r > R(t)

Tsat, if r ≤ R(t)
. (59)

The calculation of the initial temperature distribution in the radial direction is carried

out using the same numerical approach used in derivation of ζ in Eq. (58). In the Cartesian

lattice grid, the radial position is defined as r =
√

(x− xc)2 + (y − yc)2 + (z − zc)2, where

xc, yc, and zc are the coordinates of the center of computational domain. Only 1/8th of the
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FIG. 28: Comparison of the transient radius in the vapor bubble growth problem between

the LBE result (symbols) and the theoretical solution (lines) [40].

domain is solved due to its symmetrical properties in x, y, and z directions. The initial

temperature profile is extracted from the Eq. (59) at R(t) = R0, where R0 is the initial

radius of the vapor bubble.

The simulation parameters in lattice unit are set to R0 = 40, ρvl = 0.066, Jav = 0.001,

Jal = 0.1, χv = 0.04, χl = 0.004, σ = 0.001, and ∆T = 1. The size of computational

domain is set to nx × ny × nz = 128× 128× 128 which is only 1/8th of the full domain. The

snapshots of the vapor bubble at different simulation times are investigated in Fig. 26. The

perfectly spherical shape of the vapor bubble at different times in this figure is consistent

with uniform treatment of the interfacial source term at the phase interface.

In Fig. 28, the transient radius of vapor bubble, R(t), is compared against the theoretical

solution presented in Eq. (57). Two initial radii are considered (R0 = 25 and R0 = 40) in

the simulations while all other parameters are kept constant. The initial radius of R0 = 25

and R0 = 40 corresponds to a computational domain with lattice size of 643 and 1283,

respectively. Again, the size of the computational domain is only 1/8th of the problem

schematic shown in Fig. 26. The small difference between the LBE results and the theoretical

solutions is due to the thin thermal boundary layer at the phase interface. This error

decreases by refining the computational grid and this task is done by increasing the size of
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the computational domain in the LBE method. Additionally, the thermal boundary layer

is resolved better in the case of a finer mesh. In both initial radius cases, the error between

the theory and LBE method increases as the vapor bubble grows in size. This behavior is

linked to the boundary condition at the open sides. The hydrodynamic boundary condition

at open sides is set to gradient free to let the liquid exit freely in the radial direction and

the thermal boundary condition is set to constant T∞ temperature to mimic the theoretical

setup. As the temperature profile evolves in time, it deviates from T∞ at computational sides

and it does not follow the constant T∞ temperature at the infinity in the case of theoretical

solution. Again, this error can be significantly decreased by refining the computational grid.

The refinement of the computational grid and the search for a mesh independent solution

are done in a two-dimensional vapor bubble growth problem since it is very time consuming

in three-dimensional case. The results are presented in Fig. 29 where four different radii

of curvature (R0 = 20, 30, 40, and 50) are considered. From Eq. (57), the simulation time

scales with t ∝ R2/χl. Therefore, by doubling the initial vapor bubble radius, the thermal

diffusivity of liquid is quartered in order to keep the same simulation time. As shown in

Fig. 29, the solution converges as the initial radius of vapor bubble increases. There is a

negligible difference between the results of radius R0 = 40 and 50. Therefore, a vapor bubble

with initial radius of R0 = 40 in lattice unit is considered in this study.

In the three-dimensional vapor bubble growth problem, the radial distribution of tem-

perature, velocity magnitude, density, and interfacial source term due to phase change are

plotted in Fig. 30. The start and end points in Cartesian coordinate are (xc, yc, zc) and

(nx, yc, zc), respectively. The velocity magnitude, density, and interfacial source term are

shown in a separate vertical axis for the sake of clarification.

The thermal boundary layer on the liquid-side of the phase interface is clearly shown

where temperature changes from Tsat to T∞. The velocity experiences a jump across the

phase interface as expected and the interfacial source term is non-zero only at phase interface.

F. Vapor Bubble Rising in Superheated Liquid

A vapor bubble rising in a superheated liquid under gravity is studied in this section in

order to mimic a real boiling situation. The main difference in this problem compared to

previous benchmarks is the fluid flow around the vapor bubble as it rises due to buoyancy
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interfacial source term across the phase interface at t∗ = 0.5 in the vapor bubble growth

problem..
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FIG. 31: A schematic of the three-dimensional vapor bubble rising in a superheated liquid

problem.

force in a superheated liquid pool.

As depicted in Fig. 31, a vapor bubble at saturation temperature (Tsat) is placed at

a vertical distance of y0 from the bottom of a vertical channel filled with a superheated

liquid (T∞). The bottom and all sides of the computational domain are solid walls and

no-slip boundary condition expect the top where it is set to an open/free boundary. The

open/free boundary condition at top warrants a disturbance-free liquid exit or entrance from

the computational domain. The size of the full computational domain is W × W × H in

lattice size. The geometrical parameters and thermophysical properties for this problem are

ρl/ρv = 100, µl/µv = 100, Jav = 0.0005, Jal = 0.05, Eo = 4.95, Mo = 0.095, ∆T∞ = 3.1,

W = 200, and H/W = 3 in lattice unit. The Eötvös number and the Morton number are

defined as Eo = g(ρl − ρv)D
2/σ and Mo = µ4

l (ρl − ρv)g/σ
3ρ2l , respectively. The superheat

which is the difference between vapor saturation temperature and the liquid temperature is

set to ∆T∞ = 3.1 in lattice unit. Therefore, the initial temperature of the vapor bubble is

set to saturation temperature, Tsat, and the liquid pool is set to T∞ = Tsat + ∆T∞. The

temperature at side walls and the bottom wall are kept at T∞. The computational domain is

divided into four equal parts due to symmetric behavior in x and z directions and only 1/4th

of the computational domain is considered for simulation to save in numerical simulation

time.
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FIG. 32: Snapshots of the vapor bubble shapes at different simulation times t∗ = 0, 0.16,

0.28, 0.40, 0.52, 0.64, 0.76, 0.88, and 1 in vapor bubble rising in superheated liquid

problem.

As the simulation starts, the vapor bubble rises in the liquid pool due to buoyancy force

and expands in size due to phase change at liquid-vapor phase interface. This problem is very

challenging for calculation of the interfacial mass flow since the temperature is affected by the

fluid flow around the vapor bubble. The snapshots of the vapor bubble at different times are

shown in Fig. 32. As the vapor bubble rises in a liquid with higher density (ρl/ρv = 100), its

profile deviates from the initial spherical shape. It shows a concave profile at vapor bubble

top and a convex profile at the bottom before t∗ = 0.28. However, as the vapor bubble

vertical distance from the bottom wall increases, it lefts a wake and low-pressure area below

it. The low-pressure area underneath the vapor bubble flattens its convex profile at bottom

and it becomes flat around t∗ = 0.28. The vapor bubble shape at bottom becomes concave

past time t∗ = 0.40 due to increasing low-pressure area. The snapshots in Fig. 32 are made
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FIG. 33: Temperature contours at the mid-plane in z-direction along with the vapor

bubble transient shape at three different times t∗ = 0.28, 0.64, and 1 in vapor bubble rising

in a superheated liquid problem.

transparent to clearly show the concave profile below the vapor bubble after t∗ = 0.40. The

smooth and curved surface of the vapor bubble indicates the correct treatment of the mass

flow at liquid-vapor phase interface.

The temperature contour at the mid-plane in z-direction along with the vapor bubble

transient shape at three different times (t∗ = 0.28, 0.64, and 1) are shown in Fig. 33. The

thermal boundary layer at the top part of the vapor bubble is thinner compared to that

underneath. As the vapor bubble rises in the liquid pool, the liquid is pushed upward and

it comes down from both sides of the vapor bubble. This motion of the superheated liquid
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FIG. 34: The interfacial source term contours at the mid-plane in z-direction at three

different times t∗ = 0, 0.64, and 1 in vapor bubble rising in a superheated liquid problem.

replaces the saturated temperature area of the vapor bubble as it moves upward. Therefore,

the convection heat transfer from superheated liquid to saturated area creates a needle-

shaped and narrow region in temperature contours beneath the vapor bubble. This narrow

region expands as the vapor bubble moves upward.

The upward motion of the bubble and the convection of the superheated liquid affects the

temperature below the vapor bubble. Additionally, the lower temperature under the vapor

bubble influences the interfacial mass flow due to decreased heat flux at the liquid-vapor

phase interface. In Fig. 34, the contours of the interfacial source term defined in Eq. (1)

are shown for t∗ = 0, 0.64, and 1. The interfacial source term expands all around the vapor

bubble at initial times but its distribution profile is changed as the vapor bubble rises in
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the superheated liquid. The interfacial source term below the vapor bubble becomes almost

zero and this region expands in size as the vapor bubble rises further.

IV. CONCLUDING REMARKS

In this paper, we aimed to present a new pressure evolution equation based lattice

Boltzmann model to deal with phase change in single-component fluids for future appli-

cations to thermal management of micro-electronic devices. The macroscopic energy equa-

tion is spatially discretized and solved with 2nd-order accurate isotropic finite difference. A

phase change model is embedded in the pressure evolution equation, which enforces near-

incompressibility in the bulk phases and allows phase change in the interfacial region. The

thermal parameters such as thermal conductivity and specific heat are sharp across the phase

interface. The sharp interface treatment of macroscopic internal energy equation makes the

model desirable for subcooled boiling applications since a full control over the phase interface

temperature is available in the current model.

The LBE results showed excellent agreement with available theoretical solutions. The

benchmark validations indicated the ability of the proposed phase change model in several

ways such as correct prediction of mass flow rate at phase interface, convergence toward the

sharp interface limit, and ability to account for a thermal boundary layer in liquid-side of the

phase interface. Additionally, no free parameter is defined considering the diffuse-interface

nature of the LBE method such as a variable phase interface thickness for different density

ratios or a variable time step in the definition of mass flow rate.
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Appendix A: Proof of Eq. (20)

The proof of Eq. (20) introduced in [34] is shown in this appendix. This equation states,

δteα · ∇T = (n · eαδt) (n · ∇T ) . (A1)
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A two-dimensional case is considered here and extension to the three-dimensional form

is straightforward. The involved vectors are expanded in Cartesian coordinates as eα =

exî + ey ĵ, n = nxî + ny ĵ, and ∇T = Txî + Ty ĵ. Parameters Tx and Ty are temperature

gradients in x and y directions, respectively. Expanding Eq. (A1) yields,

[

ex − n2
xex − nxnyey

]

Tx +
[

ey − nxnyex − n2
yey

]

Ty = 0. (A2)

The terms inside the square brackets should be zero in order to satisfy relation in Eq. (A2).

Therefore,




1− n2
x −nxny

−nxny 1− n2
y









ex

ey



 = 0. (A3)

The determinant of the coefficient matrix in Eq. (A3) should be zero to hold the relation in

this equation valid,
∣

∣

∣

∣

∣

∣

1− n2
x −nxny

−nxny 1− n2
y

∣

∣

∣

∣

∣

∣

= 1−
(

n2
x + n2

y

)

= 0. (A4)

The equality in Eq. (A4) is fulfilled since n is a unit normal vector such that |n| = 1. In

general, the vector identity in Eq. (A1) is applicable for any non-zero vector (such as ∇T )

as long as the n vector is a unit normal vector.
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