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The Thomas-Fermi model for warm and hot dense matter is widely used to predict material
properties such as the equation of state. However, for practical reasons current implementations use
pseudopotentials for the electron-nucleus interaction instead of the bare Coulomb potential. This
complicates the calculation and quantities such as Free energy cannot be converged with respect to
the pseudopotential parameters. We present a method that retains the bare Coulomb potential for
the electron-nucleus interaction and does not use pseudopotentials. We demonstrate that accurate
Free energies are obtained by checking variational consistency. Examples for aluminum and iron
plasmas are presented.
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I. INTRODUCTION

Orbital Free, and in particular Thomas-Fermi, simu-
lations of warm and hot dense matter are widely used
to calculate material properties such as equation of state
and ionic transport coefficients [1–7]. These simulations
all rely on the pseudopotential approximation, in which
the electron-nucleus interaction potential −Z/r (where
Z is the nuclear charge) is replaced by a pseudopoten-
tial below some cutoff radius [2, 5]. The motivation for
this arises when one wishes to solve the equations of the
Orbital Free model. This involves solving the Poisson
equation, which is usually done in Fourier space using
Fast Fourier Transforms (FFTs). The FFT technique
requires that the electron density be resolved on a uni-
formly spaced spatial grid. However, the strong attrac-
tion between the nuclei and electrons leads to a pile-up of
electrons near the nuclei that typically cannot be resolved
on such a grid. Hence, one replaces the strong electron-
nucleus potential with a pseudopotential that smoothes
out the electron density near the nuclei, allowing it to
be accurately represented on the uniform grid. Clearly,
this must be done carefully so as not to significantly in-
fluence the property that one is trying to calculate, and
convergence tests must be carried out with respect to
pseudopotential parameters. For the pressure it has been
shown that convergence with respect to the pseudopoten-
tial cutoff radius can be achieved [1]. However, it was not
possible to achieve convergence with respect to internal
energy [1]. Thus, for practical as well as aesthetic reasons
it is desirable to avoid the use of pseudopotentials.

In this work we present a method that allows solu-
tion of the Thomas-Fermi model without recourse to the
pseudopotential approximation. The method relies on
a numerical trick that decomposes the electron density
into a sum of spherically symmetric densities and a re-
mainder. The key point is that the spherically symmetric
densities are accurate near the nuclei so that the remain-
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der density can be accurately represented on a uniformly
spaced spatial grid. The Poisson equation can then be
solved in two steps: 1) the part due to the spherically
symmetric densities can be easily solved using an estab-
lished and rapid technique, and 2) the contribution from
the remainder density can be solved using the usual FFT
method.

While the present work is limited in application to the
Thomas-Fermi model, the method is equally applicable
to other Orbital-Free functionals. The Thomas-Fermi
model is a widely used but simple model. In principle it is
correct only where the electron density is uniform. How-
ever, in practice pressures and ionic transport coefficients
are quite reasonable from moderate to high temperatures
in the compressed matter regime [3, 6].

The structure of this paper is as follows. First, in sec-
tion II we review and define the Thomas-Fermi model,
including the thermodynamic quantities. We use this
section to introduce a test of the model: two expressions
for the pressure are given, on the one hand the pressure is
evaluated using a virial expression, on the other the pres-
sure is evaluated using a numerical derivative of the Free
energy. Both pressures should be equal to within numer-
ical tolerances provided the method is truly minimizing
the Grand potential, as required by density functional
theory [8]. This condition would not be satisfied if a
pseudopotential were to be used for example. In section
III we describe the trick that allows one to avoid the use
of pseudopotentials and discuss other numerical issues
that arise when not using pseudopotentials. We also give
our algorithm for solution of the model. In section IV
we show examples for aluminum and iron plasmas, and
explicitly demonstrate the equivalence of the virial and
thermodynamic routes to the pressure for simple cubic
aluminum. We also compare pressure for a solid density
aluminum plasma to an average atom model. Lastly,
in section V we draw our conclusions. Unless other-
wise stated, Hartree atomic units are used throughout
in which h̄ = me = e = kB = 1.
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II. REVIEW OF THE THOMAS-FERMI MODEL

We consider N nuclei at positions {Ri} in a cubic com-
putational volume V with periodic boundary conditions.
The total free energy F is

F = F I + F TF

e + F xc
ee + F el (1)

where F I is the ideal ion contribution, F TF
e is the

Thomas-Fermi kinetic and entropic term

FTF =
1

β

∫
V

d3r

(
ne(r)η(r)− 2

3
cTFI3/2 [η(r)]

)
(2)

with β = 1/T the inverse temperature, Ij is the Fermi
integral of order j (see [9]),

cTF ≡
√

2

π2β3/2
. (3)

and

ne(r) = cTF I1/2 [η(r))] (4)

is the electron density. η(r) is found by requiring the
grand potential to be at a minimum with respect to ne(r)
(see equation (13)).
F xc is the exchange and correlation free energy

F xc
ee =

∫
V

d3r fxcee [ne(r)] (5)

where throughout this work we have used the zero tem-
perature local density approximation [10] (which ignores
correlation effects),

fxcee [n] = −3

4

(
3

π

) 1
3

n
4
3 (6)

The corresponding exchange and correlation potential is

V xc
ee (r) =

δF xc
ee

δne
=

(
3ne(r)

π

) 1
3

(7)

Lastly in equation (1), F el is the electrostatic free en-
ergy 1

F el =
1

2

∫
V

d3r

(
ne(r)V el(r)−

N∑
i=1

Ziδ(r −Ri)V̄i(r)

)
(8)

where the electrostatic potential V el(r) is

V el(r) = −
∞∑
i=1

Zi

|r −Ri|
+

∫
d3r′

ne(r
′)

|r − r′|
(9)

1 The sum over nuclei in equation (8) is restricted to the N parti-
cles in volume V .

and V̄j is

V̄j(r) = −
∞∑

i=1,i6=j

Zi

|r −Ri|
+

∫
d3r′

ne(r
′)

|r − r′|

= V el(r) +
Zj

|Rj −Ri|
(10)

The grand potential Ω is related to the Free energy via

Ω = F − µ
∫
V

d3r ne(r) (11)

where µ is the electronic chemical potential and serves as
Lagrange multiplier to ensure the computational volume
is charge neutral. Ω is required to be at a minimum with
respect to variations in the electron density

δΩ

δne(r)
= 0 (12)

which yields

η(r) = β
(
µ− V el(r)− V xc

ee (r)
)

(13)

The self-consistent solution to equations (4), (7), (9)
and (13), with µ determined by charge neutrality, and for
a given set of nuclear positions {Ri}, defines the Thomas-
Fermi model. Variations of this model for different ex-
change and correlation potentials are easily constructed.

The pressure is given by

P = − ∂F

∂V

∣∣∣∣
T

(14)

Using the virial theorem, the pressure is given by [11]

P V =
2

3
KTF

e +
2

3
KI +

1

3
F el + Cxc (15)

where Cxc is the contribution from exchange and corre-
lation,

Cxc = −F xc
ee +

∫
V

d3r ne(r)
δF xc

ee

δne(r)
. (16)

KTF
e is

KTF

e =
1

β

∫
V

d3r cTF I3/2 [η(r))] (17)

and KI is the ideal ion contribution. We will refer to the
pressure that is given by equation (14) where the deriva-
tive is carried out numerically as the thermodynamic
pressure P th, and the pressure evaluated with equation
(15) as the Virial pressure P vir. If the numerical calcu-
lation is accurate then the two pressures are the same

P vir = P th (18)

This provides a stringent test on the numerical imple-
mentation.
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FIG. 1: (Color online) Example of a typical pseudopotential,
using the method of reference [2]. The Coulomb potential
−Z/r is replaced by a pseudopotential Vps(r) below some cut-
off radius rc. Calculated properties should be converged with
respect to pseudopotential parameters, in this case rc.
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FIG. 2: (Color online) Example of a nPA
e (r) for solid den-

sity aluminum at 1 eV generated by the model of references
[12, 13]. The inset shows the same electron density but mul-
tiplied by 4πr2. nPA

e (r) is an accurate approximation to the
full 3-dimensional electron density near the nuclei, a fact guar-
anteed by realization that the effective potential felt by the
electrons near the nuclei is dominated by the Coulomb nuclear
potential.

III. PSEUDOPOTENTIALS AND HOW TO
AVOID USING THEM

The self-consistent solution of the TF model requires
evaluation of the Poisson equation (equation (9)). This
is usually solved using Fast Fourier Transforms (FFT).

In this method the electron density is calculated on a
equally spaced grid and Fourier Transformed (F )

F [ne(r)] = ñe(k) (19)

The potential is then found via the inverse Fourier Trans-
form (F−1)

V el(r) = −
∞∑
i=1

Zi

|r −Ri|
+ F−1

[
4π

k2
ñe(k)

]
(20)

This presents a numerical challenge because the electron
density ne(r) must be accurately resolved on the equally
spaced grid. Due to electron pile-up near the nuclei this
is impractical for most cases. The usual solution is to
replace the electron-nucleus Coulomb potential with a
pseudopotential that prevents this pile-up. But for the
reasons discussed earlier this is undesirable. An example
of a typical pseudopotential is given in figure 1.

To avoid using a pseudopotential one can reformulate
equation (9) using an exact decomposition proposed in
reference [14]. One starts by approximating the total
electron density as a superposition of spherically symmet-
ric densities that we call pseudoatom densities nPA

e,i (r).
These densities are designed to be accurate representa-
tions of the full electron density near the nuclei where
the potential is dominated by the nucleus. Each nPA

e,i (r)
is required to satisfy charge normalization, i.e.∫

d3r nPA

e,i (r) = Zi. (21)

The integral is over all space but converges as the pseu-
doatom densities go to zero faster than r2. The superpo-
sition electron density is then

nsupere (r) =

∞∑
i=1

nPA

e,i (|Ri − r|) (22)

There is no unique definition of nPA
e,i (r) and a number

of reasonable ways to calculate it can be proposed, pro-
vided they satisfy the above constraints. We have used
the physically motivated definition given in references
[12, 13]. This method is fast (a few seconds) and ro-
bust. We note however, that the method presented here
is not restricted to using the model of [12, 13], and other
methods to generate nPA

e,i (r) can be envisaged (see be-
low). An example of a nPA

e,i (r) is given in figure 2. Finally,
we point out that the pseudoatom densities can and do
overlap spatially in equation (22) and that is causes no
problem.

Using nsupere (r), the total electron density is

ne(r) = nsupere (r) + ∆ne(r) (23)

and equation (9) is rewritten

V el(r) = V super(r) + ∆V (r) (24)
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FIG. 3: (Color online) 2-dimensional slice of electron densities in a cubic volume for simple cubic aluminum at 1 eV and solid
density. The slice is taken though a crystal plane with an atom at the center. (a) full electron density log10 ne(r) [a3

B]; (b)
electron density from superposition approximation log10 n

super
e (r) [a3

B]; (c) absolute difference ∆ne(r) = ne(r)−nsuper
e (r) [a3

B];
(d) percentage difference ∆ne(r)/ne(r).

where

V super(r) =

∞∑
i=1

V PA

i (|r −Ri|) (25)

and

∆V (r) =

∫
d3r′

∆ne(r
′)

|r − r′|
(26)

with

V PA

i (r) = −Zi

r
+

∫
d3r′

nPA
e,i (r′)

|r − r′|
(27)

V PA
i (r) is straightforward and rapid to evaluate using the

well known and widely used spherical harmonic expan-

sion of 1/|r−r′| and a non-uniform radial grid. While the
sum in equation (25) is formally to infinity, in practice
only a finite number of terms need be included. V super(r)
is periodic and only those V PA

i (|r−Ri|) with appreciable
magnitude inside the computational volume contribute to
the summation.

Since nsupere (r) is designed to be accurate near the
nuclei, ∆ne(r) does not have any strong gradients as-
sociated with electron pile-up near the nuclei in it. It
is therefore amenable to the FFT technique which re-
quires uniformly space grids. The total potential V el is
thus calculated by constructing V super(r) on the uniform
grid and calculating ∆V (r) with FFT’s. This solves the
major challenge in removing the pseudopotential.
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FIG. 4: (Color online) 2-dimensional slice of electron densities in a cubic volume for a snapshot of an iron plasma simulation
at 10 eV and 22.5 g/cm3 with 27 atoms in the simulation cell. (a) full electron density log10 ne(r) [a3

B]; (b) electron density
from superposition approximation log10 n

super
e (r) [a3

B]; (c) absolute difference ∆ne(r) = ne(r) − nsuper
e (r) [a3

B]; (c) percentage
difference ∆ne(r)/ne(r). Note the considerably reduced range of ∆ne(r) compared to ne(r).

The remaining challenge is how to evaluate integrals
of the type ∫

V

d3r ne(r) (28)

that are required when solving for µ, or∫
V

d3r I3/2[η(r)] (29)

that are required when calculating the thermodynamic
properties. To carry out these integrals we have tested
two methods. First is a numerical trick similar to that
used for solving the Poisson equation. Instead of evalu-

ating (28) directly, we numerically evaluate on the uni-
formly spaced spatial grid∫

V

d3r (ne(r)− nsupere (r)) (30)

which is accurate because the integrand does not have
strong gradients, and then add the contribution from
nsupere (r) back in. This latter is easy to calculate as it is
the sum of spherically symmetric quantities. The same
method can be used for the other integrals like equation
(29) if we define suitable spherically symmetric quanti-
ties for each integral. This trick was used successfully
in reference [14] for the pseudo-atom molecular dynam-
ics (PAMD) model. The disadvantage of this method is
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T P th
ex P vir

ex ∆P Fex ∆Fex

[eV] [Mbar] [Mbar] [%] [Eh] [Eh]

1 0.3701 0.3635 -1.8 -321.866334 -0.000141

2 0.4687 0.4627 -1.28 -321.944525 -0.000179

5 0.9946 0.9907 -0.4 -322.452406 -0.000380

10 2.326 2.324 -0.0584 -324.035145 -0.000889

15 4.058 4.059 0.0201 -326.355184 -0.001551

20 6.116 6.119 0.0397 -329.291693 -0.002338

30 11.05 11.05 0.049 -336.726635 -0.004222

40 16.89 16.9 0.0446 -345.934585 -0.006454

50 23.49 23.5 0.0352 -356.662173 -0.008979

60 30.76 30.77 0.0273 -368.729337 -0.011755

70 38.59 38.6 0.0253 -381.998297 -0.014750

80 46.94 46.94 0.0192 -396.359225 -0.017938

90 55.73 55.73 0.0148 -411.721118 -0.021298

100 64.92 64.92 0.0105 -428.007640 -0.024811

TABLE I: Thermodynamic accuracy for simple cubic aluminum at 2.7g/cm3. The thermodynamical excess pressure P th
ex is

calculated by numerical derivative of the excess free energy Fex. Here we use a 0.1% centered difference (i.e. ∆V = 0.1% of V).
∆Fex is the difference Fex(V + ∆V )−Fev(V ). At 1 eV, a 1% accuracy in P th

ex requires Fex to be accurate to the 9th significant

figure. This is therefore a very stringent test of the numerics. ∆P [̃%] is the percentage difference between P th
ex and P vir

ex .

that one is more tied to the model [12, 13] to accurately
calculate the necessary spherically symmetric quantities,
though, as for nPA

e,i (r), other approaches to generate these
can be envisaged.

An alternative approach is to design an integration
scheme that accurately solves integrals like equations (28)
and (29) directly. We have implemented a method that
tessellates space into Voronoi polyhedra using the code
of reference [15]. Integrals inside each polyhedra a par-
titioned into a region of an inscribed sphere treated nu-
merically with spherical polar coordinates (where spher-
ical symmetry is not assumed), and a second region of
the remaining space. This remaining space can be ac-
curately integrated using the iso-parametric integration
technique of reference [16]. We note that reference [16]
uses a transform to a cube which we found to be problem-
atic for certain complicated geometries. This was easily
remedied by transforming to a prism instead. The advan-
tage to this method is that it is independent of the model
[12, 13]. However, it does require interpolation between
the uniform mesh on which ∆V (r) is calculated by FFT
and the non-uniform grid used for the integration. As a
consequence we found it to be significantly more costly
to evaluate. We have checked that both approaches yield
the same results to within numerical tolerances.

With these two impediments solved one can proceed
with the pseudopotential free Thomas-Fermi simulations.
Our algorithm for solving the TF self-consistent field is
as follows:

1. Solve for nPA
e,i (r) and calculate V PA

i (r)

2. With nuclear positions given, construct nsupere (r)

and V super
e (r). Use these as initial guesses for the

self-consistent field scheme.

3. Solve for the electron density ne(r) using equation
(4). Adjust µ until the computational cell is charge
neutral. This involves evaluating the integral∫

V

d3r ne(r)

4. Solve the Poisson equation for V el(r) using method
discussed above, and calculate V xc

ee (r).

5. Check for convergence. If not converged, linearly
mix new potential with the old and go back to step
3. Cycle until converged.

This algorithm is significantly different from that used
by others, for example [17]. It has the advantage of guar-
anteeing a positive electron density without a change of
variables. It may however take more self-consistent field
steps. A detailed comparison of the above algorithm and
that used by others has not yet been carried out.

Finally, we note that the method of calculating F el(r)
has a significant advantage over other more traditional
approaches as it does not require an Ewald summation
[18]. Usually the calculation of the ion-ion energy re-
quires one to use the Ewald summation trick [17] that
introduces an artificial screening distribution to allow
rapid summation in real space, and then subtracts out
this screening charge in Fourier space. One can think
of our decomposition method as using the nPA

e,i (r) as the
screening charge in real-space, allowing rapid summation.
However, as this screening charge is not artificial (in the
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FIG. 5: (Color online) Convergence of excess pressure P vir
ex

with respect to number of FFT points in one dimension N .
The total number of FFT points is N3. Convergence is shown
for solid density aluminum at three temperatures. The hori-
zontal dashed lines indicate ±5% from the converged value.

Ewald sense) it does not need to be subtracted out in
Fourier space.

IV. NUMERICAL RESULTS

In figure 3 we show a 2-dimensional slice of electron
densities for simple cubic2 aluminum at solid density and
1 eV. The atom is at the center of the box and lies in the
plane of the slice shown. In the top left panel is the con-
verged electron density ne(r). The build up of electrons
near the nucleus is apparent (note we show the log of the
electron density). Formally ne(r) diverges as r−3/2 as
r → 0, where r is the radial distance from a nucleus. Such
divergences are not resolved on the uniform grid used to
plot ne(r). The electron density from the superposition
approximation nsupere (r) is shown in the top right, and
the difference between it and the converged electron den-
sity is shown in the lower left. Clearly nsupere (r) is quite

2 We use simple cubic crystal structure purely for simplicity.

close to the converged electron density. The largest ab-
solute differences occur near the nucleus. However, due
to the very large values of ne(r) near the nucleus these
differences probably just reflect the numerical tolerances.
In the bottom right panel we show the percentage rela-
tive difference. This shows that nsupere (r) is very accurate
near the nucleus, as expected, and that it underestimates
the ne(r) in the region between the central atom and the
nearest atoms (i.e. at (±1,0,0), (0,±1,0) and (0,0,±1)
if the central atom is at (0,0,0)), and overestimates the
electron density in the regions between the remaining
nearest neighbors. However, the relative differences are
rather small, remaining below 3% everywhere.

In figure 4 we show a 2-dimensional slice of the electron
densities for a snapshot of an iron simulation at 10 eV
and 22.5 g/cm3. We have taken the ion positions from the
PAMD code [19]. Again the superposition density is close
to the converged electron density, with differences up to
≈ 6% observed. Further, we again see that nsupere (r)
underestimates the electron density between two close
neighbors, and overestimates it elsewhere. This indicates
that the Thomas-Fermi model drives electrons into the
regions where the total nuclear potential

∑
i−Zi/|r−Ri|

is most attractive – an effect beyond the superposition
approximation.

In both figures 3 and 4 it is apparent why the method
to solve the Poisson equation works. The bottom left
panel of both figures shows ∆ne(r) that must be Fourier
transformed with FFT’s. It is clear that the strong gra-
dients near the nuclei are eliminated and only a relatively
slowing varying quantity remains that is accurately rep-
resented on a uniform grid. We have also checked that
a significantly different pseudoatom density nPA

e,i (r) re-
sults in the same answer, i.e. we modified nPA

e,i (r) so that
its normalization was maintained, but its behavior away
from the nuclei was significantly changed, and the final
ne(r), P and F were not significantly different. This also
confirms that one need not use the model of references
[12, 13] to generate nPA

e,i (r), though it certainly serves as
an excellent choice.

In table I we check the thermodynamic consistency of
the method. The pressure P th

ex is calculated using a nu-
merical derivative in equation (14), while P vir

ex is calcu-
lated using equation (15). Excess (“ex”) quantities are
reported that do not include the ideal ion contribution
(eg. Fex = F − F I). If the numerics were perfect we
would have P th

ex = P vir
ex . Table I focuses on simple cubic

aluminum at solid density over a range of temperatures.
Clearly, the method is very accurate with the largest rel-
ative difference being at the lower temperature due to rel-
atively the small pressure. The table also demonstrates
that highly accurate (to the 9th significant figure) Free
energies are required to evaluate P th. To achieve this
numerical accuracy we used 1283 Fourier transform grid
points, which is quite a lot. Fortunately, P vir is much
less sensitive to the accuracy and one can get away with
a much smaller number of grid points (eg. 323 is more
than enough for this case).
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T AA Pex SC Pex ∆P MD Pex ∆P

[eV] [Mbar] [Mbar] [%] [Mbar] [%]

1 0.299 0.3635 21.6 0.4915 64.4

2 0.4005 0.4627 15.5 0.65 62.3

5 0.9339 0.9907 6.08 1.266 35.6

10 2.267 2.324 2.53 2.65 16.9

15 3.999 4.059 1.48 4.423 10.6

20 6.058 6.119 0.998 6.517 7.58

30 10.99 11.05 0.541 11.48 4.47

40 16.84 16.9 0.326 17.37 3.14

50 23.46 23.5 0.199 24.02 2.4

60 30.73 30.77 0.115 31.33 1.96

70 38.58 38.6 0.0549 39.23 1.69

80 46.94 46.94 0.00827 47.64 1.48

90 55.75 55.73 -0.0262 56.5 1.35

100 64.96 64.92 -0.0562 65.77 1.24

TABLE II: Excess pressure of average atom (AA) model compared to simple cubic (SC) and disordered (MD) simulations for
aluminum at 2.7 g/cm3. For the disordered case we have taken the ion positions from corresponding PAMD simulations [19].
∆P [%] is the percentage difference relative to the AA pressure [14].

The agreement of P vir and P th is a strong verification
of the method and its implementation, and to our knowl-
edge is the first time that such an calculation has been
reported as it is not possible if pseudopotentials are used.

In table II we show pressures for solid density alu-
minum from three pseudopotential free calculations. The
first is the widely used average atom model [20], labeled
AA. In the middle two columns this is compared to sim-
ple cubic calculations with the present method, labeled
SC. Above 20 eV the two models are in close agreement.
Below this temperature, the SC pressure is consistently
larger than the AA. This indicates that in the SC model
electrons redistribute themselves from higher density re-
gions near the nuclei to lower density areas, and therefore
increase the pressure. This effect is restricted in the AA
model because all screening must occur within the ion
sphere. At higher temperatures the electrons have more
energy on average and are therefore less sensitive to the
nuclear positions.

In the right hand two columns of table II we compare
pressures of disordered plasmas, labeled MD, to the AA
model. We have taken the nuclear positions from the
PAMD model [19]. It is worth noting that it is possible
to obtain nuclear positions self-consistently in the present
approach using Born-Oppenheimer Molecular Dynamics
[2], but we have not yet implemented this. The pressures
from the MD model have been compared to previous TF-
MD simulations that used pseudopotential [19] and were
found to be in good agreement (differences of less than
≈ 2 %). We used 64 particles in the simulation box,
and 643 FFT grid points. The time step depends on the
temperature and we used to method of reference [1] to aid
in its determination. The effect of the ionic disorder is to

further increase the pressure relative to the AA model.
Beyond 50 eV AA and MD pressures are with ≈ 2 % of
each other.

In figure 5 we show convergence of the excess pressure
as a function of number of FFT points for solid density
aluminum at three temperatures. We consider the pres-
sure using ion positions from PAMD with 64 atoms in
the cell. In all cases the pressure is well converged using
323 points.

V. CONCLUSIONS

An accurate method that allows the solution of the
Thomas-Fermi model without the pseudopotential ap-
proximation has been presented. The method was
demonstrated for aluminum and iron plasmas, and ver-
ified to give thermodynamically consistent results for
simple cubic aluminum. This serves as a strong test
of the method and its numerical implementation. Cal-
culations of pressure for aluminum plasmas were com-
pared to average atom results, elucidating the influence
of ionic structure. Lastly, we note that the method is
expected to work for other orbital free functionals such
as the von Weiszäcker term [21]. The approach presented
here should be straightforward to implement in existing
TFMD codes [1, 2, 17, 21].
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