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Force distribution in a granular medium subjected to an impulse loading is investigated in exper-
iment and computer simulations. A novel experimental technique is developed to measure forces
acting on individual grains at the bottom of the granular sample consisting of steel balls. Discrete
element method simulation is also performed under conditions mimicking those in experiment. Both
theory and experiment display exponentially decaying maximum force distributions at the bottom
of the sample in the range of large forces. In addition, the simulations also reveal exponential force
distribution throughout the sample and uncover correlation properties of the interparticle forces
during dynamic loading of the granular samples. Simulated time dependence of coordination num-
ber, orientational order parameter, correlation radius, and force distribution clearly demonstrates
the nonequilibrium character of the deformation process in granular medium under impulse loading.

PACS numbers: 45.70.-n, 61.43.-j, 81.05.Rm, 83.80.Fg

I. INTRODUCTION

Mechanical properties of a granular medium differ from
those of solids, liquids or gases. The unusual behavior
is caused by a complex mechanism of redistribution of
forces inside the granular material upon application of
external load [1–3]. This force redistribution is transmit-
ted through the sample via interparticle contacts. Unlike
ordinary crystalline or polycrystalline solids, the inter-
particle contact forces are inhomogeneously distributed
throughout the granular sample, resulting in abnormally
large forces experienced by the walls of the container sur-
rounding the medium, which might result in their irre-
versible damage. Therefore, the characterization of the
force distribution in the granular medium is of great prac-
tical importance [4, 5].

Several aspects of interparticle interactions in granu-
lar systems such as distribution of forces between par-
ticles, and force correlations have been studied previ-
ously under static and slow shearing loads. For exam-
ple, experimental photoelastic visualization [1, 4, 6–10]
and computer simulations of the stress field distribution
[11–14] have showed that the inter-particle forces are in-
homogeneously distributed in the volume of the sample
forming so-called “force chain” network, which can span
the entire system. A series of experiments employing
static compression [2, 3, 15, 16] and slow shear [6, 9, 17]
demonstrated that the distribution of inter-particle forces
has a bimodal character: it displays exponential decrease
for forces larger than the mean force, whereas it dis-
plays either a small peak or a plateau for the forces be-
low the mean force. These features of the distribution
function, confirmed by numerous 2D and 3D simulations
[11, 12, 18–21], are due to the structure of the force net-
work, which consists of two sub-networks. A “weak” sub-
network is formed of the particles experiencing the forces
below the mean force and a “strong” sub-network – of
the particles with forces larger than the mean force, the
latter being a small fraction of all forces [11]. The distri-
bution of the contact forces has long-range correlations

along the force chains, and short-range correlations – in
all other directions [14].

Several theoretical approaches have been proposed in
the past to interpret inter-particle force distributions
[22–26]. However, most of them considered only gran-
ular systems under static conditions and measured the
forces using sensitive carbon paper [2, 3, 15], photoelastic
[4, 8, 27], and wavelength-scanning interferometric [28]
methods. Sensors at the bottom of a container have also
been used for force measurements [6, 16]. However, due
to substantial physical dimensions, the measured forces
were averaged over large number of particles. Similarly,
tactile sensors were used in experiments with sand, which
measured the forces exerted on a cluster of grains rather
than on individual particles [29, 30]. A number of exper-
iments probing forces in 2D dynamic processes have been
performed using samples in massifs consisting of photoe-
lastic [1, 6, 7, 9, 31] and rubber discs [32]. In recent
years, several techniques have been developed to mea-
sure inter-particle forces directly inside 3D granular sys-
tems including confocal imaging [33, 34], refractive index
matched imaging [35, 36] and X-ray tomography [37, 38].
The first two techniques are purely optical as they use
transparent particles. However, all three-dimensional ex-
periments performed so far have been conducted under
pure static conditions.

This work bridges the gap in force characterization
in the granular medium by investigating the force dis-
tribution in samples subjected to impulse loading. It
is expected that the underlying phenomena under such
strongly non-equilibrium conditions will be completely
different from those observed during static or steady dy-
namic Couette shearing deformations [1]. The experi-
ments measuring the forces at the bottom of the granular
sample are supplemented by extensive computer model-
ing which allowed to uncover force distribution inside the
granular sample.
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Figure 1. Sketch of the experimental setup used to generate
the impulse load of the granular medium.

II. EXPERIMENTAL METHOD

A new method for measuring forces under impulse
loading experienced by individual particles at the bot-
tom of the container has been developed and applied to
perform detailed force characterization. The schematic
of the experimental setup is shown in Fig.1. It consists
of the thick wall cylinder with inner diameter of 60 mm
mounted on a massive metal plate, a piston of mass 1.538
kg, and a plunger of mass 1.394 kg, all made of steel. The
cylinder is filled with the steel spherical beads of 3±0.01
mm diameter. The plunger moves along the guides to
impact the piston, generating an impulse load of stress
exerted on granular medium. To smooth the impulse
loading, a rubber gasket located at the top surface of the
piston is used. The gasket is also used to suppress high
frequency parasitic oscillations in transverse directions
due to unavoidable roughness of the plunger’s surface
or a small deviation of the plunger from the perfectly-
vertical direction of motion. The piston consists of two
parts with thinner, 3 mm thick part being in contact with
the sample.

The sample sandwiched by these two parts measures
the total force acting on the granular sample. Both parts
of the piston move along the guides to establish one-
dimensional motion of the piston, its displacement being
recorded by a photo sensor. At the bottom of the cylinder
three smaller pistons with diameter of 3 mm are mounted
to transmit the load from the beads to the sensors. This
setup allows to measure the normal force experienced by
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Figure 2. (Color online) Time dependence of (a) the force ex-
erted by the piston on the granular medium, (b) the displace-
ment of the piston, and (c) the corresponding forces exerted
on the piston-sensors.

a single bead at the bottom of the granular sample.
The piston-sensor assemblies are located at different

distances, at 10 mm, 20 mm and 30 mm from the in-
ner vertical wall of the cylinder. The experimental set
comprises 250 runs, each involving impact of the gran-
ular sample by the plunger dropped from the height of
0.5 m to exclude the plastic deformations of particles at
larger heights. The granular sample for each run is pre-
pared by placing 7223 beads into the cylinder, followed
by their compaction by the piston to achieve the same ini-
tial volume and grain density. For each individual run,
3 records of time evolution of forces were recorded using
piston sensors, resulting in 750 force vs time records.

III. EXPERIMENTAL RESULTS

The typical time dependence of the driving force, dis-
placement of the piston and force on a grain measured by
the piston-sensors at the bottom of the sample are shown
in Fig.2. A set of 250 F (t) records, averaged over three
sensors at the bottom of the sample, is used to build the
force distribution, shown in Fig.3, by reading the maxi-
mum force at the maximum of the impulse F (t), see Fig.
2. The dimensionless force f is the force F normalized by
the mean force: f = F/ < F >. For large forces, f > 1,
the distribution function P is of exponential form:

P ∝ e−βf , f > 1 (1)

where exponent β is 1.0± 0.1, see the fitting line in Fig.
3. The coefficient β is less than that found in static
experiments, β = 1.1− 1.8, where glass beads were used
[2, 3, 15, 16]. The small force distributions f < 1 shown
in the inset are different from those for large forces f > 1.
Here we have used smaller binning width to obtain more
accurate distribution in this aria.
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Figure 3. (Color online) The probability density P of maxi-
mum dimensionless forces f exerted on the grains at the bot-
tom of the sample measured in the experiment and compared
to that obtained from simulation. The insert shows small
force distributions. The experimental data are averaged over
all three sensors. The exponential fit of experimental data by
expression (1) is shown as well.
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Figure 4. (Color online) (a) Probability density P (f) of max-
imum interparticle forces in interior of the granular sample.
The exponential fit of P (f) for large forces f > 1 is shown
as the straight line; (b) Probability density P (f) at various
times 0, 1.14, 2.28, 3.42, 4.56, 5.70, 6.84 ms.

IV. COMPUTER SIMULATIONS

Simulation of dynamical loading of the granular sam-
ples is performed to gain insight into the response of
the granular sample to the dynamical loading not only
at the bottom of the sample as in experiment but also
throughout the volume of the medium. The discrete el-
ement method (DEM), originally developed by Cundall
and Strack [39], is used to obtain force distributions. The
simulation setup closely follows the experiment by using
the same particles’ size and shape. The interparticle in-
teractions are described by the Hertzian law, and the
friction – by the Coulomb model. The friction coefficient
µ = 0.1 was measured experimentally in this work us-
ing a method proposed by Blair et al. [2]. The elastic
properties of steel beads are described by steel’s Young’s
modulus E = 211.0GPa and the Poisson ratio ν = 0.32.
The dynamic loading of the sample is simulated by using
experimental force vs time, Fload(t), dependence exerted
on the granular sample by the piston. This dependence
represented by the maximum force < Floadm >= 3450 N
and the width < τload >= 1.65 ms obtained from all 250
measurements described above, is presented in Fig.2a.

The series of ten simulations are performed for differ-
ent initial packings of granular massif with the height
h = 61.7 mm, which is the same as in the experiment.
The direct simulation of granular response to drop weight
would not provide a proper comparison between sumua-
tion and experiment. The complication arises from the
presence of the rubber gasket used in experiment result-
ing in a complex response, which is difficult to reproduce
in simulations. Therefore, to provide a meaningful com-
parison between experiment and simulations, the time-
dependent force Fload(t) measured in experiment is used
as the driving stimulus in the simulations. The aver-
age number of particles at the bottom of cylindrical con-
tainer is 248. As in the experiment, the time dependence
of forces acting at the bottom of the sample displays a
pronounced maximum. The calculated maximum force
distribution is in good agreement with experiment, see
Fig.3, the exponent β in the part of distribution for large
forces, f > 1, being 1.04± 0.15.

The distribution of interparticle maximum forces P (f)
in the interior of the sample is also calculated and shown
in Fig.4a. The exponential decay of P (f) at large forces
(f > 1) is more pronounced compared to that mea-
sured at the bottom of the sample (Fig.3), the expo-
nent being β = 1.70 ± 0.02. The simulation also al-
lows us to obtain the evolution of the force distribu-
tion with time, see Fig.4b. There is slight time de-
pendence of the distribution, but more importantly, all
of the distributions obtained at different times exhibit
exponential decay, which results from large-scale corre-
lations existing in the system. If it was not the case,
the Gaussian distribution would be observed in the ab-
sence of the correlations. The dependence of coefficient
β on time is presented on Fig.5a. To assess the devia-
tion from exponential dependence, the force distributions
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Figure 5. (Color online) (a) The exponent β of large-force
distribution (a) in the bulk of the sample; (b) The coefficient
γ in the square term responsible for deviation on exponential
dependence at various times.

are fitted using the exponent of quadratic function of f :
P ′(f) = exp(α − βf + γf2), where the quadratic term
γf2 is responsible for the deviation. The results of fitting
show that the coefficient γ is small for the entire duration
of the impulse loading, see Fig. 5b.

To study the time evolution of correlation properties
of the granular system, the following correlation function
is calculated:

C(r) =
< FikFjlδ(ri − rj − r) > − < Fik >< Fjl >

< Fik >< Fjl >
,

(2)
where Fij is the absolute value of the force exerted on the
i-th particle by the k-th particle, ri is the radius vector
of the i-th particle, and the averaging is performed over
particles located at the distances l > 4r0 from the wall to
avoid its influence (r0 is the average radius of the grains).
The correlation radius ζ is obtained from C(r) as

C(r) ∝ e−r/ζ . (3)

The calculated correlation radii ζ as a function of time
shown in Fig.6d, demonstrates that its changes are not
completely in sync with the varying load. Fig.6c also
displays the time dependence of the average coordina-
tion number Zc and the orientational order parameter
S, which determines the average orientation of the in-
terparticle forces. S is calculated following procedure in
reference [40]:

,

S =
2

L

∑
i

l2i cos
2 θi − 1, (4)

where li is the distance between centers of two contact-
ing particles, θi is the angle between interparticle force
and vertical line, L =

∑
i l

2
i is the total square length

of interparticle distances li. The parameter S = 1 if all
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Figure 6. (Color online) Time dependence of (a) loading force
Fload, (b) coordination number Zc, (c) orientational order pa-
rameter S, (d) reduced correlation radius ζ/r0.

forces are vertical, S = 0 if forces are randomly oriented
or all directed at 45° and S = −1 if forces are horizontally
oriented.

The time dependence of average coordination num-
ber Zc on time is very similar to that of loading force
Fload, except for interval t < 0.5 ms at the beginning of
the loading process, where Zc decreases sharply, in con-
trast to gradual increase of Fload. In addition, both the
orientational order parameter S and exponent β change
significantly as well. As a compaction wave propagates
from the driving piston inside the sample, it breaks the
balance resulting in a reduced number of neighbor par-
ticles as well as the average coordination number. The
time dependence of local coordination number measured
in several points along the sample, demonstrate a sharp
reduction of Zc over time, see Fig. (7a), whereas its
average over the entire sample changes more gradually.
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Figure 7. (Color online) (a) Time dependence of coordination
number Zc at five locations along direction of wave propaga-
tion (z is the distance from the piston) as well as averaged
over the entire sample. (b) Relative number of small forces
and (c) relative number of large forces calculated using N∗ -
the number of particles that are not in contact with the walls.

Comparing Zc(t) at various localions, we can make con-
clusion that at t > 0.4 ms the coordination number is
distributed almost uniformly over the sample. Fig. 7,
panels (b) and (c) display the time dependence of rela-
tive number of small and large forces: it is obvious that
the number of large interparticle forces decreases and the

number of small particles increases resulting inpartial dis-
appearance of strong” sub-network. These observations
indicate that the granular medium is changing its inter-
nal packing structure at the beginning of the loading.
The fact that the time dependence of the major param-
eters characterizing microstructure of the sample does
not follow the time evolution of the loading force clearly
demonstrates the non-equilibrium response of the granu-
lar system subjected to dynamic loading.

V. CONCLUSIONS

In summary, this paper presents joint experimental
and theoretical investigation of the force distribution in
the cylindrical granular medium subjected to an impulse
load. The original experimental setup was devised to
measure local distribution of the forces at the bottom of
the sample. It was found that for large forces (f > 1) the
distribution function attenuates exponentially, similar to
that measured in static experiments, but with smaller ex-
ponent β. By performing discrete element method simu-
lations under experimental conditions, a good agreement
between experimental and simulated maximum force dis-
tributions at the bottom of the sample is found. The
simulations also provide additional details not available
from experiment, including time evolution of the proba-
bility density inside the granular medium as well as spa-
tial correlation radii as a function of time. The distri-
bution functions of interparticle forces inside the sample,
as shown in simulation, also decay exponentially at all
times during the loading process. The time evolution of
parameters characterizing microstructure of the granu-
lar medium (coordination number Zc, orientational or-
der parameter S, correlation radius ζ, force distribution
exponent β) during the dynamic loading clearly indicate
the non-equilibrium nature of the deformation response.
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