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Abstract

When air is blown in a straw or tube near an air-liquid interface, typically one of two behaviors is

observed: a dimple in the liquid’s surface, or a frenzy of sputtering bubbles, waves, and spray. Here

we report and characterize an intermediate regime that can develop when a confined air jet enters

the interface at an angle. This regime is oscillatory with a distinct characteristic frequency and

can develop periodic angled jets that can break up into monodisperse aerosols. The underlying

mechanisms responsible for this highly periodic regime are not well understood. Here, we flow

a continuous stream of gas through a tube near a liquid surface, observing both optically and

acoustically the deformation of the liquid-air interface as various parameters are systematically

adjusted. We show that the Kelvin-Helmholtz instability is responsible for the inception of waves

within a cavity formed by the gas. Inertia, gravity, and capillary forces both shape the cavity and

govern the frequency and amplitude of these gas-induced cavity waves. The flapping cavity focuses

the waves into a series of periodic jets that can break up into droplets following the Rayleigh-Plateau

instability. We present scaling arguments to rationalize the fundamental frequencies driving this

system, as well as the conditions that bound the periodic regime. These frequencies and conditions

compare well with our experimental results.

∗ jbird@bu.edu
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I. INTRODUCTION

When a steady stream of gas passes through a tube near a stationary liquid interface,

the interface typically exhibits one of two behaviors. If the orifice is relatively far away or if

the flow rate is low enough, the liquid surface dimples [1, 2]. Alternatively, if the orifice is

close to or below the liquid surface, or if the flow rate is relatively high, the surface erupts

into a frenzy of waves, bubbles and droplets [1]. This bubbling can be random or regular,

as is the case with air sparging [3]. Many previous studies have focused on the vertical

impingement of gas jets above a liquid surface, resulting in the production of waves and

polydisperse droplets [4, 5]. We explore a regime between these two expected behaviors for

oblique impingement, a regime that is characterized by the formation of periodic jets formed

by the flow of a gas through a nozzle angled near or below the liquid interface. Although

this regime has been noted [6], to our knowledge it has not been systematically investigated.

The existence and boundaries of the periodic jetting regime explored in this article, as

well as surrounding regimes, can be seen by flowing gas through a tube near to a liquid

surface while varying the tube angle (figure 1). Here, nitrogen gas steadily flows through a

tube resting on the bottom of a shallow Petri dish filled with 10 cSt silicon oil. At shallow

angles, the liquid interface is deformed slightly by the flowing gas, creating a steady, sta-

tionary cavity (figure 1a). As the angle of inclination increases, it reaches a critical value

θwave, above which the interface becomes unstable and waves propagate radially across the

surface (figure 1b). As the angle increases further, the waves focus into a wide oscillating

jet, or bulge, near the end of the tube outlet (figure 1c). This jet continues to focus with

increasing angle and eventually becomes sufficiently long and narrow to pinch into monodis-

perse droplets that roll along the liquid interface (figure 1d). Indeed, if the jet is sufficiently

long and narrow, more than one drop can pinch off as the jet recoils (figure 1e). Ultimately,

the tube will reach another critical angle, θbubble, where periodicity gives way to an irregular

eruption of bubbles, jets and droplets (figure 1f). This irregular regime appears qualitatively

similar to the sputtering or splashing regime observed in asymmetric air jet impingement

[1, 5, 7]. The phenomenon resembles the regimes created by gas jets vertically impinging on a

liquid surface [4], and along with the presence of gas flowing across the fluid interface, draws

parallels with typical atomisation [8, 9]. Unlike the monodisperse droplets observed in the

current study, the droplet distribution from vertically impinging jets or typical atomisation
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FIG. 1. Gas injection into a Petri dish of silicone oil can exhibit various dynamics. As the angle of

the tube with the liquid surface is increased, there is a progression from a steady cavity to periodic

waves, a stream of monodisperse droplets, and eventually a frenzy of bubbles and polydisperse

droplets.
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is irregular and polydisperse, indicating distinct mechanistic differences.

Although we are not aware of any previous studies detailing the regular oscillatory jets

of liquid formed by air injection (figure 1c-e), aspects of the phenomenon resemble vari-

ous known multiphase oscillators. The onset of waves is similar to the transition to large

amplitude waves in stratified two-phase pipe flow, where the Kelvin-Helmholtz instability

governs the transition [10]. The oscillations of liquid and gas at the end of the tube also bear

similarities with the glug-glug of an inverted closed bottle, an instability linked to compress-

ibility effects of the gas [11]. The formation of a stationary oscillatory jet is characteristic

of the parametric excitation responsible for Faraday waves [12]. The oscillation frequency is

similar to an observed turbulence-induced interface-instability [13], and the formation of a

stream of equal-sized droplets resemble that formed by the Rayleigh-Plateau instability in

flow-focusing microfluidic devices [14].

In the present study, we investigate the conditions necessary to create focused periodic

perturbations on the deformed interface, a phenomenon that we refer to as cavity waves.

We design a setup to systematically measure the characteristic frequency and present a map

to depict the regime boundaries. We analyze the acoustic data to assess the periodicity

of the regimes. Finally, we develop scaling arguments for the regime transitions and the

underlying parameters responsible for the fundamental frequency in the particular region in

which cavity waves focus to form oscillating jets.

A relevant feature of the oscillating jets documented in this study is their ability to

break up into aerosol droplets. We expect the periodic jets to behave similarly to isolated

finite liquid filaments, breaking up into one or more droplets based on the aspect ratio

and liquid properties [15]. Aerosols are pertinent to a variety of industrial applications

and natural global processes [16, 17]. Certain aerosol formation can be detrimental, such

as those that vectorize and transport airborne pathogens through the pulmonary tract [18].

Aerosols of various sizes are generated from different sites within the airways, and the precise

mechanisms leading to the formation of respiratory aerosols are still not well understood [19].

Indeed, of the four modalities of aerosol formation, three are related to airflow near an air

liquid interface [20]. Thus, a better understanding of how a gas flow near an interface can

generate aerosols may help to explain why and how some of these respiratory aerosols form.

More generally, the dynamics arising from an impinging gas jet is of importance in certain

industrial processes, such as arc welding [21] and steelmaking [7]. The transitions between
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FIG. 2. A schematic of the experimental setup. The liquid is placed in a tank on a microstage to

precisely control the distance Z that the tube is submerged. The tube angle θ and flow rate Q are

also measured and varied.

different interfacial dynamics for inclined jets may be relevant to these processes.

II. METHODS

The experimental setup used to investigate the parameter space of the periodic jetting

phenomenon is shown in figure 2. A liquid-filled tank sits atop a microstage, allowing this

liquid bath to move vertically (± 40 µm) relative to a circular tube used to inject gas across

the liquid surface. This relative distance sets the depth Z of the bottom of the tube beneath

the free surface. The angle of the tube can be adjusted independently of the bath, allowing

for a variation in the angle θ between the horizontal and tube axes. The depth of the liquid

in the bath h0 = 30 mm is chosen to be deep enough to have a negligible influence on

the interface dynamics. It should be noted that even with a much shallower liquid depth

in the petri dish, (figure 1) the jetting phenomenon investigated is qualitatively similar.

We have selected 10 cSt silicone oil as the bath liquid and nitrogen gas as the injected

fluid. Elements of the phenomenon can be observed with water, but the full features are

sharpened by using a slightly more viscous liquid with lower surface tension to attenuate

shorter-wavelength capillary waves. These shorter waves are sensitive to experimental details

affected by boundary conditions and confound interpretation of the underlying mechanisms

that we investigate here. The viscosity µ and density ρ of each fluid are reported in Table I,

along with the interfacial tension γ between these fluids, as reported by the manufacturer.
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Fluid µ (Pa s) ρ (kg m−3) γ (mN m−1)

Nitrogen (gas) 1.76 × 10−5 1.16

Silicone oil 10 cSt 9.35 × 10−3 935 20.1

TABLE I. Viscosity, density, and surface tension of the two fluids used in the experiments.

The fixed, circular tube has an internal diameter of either d = 4.8mm or d = 6.2mm and

is connected to a high pressure nitrogen tank via a regulation system that provides precise

control over the flow rate Q. The flow rate can be adjusted with a precision of ± 4 mL/s.

Thus, the relevant geometrical properties of the system are the tube depth Z, angle θ,

and diameter d. The relevant physical properties are the densities ρ1, ρ2 and viscosities µ1,

µ2 of the two fluids, where 1 refers to the liquid in the bath and 2 the gas flowing through

the tube, surface tension γ and gravity g. The single dynamic property is the flow rate of the

gas Q. The overall dynamics of the system are recorded with a combination of high-speed

video using a Photron Fastcam SA5 high speed camera and high-resolution images with a

Nikon D7000 DSLR. In addition, acoustic data is recorded using a hydrophone immersed in

the liquid bath at the same initial horizontal distance from the tube outlet.

To assess the relative role of tube angle θ and depth Z on the interface dynamics, we

sweep these two parameters and create a regime map. In the absence of flow (Q = 0mL/s),

the tube is fixed at a particular angle θ and the bath raised until the inner edge of the

tube outlet is at the same height as the liquid surface; this position defines the tube depth

Z = 0. Gas flow is introduced at a particular flow rate and fixed for the duration of a

single sweep. The liquid bath is raised until a regime transition is detected from the high

speed photography. The value of the tube depth Z at this height is recorded as a transition

point. The bath continues to be raised – such that the subsequent transition points can

be recorded in the same manner – until the random bubbling/sputtering regime is reached

(see supplemental movie 1). The bath is then lowered and the transition points recorded

a second time to confirm the absence of hysteresis in this system. The procedure is then

repeated for different angles θ.

6



FIG. 3. An experimentally-derived regime map illustrates the interplay between tube submersion

distance Z and inclination angle θ. Here the flow rate is Q = 24 mL/s, the internal diameter of

the tube is d = 4.8 mm and all other parameters are fixed.

III. EXPERIMENTAL RESULTS

A regime map is portrayed in figure 3 with a flow rate Q = 24mL/s, the internal diameter

d = 4.8 mm and all other parameters fixed as described above. The lack of hysteresis and

precision of the experimental setup lead to error bars smaller than the graphing markers

used, as a result the error bars are not plotted. For a given angle θ, as the tube depth Z
is increased, the interface transitions from a steady cavity to waves to breaking jets, and

finally to a bubbling/sputtering regime. The same transition behavior, in terms of the order

of regimes and lack of hysteresis, can be obtained by fixing the tube depth Z, and increasing

the angle θ, as indicated in figure 1.

A relation between the depth Z and angle θ becomes apparent when rescaling the data

in figure 3 by Z/(d cos θ) (figure 4a). Below angles of approximately θ ≈ 50◦, the transition

points between the different regimes occur at constant values of Z/(d cos θ). This indepen-

dence of the transition points for θ . 50 also holds for the d = 6.2 mm tube. For these

smaller values of θ, more of the air flows tangentially across the interface than normally im-

pacts it. In contrast, at the higher values of θ, more of the flow impinges the liquid surface,

and the dynamics may be more similarly to the impact of an impinging vertical air jet [1, 2].

Physically, the scaling Z/(d cos θ) can be interpreted as the ratio of the submerged depth

ℓ = Z/cos θ orthogonal to the tube relative to the tube diameter d (figure 4b). This ratio
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FIG. 4. Reducing dimensionality. (a) The regime map in figure 3 is non-dimensionalized and

plotted in terms of Z/(d cos θ) and θ. At low angles, the regime boundaries occur at constant

values of Z/(d cos θ) when all other parameters are fixed. Here the flow rate is Q = 24 mL/s, the

internal diameter d = 4.8 mm. (b) The parameter Z/(d cos θ) can be geometrically interpreted as

the fraction of the tube outlet that is submerged ℓ/d.

therefore represents an approximation for the fraction of the tube that is closed. Further

parameter sweeps carried out in this paper are conducted at an angle θ = 30◦ and presented

in terms of ℓ/d to take advantage of this reduction in dimensionality.

Note that we have selected the phases boundaries in figures 3 and 4 to correspond with

abrupt changes in the interface dynamics. Specifically there is a sharp transition at the

onset of waves (circles in figures 3 and 4), a topological change associated with the aerosol

formation from the breaking jets (squares), and a sudden audible breakdown in periodicity

associated with sputtering (triangles). The periodic jets identified in this article do not have

a clear onset and instead develop smoothly from the waves interacting with a pronounced

cavity (figure 1c). From experiments it appears that this onset occurs when ℓ/d ≈ 1 (see

supplemental movie 1).

The acoustic signal of the flow can provide insight into the different regimes in Figure 4,

especially as it relates to their regularity [22, 23]. In our setup, a hydrophone records a one-

minute audio file for a given set of parameters. The mean spectrum is obtained by averaging

over the Fourier transform of every 10 s of the audio file. Figure 5 presents the acoustic

signature in both the spatial and frequency domains. When the cavity develops waves fig-
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FIG. 5. Acoustic signatures captured by the hydrophone for the various dynamic regimes: (a)

wave regime [ℓ/d = 1.0, Q = 47 mL/s], (b) breaking jet regime [ℓ/d = 1.4, Q = 47 mL/s], and (c)

irregular bubbling/sputtering regime [ℓ/d = 1.4, Q = 16 mL/s]. (d) A distinctly different acoustic

signature appears for the bubbling regime at a low enough flow rate that a periodic stream of

bubbles rise to the liquid surface and rupture [ℓ/d = 1.4, Q = 8 mL/s]. Each set of acoustic data

is plotted in both the spatial domain (left) and the frequency domain (right). Here d = 30 mm

and θ = 30◦.

ure 5a, the hydrophone measures pressure fluctuations that correspond to these interfacial

waves. Indeed, highspeed imaging confirms that the fundamental frequency from the acous-

tics matches with the frequency of the air-liquid interface displacement. The breaking jet

regime exhibits a more complex acoustic signature, rich in harmonics and subharmonics

(figure 5b). Note that there is a slight shift in the fundamental frequency between these

two regimes; however both frequencies are in the range of 30 to 40 Hz. The electronic noise

at 60 Hz is also visible in the spectrum, but has a negligible contribution. In the bub-

bling/sputtering regime, the acoustics are far more complex and lack a clear fundamental

frequency, providing evidence for the chaotic nature of this regime (figure 5c). The spec-

trum of the bubbling regime changes when the flow rate is significantly reduced, forming a

range of distinct frequencies (figure 5d). Here a single bubble stream is emitted from the

completely submerged tube and the detected sound is likely due to both the collapse of the

air connection at bubble detachment [24] and by the rupturing bubble at the surface [25].

It is natural to inquire whether a change in flow rate affects other boundaries and fre-
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quencies. To address this question, we complete another parameter sweep in which the flow

rate Q and depth Z are varied, while maintaining a fixed tube angle θ = 30◦. The regime

map and the accompanying fundamental frequency for each flow rate are shown in figure

6. The fraction ℓ/d at which the tube needs to be submerged to generate waves decreases

with increased flow rate of gas Q (circles in figure 6a). When the tube is fully submerged

(ℓ/d > 1), the system can create periodic jets or bubbling/sputtering. Here it appears that

the transition to jet break-up and bubbling are nearly independent of the flow rate. At low

flow rates, the bubbling is periodic, (denoted by the asterisk in figure 6a) however the transi-

tion to this regime of periodic bubbling was not systematically investigated. Repeating these

experiments for a larger tube (d = 6.2mm), we find the dynamics follow the same trend.

The fraction ℓ/d at which the tube needs to be submerged to generate waves decreases with

increased flow rate of gas. Similarly when the larger tube is fully submerged (ℓ/d > 1), the

system also can create periodic jets or bubbling/sputtering with transition for periodic jets

occurring around ℓ/d = 1 and bubble/sputtering at values between 1.2 and 1.3 that also

appear independent of flow rate and θ.

Between the steady cavity and bubbling/sputtering regimes, there is a clear fundamental

frequency f obtained from the acoustics (figure 6b). For the d = 4.8 mm tube (open symbols

in figure 6b), this frequency ranges from approximately 20 to 40 Hz. As the tube outlet

fraction ℓ/d increases, the frequency f increases. The dependence of frequency on the

flow rate Q is less pronounced and appear to be non-monotonic, first decreasing and then

increasing with increasing flow rate. Of particular interest is the frequency when ℓ/d & 1

(darker symbols in figure 6b), as this condition is linked to the periodic jetting regime.

When hydrophone experiments are repeated for the larger tube (d = 6.2mm) for these tube

outlet fractions ℓ/d, a slightly lower fundamental frequency f is observed (closed symbols

in figure 6b).

IV. MODELING AND DISCUSSION

A. Onset of Periodicity

The periodic jetting regime documented in this article is bounded on one side by the onset

of waves and on the other by the formation of bubbles and sputters. Focusing first on the
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FIG. 6. Experimental data illustrating the role of flow rate Q. (a) The regime map as a function

of tube outlet fraction ℓ/d and flow rate Q with d = 4.8 mm. (b) The fundamental frequencies f in

the periodic regime (waves and breaking jet) as a function of flow rate Q and tube outlet fraction

ℓ/d. Conditions with ℓ/d & 1 are repeated with a larger diameter d = 6.2 mm tube. Here the tube

angle is fixed at θ = 30◦. The ∗ region represents the regime of regular bubbling observed at high

tube submersion and low flow rates. The transition from the regular/periodic bubbling regime to

irregular bubbling was not systematically investigated.

transition from the steady cavity to the formation of waves, our data shows that the tube is

never fully submerged (ℓ/d < 1) when this transition takes place (figure 7b). Furthermore,

the amount of tube submersion at the onset of waves decreases with increasing flow rate Q.

This trend is consistent with a shear-induced instability. Indeed, we can develop a falsifiable

model to test the hypothesis that the onset of waves is due to a Kelvin-Helmholtz instability,

rather than other instabilities such as those responsible for the glug-glug in bottles [11].

The Kelvin-Helmholtz instability occurs when there is a velocity difference at the interface

between two fluids [26, 27]. If the velocity difference at the interface ∆U = |U2−U1| is greater
than a critical value, the shear stress will overcome the restoring forces of surface tension

and gravity, amplifying small perturbations of the interface into waves. For an initially flat

interface between two inviscid fluids the threshold velocity is given by

Uc =

(

2
ρ1 + ρ2
ρ1ρ2

√

(ρ1 − ρ2) gγ

)1/2

. (1)

To estimate the instability criterion for the system described in this paper, we relate U2

to the velocity of the gas at the tube outlet and U1 to the velocity of the liquid at the

interface. We assume that this interface velocity U1 is nearly stationary. Indeed, we directly
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measure the liquid velocity U1 to be consistently 2 orders of magnitude lower than the gas

velocity U2. These measurements are obtained by seeding the liquid with micrometric sized

bubbles and tracking the bubble motion near the interface.

For incompressible flow in a confined tube, the relationship between the flow rate Q and

the average gas velocity at the tube outlet is given by U2 =
Q
Ae
, where Ae is the cross-sectional

area of the exiting gas (figure 7a). This area is related geometrically to ℓ/d by

Ae =
d2

8
ζ (ℓ/d) with ζ (x) = 2 arccos(2x− 1)− sin(2 arccos(2x− 1)). (2)

Therefore the average velocity of the gas is given by

U2 = Q

/[

d2

8

{

2 arccos

(

2
ℓ

d
− 1

)

− sin

[

2 arccos

(

2
ℓ

d
− 1

)]}]

. (3)

If the transition from the steady cavity to the wave regime is due to a Kelvin-Helmholtz

instability, then we would expect the transition to occur when the gas velocity U2 is approx-

imately equal to the instability onset velocity Uc. With a large density difference between

the two fluids, as is the case in this study, equation 1 can be simplified, so that the transition

between the regimes would occur when U2 =
√

2 (ρ1gγ)
1/2

ρ2
. Therefore, the predicted transition

can be expressed in terms of the flow rate Q and tube submersion distance ℓ as

ℓ

d
= ζ−1



4
√
2

(

Q

d2

)

√

ρ2

(ρ1gγ)
1/2



 ≈ 1−
(

2
√
2

π

)

(

Q

d2

)

√

ρ2

(ρ1gγ)
1/2

. (4)

These expressions, both exact and the approximate, are plotted in figure 7b. The ap-

proximation can be physically interpreted as the depth at which the transition to waves

would occur in an equivalent square tube. Alongside these theoretical predictions are the

experimental results from figure 6a, nondimensionalized and extended to include even higher

flow rates, as well as additional data taken with the larger diameter tube. With a greater

immersion depth ℓ/d, and thus smaller gas exit area Ae, the flow rate required to induce a

transition to the wave regime is lowered. When the flow rate is scaled following equation 4,

the experimental data for the onset of waves collapse onto a master curve that is consistent

with our model (figure 7b). Therefore our data suggests that the onset of waves for the

partially submerged tube is indeed due to the Kelvin-Helmholtz instability.

Note that the model slightly underestimates the experimental data, likely attributable

to the model’s assumption of a flat static interface and a sharp velocity discontinuity in the
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FIG. 7. Transition for steady cavity to waves. (a) A schematic of the area of the tube outlet

fraction available for the flow of gas. (b) Experimentally measured transition values for two different

diameter tubes are plotted for various tube outlet fractions and non-dimensional flow rates and

compared to theory.

flow profile at the interface. The angle of the tube is included in the analysis through its

effect on the cross-sectional area Ae and the length ℓ = Z/cos θ. However, as noted in the

schematic figure 4b, the flowing gas is also angled and exerts a deforming force on liquid

surface. This force is balanced by gravity and capillary forces acting to flatten the interface,

which gives rise to the steady cavity similar to that previously described for perpendicular

gas flow [1, 2]. As the gas flow rate is increased, the liquid level at the tube outlet decreases

below ℓ due to the cavity (figure 4b). This lowering of the liquid level effectively increases the

gas exit area Ae and requires a higher flow rate Q to achieve the critical velocity Uc and may

explain the rightward shift of the experimental data from the theoretical curve in figure 7b.

The model also assumes gas flow tangent to the liquid interface, based on our experimental

results on the independence of the transition points ℓ/d with θ . 50, we expect the model

to be valid over this range of angles θ as well. A correction factor is not implemented in the

model as the assumption of an initially flat interface is sufficient to capture the underlying

relationship between the transition points, flow rate and the immersion depth, albeit offset

from the experimental data. Based on the similarity between the model and experiments,

corrections also do not seem to be necessary to account for a continuous velocity profile,
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FIG. 8. (a) A time series of high-speed images representing one period of the breaking jet regime.

Here the tube is fully submerged a distance H from the free surface. (b) The high-speed images

from (a) thresholded with the tube masked to provide better visualization of the interface.

even though it is known that the Kelvin-Helmholtz instability is often sensitive to the precise

shape of the gas boundary-layer [27, 28].

B. Breakdown of Periodicity

The transition from a steady cavity to the wave regime marks the onset of periodicity

in the system. With the continued lowering of the tube, the waves form on a well-defined

cavity and focus to form periodic jets. Much of this periodic jetting, including the breaking

jets, occur when tube is fully submerged below the interface (ℓ/d > 1). Yet in these cases,

there appears to be a connected path for the gas to flow from the tube to the atmosphere

(figure 8). However, for sufficiently large values of ℓ/d, this pathway can pinch apart each

period, severing the connection to the surface and creating distinct bubbles. For flow rates

higher than in the periodic bubbling regime (marked by ∗ in figure 6a), the collapse of these

bubbles at the surface produces a cacophony of waves, jets and droplets, which may be best

described as sputtering (figures 5c). For values of ℓ/d > 1, we are able to introduce a new

dimension H = Z − d cos θ; H represents the vertical distance between the top of the tube

outlet and the unperturbed bath liquid surface (figure 8).

Pinch-off at the tube outlet occurs when buoyancy forces overcome capillary forces [29],

which translates roughly to a detaching bubble diameter that is larger than the capillary
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length λc =
√

γ
ρ1g

. Provided that the tube is submerged at a depth below this critical

detaching bubble diameter (H > λc), a bubble can detach from the tube, separating the gas

within the tube from the surrounding atmosphere. Conversely, provided that H < λc, there

remains a conduit for the gas between the tube and the atmosphere. If cavity pinch-off indeed

is responsible for the transition into the bubbling/sputtering regime, then the transition

would be expected to occur at a critical tube depth Z ≈ d cos θ + λc, or equivalently

ℓbubble
d

≈ 1 +
λc

d cos θ
. (5)

Note that this transition is independent of flow rate Q and instead depends on the prop-

erties of the liquid λc, the diameter of the tube d, and θ. This prediction is quantita-

tively consistent with the experimentally observed transitions shown in figure 6a. For these

parameters—λc = 1.48 mm, d = 4.8mm, θ = 30◦—the bubbling/sputtering transition is

predicted to occur when ℓ/d ≈ 1.36. With the larger tube at this angle, the transition is

predicted to be slightly lower, which is consistent with our observations. These comparisons

illustrate that the model captures the effects of flow rate and tube diameter; however, equa-

tion 5 also predicts a dependence on inclination angle θ, which interestingly is not readily

apparent in the experimental data shown in figure 4. For angles θ < 50◦, ℓbubble
d

is predicted

to range from approximately 1.31 to 1.48 for the d = 4.8mm tube. Yet for higher inclination

angles, the predicted transition rapidly diverges from the experimental data, suggesting that

the model is only appropriate for lower inclination angles.

C. Modeling the Fundamental Frequency

With both transitions theoretically defined, we now have a lower and upper bound for the

region of periodicity and can look within the region itself. Our acoustic results indicate that

there is a fundamental frequency f in the periodic regime that increases with increasing tube

depth ℓ and decreases with increasing tube diameter d (figure 6). Here we have focused on

changing the dimension orthogonal to the tube tip ℓ and recorded the effect this change has

on regime transition and frequency. However, specific emphasis must be made of the three

dimensional nature of this phenomenon, especially as it relates to the focusing effect of the

collapsing cavity. The formation of jets from collapsing cavities has long been appreciated

in the oceanography community [30, 31] and has recently also been shown to occur when
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cavities are created by single pulsed air jets [32].

At a right azimuthal angle to ℓ, the tube diameter d plays an important role in setting the

collapse dynamics of the cavity. The collapsing cavity waves not only have to traverse the

vertical distance ℓ but also a spanwise distance set by the tube diameter d. For ℓ/d < 1 there

is an increase in the frequency with increasing ℓ which may be due to an increased restoring

force from the increased cavity curvature (figure 6b). For ℓ/d & 1 there is a limitation, the

distance d, in the vertical distance the waves can travel due to the tube confinement. With

comparable length scales in the vertical and spanwise directions, a focusing effect can be

seen as the waves meet during the collapse of the cavity, creating the periodic jetting seen

in figure 1c-e. Also, the effect of ℓ on the frequency is significantly diminished, reinforcing

the use of d as the dominant length scale in the periodic jetting regime (figure 6b).

Inspection of figure 8 reveals that when the tube is submerged (ℓ/d ≥ 1), there is a

convective time associated with the liquid-gas interface rising and constricting the gas flow

out the end of tube. Indeed, once the liquid nearly constricts the tube opening (∆t = 14ms

in figure 8) this liquid is rapidly cleared. Therefore the time τ for a wave traveling with

speed c to constrict a tube with diameter d can be related to the fundamental frequency f

as

τ =
d

c
=

1

f
. (6)

The waves formed by the collapsing flapping cavity follow the dispersion equation for waves

under the influence of gravity and capillarity at the interface of fluids of infinite depth

(h0 ≫ 1
2
λ),

ω =

√

gk +
γk3

ρ1
(7)

where ω is the angular frequency and k the wavenumber [33]. These waves propagate with

a phase velocity vp given by

vp =
ω

k
=

√

g

k
+

γk

ρ1
. (8)

The cavity waves propagate naturally at the minimum of the phase velocity, when there

is a balance between gravitational and capillary effects. This minimum occurs when the

wavelength is the capillary length of the bath liquid, λc. This wavelength results in a critical

wavenumber

kc =
1

λc

=

√

ρ1g

γ
, (9)
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FIG. 9. The frequency response (figure 6b) for two different diameter tubes plotted using the

dimensionless frequency and the dimensionless flow rate suggested from the proposed mechanism.

The broken lines are visual aids bounding the region of periodicity.

which when used in equation 8 gives the wavespeed

c =

√

g

(

γ

ρ1g

)1/2

+
γ

ρ1

(

ρ1g

γ

)1/2

=
√
2

(

γg

ρ1

)1/4

. (10)

Equations 6 and 10 can be combined and rearranged to reveal that

fd
√
2
(

γg
ρ1

)1/4
= 1. (11)

This combination of parameters can be interpreted as a non-dimensional frequency, or alter-

natively as a Strouhal number, and can be used to predict the fundamental frequency based

on the material and geometric parameters.

To test this prediction, we re-plot the experimental data presented in figure 6b on axes

that correspond to our proposed non-dimensional flow rate and non-dimensional frequency

(figure 9). Data points are bound by the steady cavity and bubble regimes. For values

of ℓ/d & 1 (the darker symbols in figures 6b and 9), values on which our model is based,

the non-dimensional frequency is indeed approximately one, revealing that our experimental

results are consistent with our model predictions. Equally important, the experimental

data for the two different diameter tubes collapse, supporting the frequency scaling and its

dependence on the tube diameter d.
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FIG. 10. Effect of viscosity on frequency response. The dimensionless frequency is plotted against

an Ohnesorge number and indicates the relative contribution of viscosity to the dynamics of the

phenomenon. The fluids used, in order of increasing viscosity, are water and silicone oils of viscosity

10, 100, 1000, 10,000 and 100,000 cSt.

Note that all of the dimensionless groups are independent of viscosity. Viscous effects

can be quantified through the Ohnesorge number Oh ≡ µ1√
ρ1γd

, which indicates the balance

between viscous, inertial and surface tension forces. For the results presented, Oh = 0.03;

because this value is much less than one, the dynamics are likely dominated by inertial

and surface tension forces. This balance reinforces the use of the inviscid Kelvin-Helmholtz

theory [34] and suggests that the fundamental frequency should be independent of liquid

viscosity provided that Oh ≪ 1. To test this prediction, we measure the fundamental

frequency f at three different tube depths in different viscosity silicone oils. Figure 10

gives the dimensionless frequency plotted against the Ohnesorge number. For Oh ≪ 1

the dimensionless frequency is shown to be independent of the Ohnesorge number, and by

extension viscosity. For an Oh ≥ 1 there is a transition to a viscous timescale with the

dimensionless frequency scaling with Oh−1. The results shown in figure 10 further support

the use of the inviscid Kelvin-Helmholtz theory provided that the Oh < 0.3. The use of

inviscid Kelvin-Helmholtz theory for the bath viscosity used in this study is further supported

by previous work [35], which showed the independence of wave frequency and wavelength

below a critical viscosity on the same order of magnitude shown in figure 10.
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V. CONCLUSION

In this paper, we systematically investigate the phenomena arising from steady gas in-

jection through an angled tube at a gas-liquid interface. In particular, we explore a novel

regime in which the stream of gas creates a periodically collapsing cavity in the liquid. This

flapping cavity gives rise to an oscillating jet from which monodisperse droplets can be pro-

duced through the Rayleigh-Plateau instability. Through a combination of experiments and

scaling arguments, we provide evidence that waves, driven by a Kelvin-Helmholtz instability

focus into jets through the periodic collapse of the gas cavity. This periodic jetting regime

is bounded on one side by the onset of the Kelvin-Helmholtz instability and the existence

of a pronounced cavity (ℓ/d ≈ 1) and on the other side by the pinch-off of a conduit that

permits gas to travel continuously from the injection tube to the atmosphere. Within these

bounds, the system oscillates with a fundamental frequency that appears to be set by the

cavity collapse speed and the tube diameter.

The gas-induced cavity waves bear the hallmarks of both a shear induced instability and

jet-drop formation from a collapsing bubble. The combination of these two normally dis-

parate topics in fluid mechanics may help experimentalists and theorists unlock a new class

of liquid-gas oscillators capable of producing highly repeatable events, such as monodisperse

droplets. Although our experiments are restricted to a liquid-gas system, the high frequency

jet drop production may extend to analogous liquid-liquid systems and provide an efficient

means to create monodisperse emulsions. Similarly, the tube-bath setup in this study shares

geometric features with multiphase branched-tube networks, and our scaling results may

provide insight into the creation of certain respiratory aerosols.
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