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Abstract

We present a graph-based methodology to reduce the computational cost of obtaining first passage times

through sparse fracture networks. We derive graph representations of generic three-dimensional discrete

fracture networks (DFN) using the DFN topology and flow boundary conditions. Subgraphs corresponding

to the union of the k shortest paths between the inflow to outflow boundaries are identified and transport

on their equivalent subnetworks is compared to transport through the full network. The number of paths

included the subgraphs is based on the scaling behavior of the number of edges in the graph with the number

of shortest paths. First passage times through the subnetworks are in good agreement with those obtained

in the full network, both for individual realizations and in distribution. Accurate estimates of first passage

times are obtained with an order of magnitude reduction of CPU time and mesh size using the proposed

method.

PACS numbers: 02.10.Ox, 02.60.Cb, 91.55.Jk, 91.60.Tn, 91.65.My18
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I. INTRODUCTION19

Predicting the first passage time of solutes transported through a sparse fracture network is20

a common and critical challenge in many subsurface applications such as aquifer storage and21

management, environmental restoration of contaminated fractured media, the detection of low-22

level nuclear tests, CO2 sequestration, and hydrocarbon extraction [1–8]. In low permeability23

media, interconnected fracture networks are the principal pathways for flow and the associated24

transport of dissolved solutes. In contrast to homogeneous porous media, heterogeneity resulting25

from the fracture networks creates irregular fluid velocity fields where flow channeling, isolated26

regions of high velocity, is commonly observed [9–14]. These flow channels indicate that there27

are subnetworks within the domain where the fastest transport occurs. In sparse fracture networks,28

the fractures that are included in these subnetworks are primarily determined by the macro-scale29

structure of the network and the direction of flow [7, 15] rather than meso-scale, e.g., fracture30

permeability [16, 17] or micro-scale attributes, e.g., in-fracture aperture variability [12, 18]. The a31

priori identification of these subnetworks using structural and hydrological properties would result32

in significant reductions in the computational demands for estimating first passage times because33

flow and transport simulations would only need to be performed in a subnetwork rather than the34

whole domain.35

Discrete fracture networks (DFN) models explicitly represent these structural and hydrological36

properties as discrete entities within an interconnected network of fractures. Individual fractures37

are N−1 dimensional objects in an N dimensional space, e.g., lines in two dimensions or planar38

polygons in three dimensions, and are assigned a shape, location, and orientation based on geolog-39

ical site characterizations. The fractures form an interconnected network embedded within an N40

dimensional matrix that is considered impermeable. Once a network is constructed, the individual41

fractures are meshed for computation and the flow equations are numerically integrated to sim-42

ulate flow and transport. The inclusion of detailed structural and hydrological properties allows43

DFN models to represent a wider range of transport phenomena than traditional continuum mod-44

els [19, 20]. In particular, topological, geometric, and hydrological characteristics can be directly45

linked to flow channeling and first passage times.46

One limitation of DFN models is the high computational cost associated with the explicit repre-47

sentation of the fracture network. The number of mesh cells increases nonlinearly with the number48

of fractures, density of the network, and range of length scales being resolved. The computational49
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overhead is particularly demanding if intersections between fractures are properly resolved in the50

mesh [21]. Because of limited computational resources, the first DFN models represented net-51

works as a set of connected pipes [22] or used two-dimensional representations where the frac-52

tures did not need high resolution meshing [23]. Recent advances in high performance computing53

have allowed flow and transport simulations in large three-dimensional discrete fracture networks54

to be performed [24–30]. Nonetheless, the computational demands persist because fracture net-55

works are stochastically generated due to uncertainty associated with their parameters. Therefore,56

numerous realizations are required to obtain stable statistics for upscaled observables such as first57

passage times.58

We propose a graph-based method for efficient approximations of first passage times through59

sparse fracture networks. The cornerstone of the method is creating a graph representation of a60

DFN based on its topology and the flow boundary conditions. In sparse fracture networks whose61

radii exhibit a range of length scales, flow channel location (where the fastest transport through62

the network occurs) is primarily determined by the network structure [13, 16, 17] and the imposed63

flow direction [7]. Therefore the proposed topologically based graph representation of the net-64

work captures one of the principal features that determines where flow channeling occurs. The65

other principal feature, the direction of flow, is incorporated by including the inflow and outflow66

boundaries into the graph. This construction allows us to identify subgraphs composed of the k67

shortest paths (fewest number of fractures) between the inflow and outflow boundaries. The map-68

ping between the DFN and graph is a bijection so the pre-image of each subgraph is a subnetwork69

that can be extracted from the full DFN. To obtain estimates of first passage times through the70

subnetwork, it is subject to the same meshing procedure, initial and boundary conditions for the71

pressure solution, and particle tracking, as the full network.72

While graphs and fracture networks have both been extensively studied, the application of73

graph theory to fracture network analysis is a fairly young discipline. Andresen et al. [31] pro-74

posed a similar transformation between DFNs and graphs to compare the topological structure of75

synthetic two-dimensional fracture networks with an actual rock outcrop. Hope et al. [32] used76

Andresen’s representation to compare topological structures of two DFN generation methodolo-77

gies in three-dimensions. The focus of these studies was comparing fracture networks, rather78

than using the structure to identify subnetworks. Santiago et al. [33] constructed graphs based on79

two-dimensional fracture outcroppings and used topological measurements to identify the possible80

locations of flow channeling through the network. Aldrich et al. [34] introduced a weighted graph81

4



Preprint Submitted to Phys. Rev. E : Please do not distribute

representation of three-dimensional fracture networks where edge weights were based on particle82

transport through the DFN. Analyzing this flow topology graph allowed them to identify the sub-83

network where flow channeling occurred. Our method differs from Aldrich et al. [34] because we84

identify these subnetworks prior to running flow and transport simulations.85

II. DISCRETE FRACTURE NETWORK SIMULATIONS86

A. Generic Fracture Networks87

We generated 100 three-dimensional generic fracture networks as a test set for the graph-88

reduction method. One hundred networks provide stable statistics in terms of transport break-89

through times (details not included). The networks are composed of circular fractures whose90

orientations are uniformly random and radii follow a truncated power law distribution. Although91

the networks are meant to be generic, the network parameters are based on observed fractured me-92

dia [35]. Each DFN is generated in a cubic domain with sides of length L = 15 meters. Fracture93

radii r [m] are sampled from a truncated power law distribution with exponent α and lower and94

upper cutoffs (r0; ru),95

r = r0

[
1−u+u

(
r0

ru

)α]−1/α

, (1)

where u is a random number sampled from the continuous uniform distribution on the closed96

interval [0,1]. We select a value of α = 2.6 so that the distribution has finite mean and variance97

and is in accordance with geological observations [35]. The lower cut off, r0, is set to one meter98

and the upper cut off equal, ru, is set to five meters. Fracture centers are sampled uniformly99

throughout the domain. Isolated fractures and clusters that do not connect the inflow and outflow100

boundaries are removed because they do not contribute to flow. The resulting fracture networks101

contain around 500 fractures each.102

Figure 1 shows a typical DFN realization. Fractures are colored by their permeabilities with103

warmer colors indicating higher values. The inset shows the variable resolution conforming De-104

launay triangulation of the fracture network generated using the feature rejection algorithm for105

meshing (FRAM) [21]. Mesh resolution is a function of distance from fracture intersections. The106

mesh is refined near fracture intersections to properly resolve the high gradients in the flow field107

that occur in these regions. The mesh is coarsened away from the intersections where gradients108

in the pressure field are smaller. Thus, the number of cells in the mesh increases with both the109
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network surface area and density.110
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Figure 1. Example discrete fracture network composed of 481 fractures. Fracture lengths are samples from

a truncated power law distribution and fracture permeabilities are positively correlated to the fracture radius.

The inset shows the variable resolution conforming Delaunay triangulation of the fracture network.
111

112

The fracture networks are sparse, with an average P32 value (total fracture surface area over113

total volume) of 1.97 [m−1] and variance of 0.03. The connected network density [12] is about114

ten times the critical percolation value [36]. Thus, the networks are dense enough that there are115

multiple paths between the inflow and outflow boundaries.116

Variability in hydraulic properties is included into the network by correlating fracture apertures117

to their radii [14, 17, 37–41]. We use a positively correlated power-law relationship118

b = γrβ , (2)

where γ = 5.0× 10−5 and β = 0.5 are dimensionless parameters. It is possible to include in-119

fracture aperture variability into high fidelity DFN simulations [12, 18], but constraining the in-120

fracture variability requires detailed knowledge of the particular rock formation. Therefore, we do121

not include in-fracture aperture variability in these simulations.122

B. Flow Equations123

Under this assumption of aperture uniformity, flow through the fractures is equivalent to flow124

between two parallel plates. The volumetric flow rate Q per unit fracture width normal to the125

direction of flow is therefore given by the Boussinesq equation [42],126

Q =
−b3

12µ
∇P , (3)
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where µ is the fluid viscosity, and ∇P it the pressure gradient. This relationship between aperture127

and flow rate can be used to derive a similar relationship between aperture and permeability128

k =
b2

12
, (4)

referred to as the cubic law [43]. A consequence of (2) and (4) is that fracture’s permeability is129

positively correlated to its size.130

Rewriting (3) using (4) provides the governing equation for flow within each two dimensional131

fracture plane,132

q =−k
µ

∇P , (5)

where q is the Darcy flux (Q/b), which is referred to as the Darcy equation.133

We drive flow through the domain by applying a pressure difference of 1MPa across the do-134

main aligned with the x-axis. No flow boundary conditions are applied along lateral boundaries135

and gravity is not included in these simulations. These boundary conditions along with mass136

conservation,137

∇ ·q = 0 , (6)

and equation (5) are used to form an elliptic partial differential equation for steady-state distribu-138

tion of pressure within each network139

∇ · (k∇P) = 0 . (7)

Once the distribution of pressure and volumetric flow rates are determined by numerically inte-140

grating (7), the methods of Makedonska et al. [44] and Painter et al. [45] are used to determine141

the Eulerian velocity field u(x) within the DFN. Even though the fracture apertures are uniform142

within each fracture plane, the in-fracture velocity field is non-uniform. Variations in local flow143

fields depend on the local network structure within each fracture plane. Specifically, intersections144

with other fractures influence the in-plane velocity field.145

C. Lagrangian Attributes146

We represent the spreading of a nonreactive conservative solute through each DFN by a cloud of

passive tracer particles, i.e., using a Lagrangian approach. Complete mixing is used to determine

what direction particles exit out of fracture intersections [44, 46]. Particles do not interact with the
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matrix, i.e., matrix diffusion and sorption are not considered. The imposed pressure gradient is

aligned with the x-axis and thus the primary direction of flow is in the x direction. Particle initial

positions a are uniformly distributed along fracture intersections with the inlet plane x0 = (0,y,z).

The trajectory x(t;a) of a particle starting at a at time t = 0 is given by the advection equation

dx(t;a)
dt

= v(t;a), x(0;a) = a, (8)

where the Langrangian velocity v(t;x) is given in terms of the Eulerian velocity u(x) as

v(t;a) = u[x(t;a)]. (9)

The length of the pathline [m], `, is used to parameterize the spatial and temporal coordinates of

the particle. The space-time particle trajectory is given in terms of ` by

dx(`;a)
d`

=
v[t(`);a]
v[t(`);a]

(10a)

dt(`;a)
d`

=
1

v[t(`),a]
(10b)

where we set v(t,a) = ‖v(t;a)‖. The length `(t;a) of the trajectory at a time t is

d`(t;a)
dt

= v`[`(t),a] (11)

where we defined v`(`;a) = v[t(`);a].147

The travel time τ(xL;a) of a particle that has crossed the outlet plane xL = (L,y,z) is148

τ(xL;a) = t[λ(xL);a] (12)

where149

λ(xL) = inf{`|x(`;a)≥ L} . (13)

The first passage time of all particles through a network F is given by150

τ̂(F) = inf
{a}∈F

{τ(xL;a)} . (14)

We consider individual values of τ̂(F) and their distribution obtained for the ensemble of networks151

Ω = {F},152

ψ(t) =
∫
Ω

dF δ[t− τ̂(F)] . (15)

We use the computational suite DFNWORKS [27] to generate each three-dimensional DFN,153

solve the steady-state flow equations, and determine transport properties through the network.154
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DFNWORKS uses the feature rejection algorithm for meshing (FRAM) [21] to generate three-155

dimensional fracture networks and the LaGriT meshing toolbox [47] to generate conforming De-156

launay triangulation of the DFN. The parallelized subsurface flow and reactive transport code157

PFLOTRAN [48] is used numerically integrate the governing flow equations to steady state. An158

extension of the WALKABOUT particle tracking method [44, 45] is used to determine pathlines159

through the DFN and simulate solute transport. Details of the suite, its abilities, applications, and160

references for detailed implementation are provided in [27].161

III. GRAPH REPRESENTATIONS162

We construct a graph representation of each DFN based on the network topology. Let F = { fi}163

for i = 1, . . . ,n denote a DFN composed of n fractures. We define a mapping, φ, that transforms F164

into a graph G(V,E) composed of n = |V | vertices, and m = |E| edges. For every fi ∈ F , there is165

a unique vertex ui ∈V ,166

φ : fi→ ui . (16)

If two fractures, fi and f j, intersect fi ∩ f j 6= /0, then there is an edge in E connecting the corre-167

sponding vertices,168

φ : fi∩ f j 6= /0→ ei j = (ui,u j) , (17)

where (u,v)∈E denotes an edge between vertices u and v. All edges are assigned unit edge weight169

to isolate topological attributes from other attributes that could be considered such as geometric,170

e.g. lengths, or hydrological, e.g. permeability. The mapping φ is bijective, i.e. it is an isomor-171

phism between F and G. Therefore every subgraph G′({u},{e}) ⊆ G has a unique pre-image F ′172

in the fracture network,173

φ
−1 : G′→ F ′ , (18)

that is a subnetwork of the full network, F ′ ⊆ F .174

We also include source s and target t vertices into G to incorporate flow direction. Every175

fracture that intersects the inlet plane x0 is connected to the source vertex,176

φ : fi∩x0 6= /0→ esi = (s,ui) , (19)

and every fracture that intersects the outlet plane xL is connected to the target vertex t,177

φ : fi∩xL 6= /0→ eit = (ui, t) . (20)
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This mapping φ is similar to the one proposed by Andresen et al. [31] but differs in this key aspect178

of including source and target vertices to represent inflow and outflow boundaries.179

The considered fracture networks and mapping φ results in graphs that have the following prop-180

erties: (i) all vertices are degree one or greater because all fractures in original network intersect at181

least one other fracture, and (ii) the graph is connected because each connected subnetwork within182

the DFN connects the inflow and outflow boundaries and are thus combined into the same graph183

via the source and target nodes; clusters that do not connect inflow and outflow boundaries do not184

contribute to flow and have been removed. A result of the second property is that there always185

exists at least one connected path between the source and target vertices.186

Figure 2 shows the graph obtained from the fracture network shown in Fig. 1 using the mapping187

φ. The source vertex is colored red and the target vertex is colored blue. The geometric layout of188

the graph is an arbitrary projection into R2 using a force-directed layout algorithm [49]. Though189

the positions do not represent actual fracture locations in R3 the drawing gives some perspective190

on the connectivity of the fracture network and the graph path lengths between the source and191

target.192

Figure 2. Graph derived using the topology of the DFN shown in Fig. 1. A source vertex (red) has been

included and connected to all fractures that intersect the inflow boundary and a target vertex (blue) has been

included and connected at all fractures that intersect the outflow boundary.
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A. Shortest-Path Subnetworks193

We consider several subgraphs G′, along with their equivalent subnetworks F ′, corresponding194

to the union U(k) of the edges in k shortest paths from the source to target. The k shortest paths are195

defined as a generalization of the shortest path to include k total paths (possibly overlapping) in196

order of nondecreasing length starting from the shortest path. In our case we consider only loopless197

paths from the source to the target. The edges in G′ have unit weight which we assign as the edge198

length; the shortest paths correspond to paths with the fewest number of edges between the source199

and the target. The pre-image of this subgraph, which is its equivalent fracture subnetwork F ′, has200

the fewest number of intersections, and thus connected fractures, spanning the inflow and outflow201

boundaries.202

The number of shortest paths k to include in the subgraph U = U(k) is a parameter in the203

algorithm. To estimate a suitable value of k we calculated the shortest paths for various values of k204

and examined the resulting subgraph size. It is possible that for a given graph there are paths with205

the same length (in our case the same number of edges). Instead of optimizing the set of equal206

length paths to be included we instead increase the number of total paths k until we achieve the207

desired numerical result. Figure 3(a) shows the fraction of of all edges |U |/|E| in the graph as a208

function of k. Thin semi-transparent lines are individual network realizations and the thick line209

is the average |U | of all 100 networks. Figure 3(b) shows the numerically estimated derivative of210

the average value |U |. The average number of edges |U | increases rapidly for small k but then for211

larger k few new edges are added with each additional path.212213

For first passage time calculations we start with the shortest paths between the source and target214

for a single path k = 1. Next, we consider the union of k-shortest loopless paths from the source to215

target for k = 5,10, and 20. We select these values by considering the fraction of edges in the graph216

representation that are contained within each of these subgraphs. The values we select are in the217

fastest changing region (5 shortest paths), a moderate value (10 shortest paths), and the beginning218

of the region where the derivative has started to stabilize (20 shortest paths), cf. Fig. 3 (bottom).219

We also consider the 2-core of the graph, which is an upper bound on the union of loopless220

paths from source to target. The k-core of a graph is the maximal subgraph that contains vertices of221

degree k or greater [50]. Physically, this set corresponds to fractures where transport can enter and222

exit a fracture through different intersections, e.g. all dead end fractures are recursively removed.223

In three-dimensional fracture networks such dead end fractures are not necessarily no-flow regions,224
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Figure 3. (a) The fraction of edges |U |/|E| in the graph as a function of the number of shortest paths k.

Thin semi-transparent curves are individual network realizations and the thick curve is the average of all

networks. (b) The rate of change of the for the average size |U | = ∑ |U |/100 of the shortest path edge set.

The number of edges increases rapidly at first but after approximately k = 20 the number of edges added

with each new loopless path is small.

which is the case in two-dimensions. If the line of intersection between two fractures aligns with225

the pressure gradient there will be a gradient within the dead-end fractures and thus flow. Hence,226

the presence of dead-end fractures changes the local flow field on intersecting fractures and thus227

its removal does as well. The 2-core typically makes up between 50%-60% of the graph edges228

(not shown in Fig. 3). The source and target vertices are always retained in the 2-core.229
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For a graph G with n vertices and m edges the shortest-path set can be computed using breadth-230

first search in O(m+ n) time [51]. The computation of the k shortest paths is harder but still can231

be done in polynomial time, O(kn(m+n logn)) [52]. Computing the k-core composition has time232

complexity of O(m) [53]. The subgraphs sets are computed using the NETWORKX graph software233

package [54].234

Figure 4 shows three subnetworks (top) and their subgraphs (bottom) derived from the network235

and graph shown in Fig. 1 and Fig. 2. Semi-transparent vertices indicate fractures that have been236

eliminated from the fracture network. The full network is made of 481 fractures, the shortest237

path is made of 3 fractures (left), the ten shortest paths contain 23 fractures (middle), and the 2-238

core contains 276 fractures (right). This reduction in number of fractures drastically changes the239

number of cells in the mesh used for flow and transport simulations. The full network is meshed240

with 910397 triangles, the shortest path is meshed with 5438 triangles, the ten shortest paths are241

meshed with 69353 triangles, and the 2-core is meshed with 639319 triangles.242

The method to obtain first passage times using these subnetworks can be conceptually divided243

into the four steps: (i) A graph representation of a DFN is constructed using the mapping defined in244

(16) and (17); φ : F→G. (ii) A subgraph composed of the k shortest paths between the source and245

target is identified; G′ ⊆ G. (iii) We isolate the subnetwork that is the pre-image of the extracted246

subgraph; φ−1 : G′→ F ′. (iv) To obtain estimates of first passage times through each subnetwork,247

they are subject to the same meshing procedure, initial and boundary conditions for the pressure,248

and particle tracking initial conditions as the full network; equations (7) through (14).249

IV. METHOD PERFORMANCE250

We measure the method’s performance in terms of accuracy and efficiency. First, we compare251

predictions of the first passage time in the full network and those obtained using each subnetwork.252

Second, we compare the computational cost for the simulations.253

A. First Passage Times254

Accuracy of the method is determined by comparing the first passage times (14) in F and F ′255

and statistics of the distribution of first passage times (15) for the ensemble of networks Ω = {F}256

and their subnetworks Ω′ = {F ′}. Let L denote the operator that takes a DFN F as an input and257

13



Preprint Submitted to Phys. Rev. E : Please do not distribute

Figure 4. Subnetworks (top) and subgraphs (bottom) derived from the network and graph shown in Fig. 1

and Fig. 2, respectively. Subfigures show the (left) shortest path through the network (middle) union of the

ten shortest paths in the network and (right) 2-core network. Semi-transparent vertices denote fractures that

have been eliminated from the fracture network.

returns the first passage time τ̂,258

L : F → τ̂ . (21)

For each subnetwork F ′, we can obtain a first passage time, τ̂′, using the same operator259

L : F ′→ τ̂
′ . (22)

The goal is that the error260

‖τ̂− τ̂
′‖ (23)

is small for each realization and in terms of their distributions obtained from Ω and Ω′. Individual261

realizations provide a single value of τ̂′ to directly compare with τ̂. The distributions of τ̂′ and τ̂ are262

compared in terms of their first two moments. Differences between the distributions are measured263

by computing the Kullback-Leibler divergence (relative entropy), smaller values of which indicate264

14
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better agreement between the two probability densities. The two-sample Kolmogorov-Smirnov265

test is also used to determine whether these differences are statically significant.266

Figures 5(a)-(e) show τ̂′ obtained in the subnetworks plotted against τ̂. The (a) shortest paths,267

(b) five shortest paths, and (c) ten shortest paths are on the top row and the (d) twenty shortest268

paths, (e) 2-core are on the bottom. Values are divided by the median passage time of the en-269

semble of particles through all one hundred networks to non-dimensionalize time. The black line270

corresponds to identical first passage times in the subnetworks and the full networks. Deviations271

are quantified by computing the coefficient of determination R2. Values of R2 that are closer to one272

indicate better agreement between τ̂′ and τ̂ over the set of sample networks (values are provided273

in Table I). In general, the first passage times of the shortest network (blue) are close to actual274

first passage times, but there are exceptions (R2 = 0.54). Values that deviate from the trend occur275

in networks where the particle with the earliest passage time does not travel along the shortest276

topological path. There is less scatter in the comparison with the five shortest paths (R2 = 0.57),277

but there are still outliers. Including the ten shortest paths leads to much better agreement between278

with the full network (R2 = 0.86). However, the increase in accuracy by increasing to include the279

twenty shortest paths is less than going from five to ten (R2 = 0.90). The difference between the280

first passage times through the 2-core and the full networks is very small (R2 = 0.99).281

Figure 5 (f) shows the distributions of τ̂ and τ̂′ (15) obtained from the subnetworks and the full282

network. Table I reports the first two moments of the distributions (mean: µ; variance: σ2) of τ̂ and283

τ̂′ along with the results of the two-sample Kolmogorov-Smirnov test and Kullback-Leibler diver-284

gence measure. In general, there is good agreement between the distributions obtained using the285

subnetworks and the full network. The distribution of τ̂′ in the shortest path networks has a higher286

mean, a longer tail and higher variance than the full network. As more paths are included into287

the subnetworks the Kullback-Leibler (KL) divergence measure decreases indicating better agree-288

ment between with the distribution of first passage times in the full network. The 2-core matches289

the full network values well for all values. The two-sample Kolmogorov-Smirnov test rejects the290

null hypothesis that the distributions τ̂′ from the shortest paths are from the same distribution of291

τ̂ obtained for the full network. The first two moments of the distributions of τ̂′ through the five,292

ten, and twenty shortest paths and 2-core are close to those of τ̂ . The two-sample Kolmogorov-293

Smirnov test returns low values of the KS statistic and high p values for the five, ten, and twenty294

shortest paths. Comparison of the full network with the 2-core resulted in lower KS values and295

higher p values than any other subnetwork.296
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Figure 5. First passage times in subnetworks vs the first passage time through the full network. Time has

been non-dimensionalized by the median breakthrough of the ensemble of particle through all one hundred

networks. The black line corresponds the identical first passage times in the subnetworks and the full

networks. Values of coefficient of determination R2 closer to one indicate better agreement between τ̂′ and τ̂

over the set of sample networks. (a) Shortest Path, (b) 5 Shortest paths, (c) 10 Shortest paths, (d) 20 Shortest

Paths, (e) Two-Core. (f) The distributions of first passage times in all subnetworks and network realizations.

B. Computational Cost297

In this section we report mesh reduction and computational speed up when considering a sub-298

network relative to the full network. Table II reports mean values of the total number of fractures,299

the total surface area of fractures, and number of computational cells of the identified subnetworks300

along with respective percentages of the full networks for the DFN ensemble. On average, the301

shortest path subnetworks make up ≈ 2% of the total number of fractures and ≈ 7% of the total302

surface area. These values indicate that the shortest paths are composed of a few large fractures303

that span the domain from the inlet to outlet plane. The five shortest paths contain a few more304
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Table I. Statistics of distributions for the first passage times through the network (mean: µ; variance: σ2),

results of the two-sample Kolmogorov-Smirnov test and the Kullback-Leibler (KL) divergence measure for

subnetworks compared to the full network.

Subnetwork µ σ2 KS p-value KL

Shortest Path 0.202 9.73×10−3 0.140 0.261 6.35×10−2

5 Shortest Paths 0.185 6.02×10−3 0.080 0.894 3.01×10−2

10 Shortest Paths 0.173 3.19×10−3 0.080 0.894 1.59×10−2

20 Shortest Paths 0.171 3.21×10−3 0.080 0.894 6.99×10−3

2-Core 0.173 3.51×10−3 0.050 0.999 1.03×10−3

Full Network 0.175 3.61×10−3

fractures and show an increase in surface area. On average, the ten shortest paths contain dou-305

ble the number of fractures as the shortest path but less than double the surface area. Because306

the shortest path is contained within the ten shortest paths, these values further indicate that the307

shortest paths are composed of larger fractures. The 2-core subnetworks contain ≈ 56% of the308

total number of fractures and ≈ 75% of the surface area. Thus, the compliment of the 2-core, the309

dead-end fractures, make up half of the network by number and consist of mostly small fractures.310

Table II. Mean values for geometric observables in the subnetworks identified using subgraphs. No. F:

Number of fractures, SA: Network surface area [m2], No. Cells: Number of computational cells. (·) are the

percentages of these values when compared to the mean values of the total network.

No.

Subnetwork No. F (%) SA [m2] (%) No. Cells (%)

Shortest Path 8.55 (1.91) 6.12×102 (6.54) 1.99×104 (2.44)

5 Shortest Paths 12.05 (2.69) 8.12×102 (8.66) 2.90×104 (3.56)

10 Shortest Paths 17.55 (3.92) 1.08×103 (11.54) 4.43×104 (5.44)

20 Shortest Paths 25.69 (5.74) 1.43×103 (15.25) 6.51×104 (8.07)

2-Core 247.78 (55.39) 7.07×103 (75.40) 5.44×105 (66.88)

Full Network 447.34 (100.00) 9.37×103 (100.00) 8.13×105 (100.00)
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The consequences of these reduced mesh sizes with respect to computational time are provided311

in Table III and shown in Fig. 6. The average required wall clock time for the three primary312

sections of the DFNWORKS workflow (network meshing, pressure simulation, and transport simu-313

lation) are provided. Computations are performed using a server that has 64 cores; 1.4 GHz AMD314

Opteron(TM) Processor 6272 with 2048 KB of cache each. Meshing is performed in parallel using315

either 16 cores or the total number of fractures, whichever is less. The flow solution is determined316

using 16 cores. Transport is performed using a single core. The time required for network gener-317

ation prior to meshing is not included in the comparison because it is required for every network318

and subnetwork, but is on the order of one second per network. The computation of the shortest319

paths, k shortest paths, and 2-core subgraphs using NETWORKX take less than one second each320

and those times are also omitted.321

Table III. Mean in wall clock time (seconds) for meshing, flow, and transport simulations in the full networks

and subnetworks. Meshing is performed with either 16 cores or the total number of fractures, whichever is

less. Flow solutions are performed using 16 cores. Transport is performed using a single core. (·) are the

percentages of these values when compared to the mean values of the total network.

Network Meshing [s] (%) Flow [s] (%) Transport [s] (%) Total [s] (%)

Shortest Path 21.99 (5.28) 7.65 (4.27) 19.67 (1.88) 49.31 (3.00)

5 Shortest Paths 38.20 (9.17) 10.69 (5.96) 24.57 (2.35) 73.46 (4.47)

10 Shortest Paths 39.35 (9.44) 8.17 (4.56) 32.60 (3.11) 80.12 (4.87)

20 Shortest Paths 64.92 (15.58) 15.47 (8.63) 57.78 (5.51) 138.17 (8.41)

2-Core 287.69 (68.35) 102.79 (57.30) 874.64 (83.47) 1265.12 (76.96)

Full Network 416.68 (100.00) 179.36 (100.00) 1047.75 (100.00) 1643.79 (100.00)

In terms of total run time, the k shortest paths subnetworks are over an order of magnitude322

faster than the full network. The networks contain significantly fewer fractures to mesh, which323

results in fewer degrees of freedom in the linear system of pressure and faster solver convergence.324

The time required for transport is also drastically reduced because a smaller number of fractures325

intersect the inlet plane and thus fewer particles are inserted into the domain. The time required326

for the 2-core is less than that for the full network, but is the same order of magnitude.327
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Figure 6. Average wall clock time required for meshing (blue), flow simulation (red), and transport (green).

Values are provided in Table III. In total run time, k-shortest path subnetworks are over an order of mag-

nitude faster than the full network. The time required for the 2-core, an upper bound on all shortest paths

from source to target, is less than that for the full network, but is the same order of magnitude.

V. REMARKS328

We have presented a graph-based method to reduce the computational cost of obtaining first329

passage times through sparse fracture networks. The graph representation of the DFN is derived330

using the network topology and flow boundary conditions. The pre-image of each subgraph is a331

unique subnetwork because the mapping between the DFN and the graph is a bijection. All edges332

in the graphs have unit weight, so the shortest topological paths in the graph, which have the fewest333

number of edges between the source and the target, correspond to the fewest number of fractures334

between the inflow and outflow boundaries in the DFN. The subnetworks corresponding to the335

shortest topological paths tend to be composed of large fractures that are the principal highways336

for transport through the network, Table II. Once the primary paths have been identified, the size337

of the fractures added to the subnetworks decreases with additional numbers of shortest paths338

included into the subgraphs. This stabilization of the subnetwork structure is why the number of339
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edges in the subgraphs plateaus as the number of shortest paths increases; its derivative decreases340

rapidly and then tends towards zero, Fig. 3.341

In scientific computing there is commonly a tradeoff between accuracy and efficiency. Here,342

the tradeoff is clear when considering the values reported in Tables I, II, and III and images343

shown in Figures 5 and 6 that compare first passage times predicted using subnetworks and their344

associated computational cost. While the shortest path and the five shortest paths require the345

smallest CPU times, they provide the worst estimates of first passage times. This inaccuracy is346

apparent from the wide scatter seen in Figure 5 that is quantified by the low values of the coefficient347

of determination (R2 = 0.54 and R2 = 0.57). Using the ten shortest paths requires slightly more348

CPU time, but the predictions of first passage times are significantly improved (R2 = 0.86). The349

primary paths through the network, discussed above, are included in the first ten shortest paths350

for all networks. Thus, the twenty shortest paths resulted in only minor modifications to the351

subnetworks and relatively little increase in accuracy (R2 = 0.90). The 2-core of the graph, an352

upper bound on all shortest paths between the source and target, provided the best predictions of353

first passage times (R2 = 0.99). However, the CPU time required for computation on the 2-core354

subnetwork was 75% of that needed for the full network, underscoring the aforementioned tradeoff355

between accuracy and efficiency. In terms of the distributions of first passage times from the entire356

set of networks, values obtained in the ten and twenty shortest paths networks and the 2-core were357

very similar to those obtained from the full networks, Fig. 5 (f) and Table I.358

The variable mesh resolution with local refinement around intersections plays a subtle role359

in reducing mesh size and the cost of computing first passage times. The number of cells in360

the mesh is proportional to the fracture surface area and the density of the subnetwork, which is361

significantly less for the subnetworks compared to the full network. When fractures are excluded362

from a subnetwork, their intersections on retained fractures do not exist. Thus, there are fewer363

intersections in the subnetworks that are refined with a high resolution conforming mesh and the364

number of cells in the mesh is reduced by more than the number of cells on the omitted fractures.365

First passage times through the subnetworks deviate from those obtained using the full network366

for a number of reasons. The largest differences occur in networks where the fastest particle does367

not travel along the shortest topological path. In such situations, the subnetwork based on the368

shortest path cannot produce the desired value. The slowest passage times through the shortest path369

subnetworks relative to the full network are the result of this issue, cf. top left corner of Fig. 5 (a).370

Including the five shortest paths mostly alleviates this problem, but there are still networks where371
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the fastest path is not contained in these subnetworks. The union of the ten shortest paths provides372

much better agreement with the full network because the path taken by the fastest particle is373

always contained within the first ten shortest paths. Even here, however, the match is not perfect.374

In this case, deviations in first passage times are due to differences between the in-fracture flow375

fields in the subnetwork and the full network. When fractures are omitted from a subnetwork, the376

in-fracture velocity field is different from the full network because it is sensitive to the in-plane377

geometry, e.g. the intersections with other fractures. The absence of these intersections decreases378

in-plane dispersion and can reduce travel time. For the 2-core subnetworks, the in-plane flow fields379

are more similar to the full networks because fewer fractures have been omitted. The absence of380

dead-end fractures modifies the local flow filed on the remaining fracture planes because dead-end381

fractures are not necessarily no-flow regions, as is the case in two-dimensional simulations.382

How many paths are needed to obtain good approximations for the fastest travel times is linked383

to how much of the graph is included (Fig. 3) and will vary with different DFN generation parame-384

ters. When the amount of the graph included with additional shortest paths is changing rapidly, the385

predicted values of first passage times are less accurate than when the derivative of this function386

is relatively stable. For the networks we considered, the ten shortest paths are a reasonable choice387

because it balanced accuracy and computational efficiency. For different network structures one388

should examine the scaling of edge counts with the number of shortest paths to select an appropri-389

ate number of paths. A conservative estimate for the number of shortest paths needed would be the390

value of k where this function’s derivative has flattened out, Fig. 3 (b). However, if this function391

does not stabilize, then the proposed method will likely not perform well.392

Our test DFN set is composed of sparse semi-generic fracture networks whose radii follow a393

truncated power-law distribution, similar to many observed fracture sites [35]. Under the assump-394

tion of a positive correlation between a fractures size and its transmissivity, the large fractures395

that make up the shortest paths are both the principal geometric pathways and hydrological fast396

paths. Hyman et al. [17] found that the adoption of this correlation did not significantly influence397

where the majority of transport occurred in similar networks, only how fast it traveled. Therefore,398

the proposed method should work in sparse networks where this correlation is weaker or even399

nonexistent, but only if the principal constraints on flow field structure are topological rather than400

hydrological. In sparse fracture networks, flow structure is primarily determined by the macro-401

scale structure of the network and the direction of flow. In dense networks, meso-scale features,402

e.g. fracture permeability, and micro-scale attributes, e.g. in-fracture aperture variability, might403
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be the principal controls of the flow structure. In these networks, the incorporation of hydrological404

parameters into the graph representation might be required to properly identify the subnetworks405

where flow channeling occurs. Such incorporations warrant further investigations and are the sub-406

ject of ongoing research.407

ACKNOWLEDGEMENTS408

JDH thanks the LANL LDRD Director’s Postdoctoral Fellowship Grant # 20150763PRD4 for409

partial support. All the authors thank LANL LDRD-DR Grant #20170103DR for support. LA-410

UR-17-22022.411
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