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The statistical-thermodynamic dislocation theory developed in previous papers is used here in an
analysis of high-temperature deformation of aluminum and steel. Using physics-based parameters
that we expect theoretically to be independent of strain rate and temperature, we are able to fit
experimental stress-strain curves for three different strain rates and three different temperatures for
each of these two materials. Our theoretical curves include yielding transitions at zero strain in
agreement with experiment. We find that thermal softening effects are important even at the lowest

temperatures and smallest strain rates.

I. INTRODUCTION

Our purpose here is to explore use of the thermo-
dynamic dislocation theory [1-5] in modelling deforma-
tions of materials undergoing thermomechanical process-
ing. We look at two sets of high-temperature compression
tests, one by Shi et al for aluminum [6], and another by
Abbod et al for a steel alloy [7]. By making stress-strain
measurements over a range of substantially different tem-
peratures and strain rates, and fitting their results to con-
ventional phenomenological formulas, these investigators
provided guidance for practical applications in materials
processing. Our question is whether we can do better by
using a realistic physics-based theory. We believe that
we can do so and that, in addition, we can obtain basic
information about these materials in this way.

Our new ability to interpret data of the kind pub-
lished in [6] and [7] is a result of the fact that, in its
latest versions [4, 5], the thermodynamic dislocation the-
ory includes a description of yielding transitions. Earlier
versions of the theory were based on data for copper as
shown, for example, in Kocks and Mecking [8] or in Mey-
ers et al. [9]. There, the onset of hardening occurs at a
negligibly small stress corresponding to a negligibly small
density of dislocations, so that one of the central param-
eters in the theory can be obtained directly from experi-
ment. Most stress-strain curves in the literature such as
the ones to be studied here exhibit nonzero yield stresses
near effectively zero strain. With the present theory and
with experimental data of the kind to be used here, these
situations now can be studied systematically. As will be
seen, however, the fact that these experiments were not
carried out with a physics-based theory in mind makes
their interpretation problematic at some places.

The thermodynamic dislocation theory is based on two
unconventional ideas. The first of these is that, under
nonequilibrium conditions, the atomically slow configu-
rational degrees of freedom of deforming solids are char-
acterized by an effective disorder temperature that dif-
fers from the ordinary thermal temperature. Both of

these temperatures are thermodynamically well defined
variables whose equations of motion determine the irre-
versible behaviors of these systems. The second prin-
cipal idea is that entanglement of dislocations is the
overwhelmingly dominant cause of resistance to deforma-
tion in polycrystalline materials. These two ideas have
led to successfully predictive theories of strain hardening
[1, 2], steady-state stresses over exceedingly wide ranges
of strain rates [1], adiabatic shear banding [3, 4], and
Hall-Petch effects [5].

We start in Sec. II with a brief annotated summary of
the equations of motion to be used here. Our focus is on
the physical significance of the various parameters that
occur in them. We discuss which of these parameters are
expected to be material-specific constants, independent
of temperature and strain rate, and thus to be key ingre-
dients of the theory. Shi et al. [6] and Abbod et al [7]
each provide nine different stress-strain curves, for three
temperatures and three strain rates, for aluminum and
steel respectively. As will be seen, this is enough data for
us to use in constructing theories, but these data sets are
not immune to experimental uncertainties.

In Sec. III, we show the data for pure aluminum [6],
describe our methods for using that data to determine the
material-specific parameters, and describe our theoretical
interpretation of those measurements. These analyses are
extended to the steel data [7] in Sec. IV. We conclude in
Sec.V with some remarks about the significance of these
calculations.

II. EQUATIONS OF MOTION

Strictly speaking, the thermodynamic dislocation the-
ory should be written in three-dimensional tensorial no-
tation in order to use it in analyses of plane-strain
compression tests. There is no fundamental reason
why this cannot be done. For example, Rycroft and
Bouchbinder [10, 11] used a simple tensorial version
of the shear-transformation-zone theory [12] in their



moving-boundary analysis of fracture toughness in metal-
lic glasses. Moreover, Fig.1 in [13] shows a diagram of a
plane-strain sample like those used in [6]. Here, a thin
rectangular block under uniaxial compression is shown
bulging at its sides and thinning at its center in addition
to undergoing pure shear. These deformations if actually
as large as shown would slightly affect our interpretation
of the reported stress-strain data. However, a detailed
analysis of those deformations would be well beyond the
scope and needs of this project.

Suppose, for simplicity, that the experimental sample
is a two dimensional rectangular block in the xy plane,
being compressed between two rigid plates parallel to
the x axis. The compressive stress in the y direction
is oyy = —o. If the plates are well lubricated so that
the friction between the block and the plates is negligi-
ble, then o,, ~ 0. For this uniaxial geometry, the stress
tensor is naturally expressed in the z’ 3’ frame of refer-
ence oriented at 45° to the xy axes. In that frame, the

shear stress is 0,7y = 0y, = —0 /2. If the material is
incompressible, then the total elastic plus plastic strain
rate is €,, = —€;; = —¢é. In the rotated frame, the shear

rate is €1y = €y = —é. As usual, we assume that
the elastic and plastic strain rates are simply additive,
e.8. €y = éil,y, + ézl/y, . Then, by convention, we write
Oury! = 2ué§l,y,, where p is the shear modulus and the
factor 2 accounts for the distinction between “true” and
“engineering” strain. Putting these pieces together, we
write & = a p (¢ — éP!), where a ~ 4 is a geometric fac-
tor, and we have dropped the directional subscripts. In
this way we have recovered the one-dimensional notation
used in earlier papers in this series and in much of the
literature in this field.

Now assume that this spatially uniform system is
driven at a constant shear rate ¢ = Q /7y, where 79 =
10725 is a characteristic microscopic time scale. This
motion is driven by the time dependent shear stress o.
Because the system is undergoing steady-state shear,
we can replace the time ¢ by the total strain e so that
To 0/0t — Q 0/0e. Then denote the dimensionless plas-
tic strain rate by q(¢) = 79 ¢ (¢). The equation of motion
for the stress becomes

= 5 (2.1)

The internal state variables that describe this system
are the areal density of dislocations p = p/b* (where b is
the length of the Burgers vector), the effective tempera-
ture ¥ (in units of a characteristic dislocation energy, say
ep), and the ordinary temperature 6 (in units of the pin-
ning temperature Tp = ep/kp, where ep is the pinning
energy defined below). Note that b/\/p is the average
distance between dislocations. All three of these dimen-
sionless quantities, p, X, and 6, are functions of e.

The central, dislocation-specific ingredient of this anal-
ysis is the thermally activated depinning formula for the
dimensionless plastic strain rate ¢ as a function of a non-

negative stress o:

a(e) = /7 exp [_ % o—olor(®]

This is an Orowan relation of the form ¢ = pbv 7y in
which the speed of the dislocations v is given by the
distance between them multiplied by the rate at which
they are depinned from each other. That rate is ap-
proximated here by the activation term in Eq.(2.2), in
which the energy barrier ep (implicit in the scaling of 6)
is reduced by the stress dependent factor e~/°T where
or(p) = pr /p is the Taylor stress, and pug = r u. The
dimensionless number 7 is the ratio of a depinning length
to the length of the Burgers vector, for convenience di-
vided here by the geometrical factor « associated with
the stress . Thus, r should be approximately indepen-
dent of temperature and strain rate. Note that only the
magnitude of ¢ appears in this expression for a local time
scale. Directional information would be included in ten-
sorial equations of motion for stress fields and flow pat-
terns, but not in this expression for a scalar time scale.

The pinning energy ep is large, of the order of elec-
tron volts, so that 6 is very small. As a result, ¢(e) is
an extremely rapidly varying function of ¢ and 6. This
strongly nonlinear behavior is the key to understanding
yielding transitions and shear banding as well as many
other important features of polycystalline plasticity. For
example, the extremely slow variation of the steady-state
stress as a function of strain rate discussed in [1] is the
converse of the extremely rapid variation of ¢ as a func-
tion of ¢ in Eq.(2.2). In what follows, we shall see that
this temperature sensitivity of the strain rate is the key to
understanding important aspects of the thermomechani-
cal behavior.

The equation of motion for the scaled dislocation den-
sity p describes energy flow. It says that some fraction of
the power delivered to the system by external driving is
converted into the energy of dislocations, and that that
energy is dissipated according to a detailed-balance anal-
ysis involving the effective temperature y. This equation
is:

(2.2)

9 _ 74 [ p } (2.3)

=Ky —=— -
Je v(0,5,Q)% ur Q Pss(X)
where pss(Y) = e /X is the steady-state value of j at
given x. The coefficient k; is an energy conversion fac-
tor that, according to arguments presented in [1] and [4],
should be independent of both strain rate and tempera-
ture. The other quantity that appears in the prefactor in
Eq.(2.3) is
- 1 5
v0.5.Q)=(3) - nm(X)]. @4
6 Q
The equation of motion for the scaled effective temper-
ature x is a statement of the first law of thermodynamics
for the configurational subsystem:
X oq
Ak

Oe 2;LTQ(1_%)'

(2.5)
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FIG. 1: (Color online) Stress-strain curves for aluminum
at the small strain rate ¢ = 0.25s ', for temperatures
300 C, 400 C, 500 C shown from top to bottom. The experi-
mental points are taken from Shi et al. [6]
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FIG. 2: (Color online) Stress-strain curves for alu-
minum at the strain rate é = 2.5s71, for temperatures
300 C, 400 C, 500 C shown from top to bottom. The experi-
mental points are taken from Shi et al. [6]

Here, xo is the steady-state value of x for strain rates
appreciably smaller than inverse atomic relaxation times,
i.e. much smaller than 7 !, The dimensionless factor x
is inversely proportional to the effective specific heat cefs.
Unlike k1, there is no reason to believe that ko is a rate-
independent constant. In [5], k2 for copper was found to
decrease from 17 to 12 when the strain rate increased by
a factor of 10%. Since we shall consider changes in strain
rate of at most a factor of 10% here, we shall assume that
Ko is a constant.

The equation of motion for the scaled, ordinary tem-
perature 6 is

0 _ 500 Koo oo
5~ KO G — 5 (0=, (2.6)
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FIG. 3: (Color online) Stress-strain curves for aluminum
at the highest strain rate ¢ = 25s ', for temperatures
300 C, 400 C, 500 C shown from top to bottom. The experi-
mental points are taken from Shi et al [6]

Here, K(0) = /(TP ¢p pa) is a thermal energy conversion
factor. ¢, is the thermal heat capacity per unit mass, pg
is the mass density, and 0 < 8 < 1 is a dimensionless con-
stant known as the Taylor-Quinney factor. As indicated
here, K(#) will be found to be non-trivially temperature
dependent for both of the materials discussed in Secs. ITI
and IV. K, is a thermal transport coefficient that con-
trols how rapidly the system relaxes toward the ambient
temperature Ty, that is, § — 0y = To/Tp. This coeffi-
cient turns out to be too small to be measured for the
situations reported here; but that will not always be the
case. In principle, after long enough times of steady de-
formation, systems must reach steady-state temperatures
determined by the balance between heating and cooling
terms in Eq. (2.6).

IIT. DATA ANALYSIS: ALUMINUM

The experimental results of Shi et al. [6] for aluminum,
along with our theoretical results based on the equations
of motion in Sec. II, are shown in Figs. 1, 2, and 3. These
figures are presented in order of increasing strain rate,
¢=0.255""1 25571, and 25 s~ '. Within each figure are
curves for the three different temperatures 300 C, 400 C,
and 500 C' (blue circles, black triangles, and red squares
respectively) shown from top to bottom.

In order to compute the theoretical curves in these fig-
ures, we need values for five system-specific parameters:
the activation temperature Tp, the stress ratio r, the
steady-state scaled effective temperature xo, and the two
dimensionless conversion factors k1 and k2. We also need
initial values of the scaled dislocation density p(e = 0) =
pi and the effective temperature x(e = 0) = x;, which
are determined by sample preparation — presumably the
same for all samples, but possibly a source of experimen-



tal uncertainty. In addition, we need a formula for the

thermal conversion factor K(6) in Eq. (2.6) which, for
aluminum, we can take to have the linear form

K@):Koﬁ+q1>@—ég, (3.1)

where Tp 0; is a reference temperature, chosen here to be
573 K. The numbers K and ¢; remain to be determined
from the data. Finally, we need a formula for the tem-
perature dependent shear modulus p(T'), which we take
from [14, 15] to be

@) = 2
P = I (T Tr ) — 1)

(3.2)

where p; = 28.8 GPa, D = 3.44GPa, and T; = 215 K.
(A simple linear approximation to this formula analo-
gous to Eq. (3.1) would be completely adequate for our
purposes.)

In earlier papers starting with [1], we were able to be-
gin evaluating the parameters by observing steady-state
stresses 05 at just a few strain rates () and ambient tem-
peratures Ty = Tp 6y, and inverting Eq. (2.2) to find

Oss =T[4/ Pss 7/(907 Psss Q)7 Pss = 6_1/X0' (33)
Knowing o, Tp and @ for three stress-strain curves, we
could solve this equation for Tp, , and X¢, and check for
consistency by looking at other steady-state situations.
With that information, it was relatively easy to evaluate
k1 and ko by directly fitting the full stress-strain curves.
This strategy does not work here because the thermal
effects are highly nontrivial. Examination of the exper-
imental data shown in the figures indicates that almost
all of these samples are undergoing thermal softening at
large strains; the stresses are decreasing and the temper-
atures must be increasing. Even the curves that appear
to have reached some kind of steady state have not, in
fact, done so at their nominal ambient temperatures.

To counter this difficulty, we have resorted to large-
scale least-squares analyses. (A preliminary discussion
of this procedure has been presented by two of us, Le
and Tran [16].) That is, we have computed the sum
of the squares of the differences between our theoreti-
cal stress-strain curves and the experimental points, and
have minimized this sum in the space of the unknown
parameters. We have explored options of omitting some
of the data, fitting the theory to just those portions of
the data that seemed most reliable. For example, we
have looked to see what happens if we omit the yield
points in this calculation on the assumption that they
are most sensitive to variations in sample preparation.
Our results appear to be robust. We find: Tp = 2.40 x
10* K, r = 0.040, xo = 0.249, k1 = 0.97, ko = 12, p; =
0.0035, ¥; = 0.224, Ky = 7.0 x 1075, ¢; = 0.0257, and
Ko = 0. So far as we can tell, our values of Ky and ¢
are consistent with values of the Taylor-Quinney factor
B of the order of unity or less. For simplicity, we have

350

Temperature (degreesC)
|

w
3

250

1.0 15 20
Strain e

o
o
o
6]

FIG. 4: (Color online) Temperature as a function of strain
for each of the nine stress-strain tests shown for aluminum
in the preceding figures. The initial ambient temperatures
are 300 C, 400 C' and 500 C' (blue, black, and red) as seen on
the left axis. Each group of three curves is for strain rates of
¢=025s""1 25571 and 25571, from bottom to top.

set @« = 1 in Eq. (2.1) because the slopes of the initial
elastic parts of the stress-strain curves are too large to
be meaningful here. Note, however, that with a@ = 4
and r = 0.04, the ratio of the depinning length to the
length of the Burgers vector becomes 0.16, which seems
physically reasonable.

The agreement between theory and experiment seems
to us to be well within the bounds of experimental uncer-
tainties. Even the initial yielding transitions appear to
be described accurately by this dynamical theory. There
are only a few visible discrepancies. For example, the
experimental data in Fig. 1 for ¢ = 0.25s7!, T = 500C
exhibit a small, abrupt increase in the stress at about
€ = 0.8, which may indicate some kind of instrumental
problem. Also, the stresses for 7' = 400 C in that fig-
ure are slightly below those predicted by the theory, and
there is a smaller discrepancy of the opposite sign on the
curve at é = 2.5s57!, T =300 C in Fig. 2. Nothing about
these results leads us to believe that there are relevant
physical ingredients missing in the theory.

To complete our analysis of the Shi et al. data for pure
aluminum, we show in Fig. 4 our computed temperatures
as functions of strain for each of the nine stress-strain
curves shown in the preceding figures. Here, we may be
finding an interesting discrepancy between our interpre-
tation and that of Shi et al.. Those authors say that “In
the high strain rate tests, particularly at low tempera-
tures, temperature rises of up to 30 K were observed at
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FIG. 5: (Color online) Stress-strain curves for steel at

the small strain rate é = 0.1s7!, for temperatures
850 C, 950 C, 1050 C' shown from top to bottom. The ex-
perimental points are taken from Abbod et al [7]

300" © o

N
al
o
T
|

[any
a1

0

0
0

)
(=]
=]
>
>
>
>
>

=
(@]
o
T
I

Stress o- (M Pa)
a
[l

o
T
)

0.0 0.2 0.4 0.6 0.8
Strain e

FIG. 6: (Color online) Stress-strain curves for steel at the
strain rate ¢ = 1.0 s, for temperatures 850 C, 950 C, 1050 C
shown from top to bottom. The experimental points are taken
from Abbod et al [7]

the start of steady state.” We do see temperature rises of
roughly that magnitude. However, as stated above, we
do not think that these tests have reached steady state,
especially not the one at the highest strain rate and low-
est temperature shown at the top of Fig. 3, which clearly
is still softening at large strain. Also, as shown in Fig. 4,
we predict that the larger temperature increases occur at
the higher ambient temperatures because our data anal-
ysis tells us that the thermal conversion factor K(6) in
Eq. (2.6) is larger there.

Shi et al. [6] also show stress-strain curves for alu-
minum alloys Al-1%Mn and Al-1%Mg. We have tried to
analyze these data sets using the same techniques that
we used for pure aluminum but have concluded that this
is not a useful exercise. The main problem is that the ex-
perimental results show anomalously increasing stresses
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FIG. 7: (Color online) Stress-strain curves for steel at

the highest strain rate ¢ = 10s~!, for temperatures
850 C, 950 C, 1050 C shown from top to bottom. The ex-
perimental points are taken from Abbod et al [7]

at large strains, which Shi et al. attribute to breakdowns
of the lubrication layers between the samples and their
instrumental supports. We have tried to guess which por-
tions of the experimental curves might be unaffected by
the lubrication problem; but we have not succeeded in
obtaining plausible, self-consistent results.

IV. DATA ANALYSIS: STEEL

As a second example of thermal processing data, we
turn to the Fe-30% Ni austenitic alloy studied by Ab-
bod et al [7]. According to those authors, this alloy is
a good model material for studying hot deformation of
the austenitic phases of carbon-manganese steels. For
simplicity, we refer to it henceforth simply as “steel.”
We have digitized the experimental data from their Fig.
1 and show it here in Figs. 5, 6 and 7. In analogy
to our presentation of the aluminum data in Sec. III,
these figures are shown in order of increasing strain rate,
¢=0.1s5""% 1.0s7!, and 10s~!. Within each figure are
curves for the three different temperatures 850 C, 950 C,
and 1050 C (blue circles, black triangles, and red squares
respectively) shown from top to bottom.

In analyzing this data, we have used the same least-
squares method that we used for aluminum. We find:
Tp = 459 x 10*K, r = 0.122, xo = 0.284, K; =
0.958, ko = 5.43, p; = 0.0023, x; = 0.215, and Ko = 0.
The one interesting difference is that a slightly nonlinear
thermal conversion factor of the form

K@) =K* e T7/Tr? (4.1)
seems to produce a better fit to the data than the linear
form used previously. We find K* = .00879 and 7™ =
8390 K. The activated form of this equation is suggestive
but probably not meaningful; note that we use it only
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FIG. 8: (Color online) Temperature as a function of strain
for each of the nine stress-strain tests shown for steel in
the preceding figures. The initial ambient temperatures are
850 C, 950 C' and 1050 C' (blue, black, and red) as seen on the
left axis. Each group of three curves is for strain rates of
¢=0.10s""% 1.0s7%, and 10 s}, from bottom to top.

over a narrow range of temperatures. We also use the
following approximation for the shear modulus (derived
from data given in [17]):

1(0) = 85,970 — 33.6 Tp 6 + 0.0009 (Tp 0)2.  (4.2)

Once again, the results of this analysis seem to be
within the bounds of experimental uncertainties. The
one visible discrepancy is for the top curve in Fig. 5, for
¢ = 10s~! and ambient temperature 850 C, where the
experimental data drops below our prediction at a rela-
tively small strain.

The potentially most serious discrepancy pertains to
the strain dependence of our predicted temperatures,
shown here in Fig. 8 in analogy to the temperatures for
aluminum shown in Fig. 4. Supposedly the same tem-
peratures are shown by Abbod et al [7] in their Fig.2;
but those temperatures are not measured directly. Ap-
parently they are computed from the stress-strain data,
perhaps using a temperature-independent thermal con-
version factor. Their orders of magnitude and growth as
functions of strain rate at fixed ambient temperatures are
similar to our results; but their dependence on the ambi-
ent temperatures themselves is qualitatively different.

Note finally that, with » = 0.122 and o = 4, the ratio
of the depinning length to the length of the Burgers vec-
tor becomes 0.48 which, if true, would imply an interest-
ingly nontrivial atomic-scale structure for the interaction
between dislocations.

V. CONCLUDING REMARKS

On the whole, these results seem to us to be quite satis-
factory. Note that we now are using the thermodynamic
dislocation theory not just to test its validity but also
as a tool for discovering properties of structural mate-
rials. For example, we did not know at the beginning
of this investigation that thermal softening would play
so important a role even for the samples subjected to
very slow deformations at moderately low temperatures.
One of the main reasons for the success of this theory —
as has been emphasized here and in earlier papers — is
the extreme sensitivity of the plastic strain rate to small
changes in the temperature or the stress.

To put this point in perspective, note the difference be-
tween the expression for the dimensionless plastic strain
rate ¢ in Eq. (2.2) and the phenomenological approach
adopted by Shi et al. and Abbod et al. Both of these
groups of investigators base their analyses on the Zener-
Hollomon parameter which, in the present notation, is
Z =éexp(Tz/Tp0), where T is an activation temper-
ature analogous to Tp. They express their results for
different stresses, strains, strain rates and temperatures
as functions of Z which, in analogy to Eq. (2.2), means
that their strain rate ¢ is proportional to the activation
factor exp (— Tz /Tp6) multiplied by some function of
the stress. By fitting their data in this way, they find
Tz/Tp =2 0.79 for aluminum and 1.7 for steel. In other
words, their estimated activation energies are of roughly
the same magnitude as ours.

One crucial difference between our approach and theirs
is that, in Eq. (2.2), the depinning activation barrier is
itself a function of the stress and the dislocation den-
sity. In this way, the thermodynamic dislocation theory
is qualitatively different from conventional theories dat-
ing back to Peierls and Nabarro in which dislocations are
perceived to be gliding independently through imperfect
lattices, resisted by barriers whose dynamical properties
are independent of the dislocations themselves. That is
not what is happening in the thermodynamic disloca-
tion theory. The nonlinear sensitivity to thermal vari-
ations that appears in the present investigation is just
a mild version of the same dynamical mechanism that
produces yielding transitions and adiabatic shear bands,
which have been beyond the reach of conventional dislo-
cation theories.

Even more importantly, the conventional theories are
not truly dynamic. For example, in a fully dynamic the-
ory, an activation factor such as the one occurring in the
Zener-Hollomon formula should mean that an increase in
temperature produces an increase in strain rate which, in
turn, increases the rate of heat generation. This is the
nonlinear feedback loop that produces the thermal soft-
ening seen in this paper and the runaway instability in
the theory of adiabatic shear banding [4]. But it is not
easy to see how such an equation of motion could be in-
corporated into conventional phenomenological descrip-
tions of dislocation enabled plasticity. We believe that



we have found better ways to make progress in this field
by focussing on the nonequilibrium statistical thermody-
namics of these systems.
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