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We study the effect of hindered aggregation on the island formation process in a one and two-
dimensional point-island model for epitaxial growth with arbitrary critical nucleus size i. In our
model, the attachment of monomers to pre-existing islands is hindered by an additional attachment
barrier, characterized by length [,. For [, = 0 the islands behave as perfect sinks while for [, — co
they behave as reflecting boundaries. For intermediate values of [, the system exhibits a crossover be-
tween two different kinds of processes, diffusion-limited aggregation (DLA) and attachment-limited
aggregation (ALA). We calculate the growth exponents of the density of islands and monomers for
the low coverage and aggregation regimes. The capture-zone (CZ) distributions are also calculated
for different values of ¢ and [,. In order to obtain a good spatial description of the nucleation pro-
cess, we propose a fragmentation model which is based on an approximate description of nucleation
inside of the gaps for 1D and the CZ’s for 2D. In both cases, the nucleation is described by using two
different physically rooted probabilities which are related with the microscopic parameters of the
model (z and l,). We test our analytical model with extensive numerical simulations and previously
established results. The proposed model describes excellently the statistical behavior of the system

for arbitrary values of [, and i = 1, 2 and 3.

PACS numbers: 68.55.ap,68.35.-p,81.15.A4a,05.40.-a

I. INTRODUCTION

Growth processes provide interesting non-equilibrium
phenomena which have been the subject of several stud-
ies in recent years. It warrants emphasizing that the im-
portance of growth processes goes beyond fundamental
research. For example, controlling the atomistic mecha-
nisms involved in thin-film growth is crucial in the pro-
duction of nano and microelectronic devices [1].

Typically, every growth process requires mass trans-
port, nucleation and aggregation. In the conceptually
simplest implementation, thin-film growth on a substrate
under vacuum, mass transport amounts to surface diffu-
sion over the substrate. Considering homogeneous nu-
cleation on a defect-free surface, aggregation happens
through the attachment of the growth units—the dif-
fusing atoms or molecules, that we will call monomers
henceforth—to the clusters that have nucleated.

One of the characteristics of thin-film growth is that
monomers are continuously—and randomly—deposited
onto the substrate either from a beam or a vapor. Nucle-
ation then takes place all over the substrate in such a way
that a typical length scale—the average distance £ be-
tween nuclei—can be defined. If we call D the monomer
diffusion coefficient, monomers spend on average a time
L2/ D diffusing between clusters. In many situations, at-
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tachment to a growing cluster simply requires that a dif-
fusing monomer hops to a site adjacent to the cluster
and forms a bond with it. In other situations, more com-
plicated processes may be required, such as a chemical
reaction, or a conformational change in the attaching
monomer. Subsuming all these processes into an addi-
tional activation barrier, one can define an “attachment
rate” 1/7,. Then, aggregation is either limited by dif-
fusion if D/L? < 1/7,, or by attachment in the oppo-
site limit. The two regimes can thus be called diffusion-
limited aggregation (DLA) and attachment-limited ag-
gregation (ALA) [2-5].

In the DLA regime, attachment can be assumed to be
instantaneous, since 7, vanishes compared to the diffu-
sion timescale £2/D. As mentioned above, in certain
systems attachment to a cluster may be slowed down as
though an additional energy barrier were present. This
barrier might be due to strain, whose paradigmatic ex-
ample is nucleation and growth of two-dimensional (2D)
Ge islands on a Pb overlayer covering a Si(111) surface
[6-9]. Attachment barriers might also be used to model
the functioning of a catalyst, as in the case of graphene
on metals [10-13] and oxides [14]. On metals, individ-
ual graphene islands spread at a constant rate, implying
that their growth is controlled by the attachment rate
of carbon to the islands edges. Since carbon comes from
cracking a precursor in a reaction catalyzed by the metal,
this particular kind of ALA process is often classified as
reaction-limited aggregation (RLA). Finally, nucleation
hindered by attachment barriers has been observed in
metal (111) homoepitaxial systems [15, 16] and for Fe



deposition on graphene [17].

Depending on experimental conditions, both DLA and
ALA can be observed in the same system. A crossover be-
tween DLA and ALA has been suggested in 3D colloidal
systems [18, 19] as well as in organic thin-film deposition
[20, 21]. (However, as proposed in [22], in organic sys-
tems the crossover may be due to other mechanisms than
ALA))

Initial studies in thin-film nucleation, both theoreti-
cal [3, 23-28] and experimental [29-32], focused on the
scaling behavior of the average cluster density, N, as a
function of the deposition rate F. Theory predicted that
N ~ F% with a “growth exponent” « which depends
only on the size i of the critical nucleus, and on the aggre-
gation regime. Later on, the distributions of the cluster
sizes, or island size distributions (ISD), were investigated
by using semi-empirical expressions obtained by fitting
numerical results from kinetic Monte Carlo (kMC) simu-
lations [23, 24, 33]. Additionally, exact, though implicit,
expressions requiring as input the size-dependence of the
capture kernels were found [34, 46]. Most of the studies
about the ISD focus on growth in the DLA regime; how-
ever, recently the exact scaling form for the ISD in the
ALA regime was obtained [39].

More recently, both theory and experiments have fo-
cused on another feature of the aggregation process, the
so-called capture-zone distribution (CZD). (See [35] for
reviews and [40] for recent results.) The CZ is the region
of the substrate that is closer to the given aggregate in
its interior than to any other aggregate. Thus, monomers
deposited within a capture zone diffuse with the highest
likelihood to that aggregate. They are essentially equiv-
alent to Voronoi polygons determined by the centers of
mass of the aggregates.

The functional forms of the CZD are not explicitly
known in the experimentally relevant case of a 2D sub-
strate, but two of the present authors (PE) have con-
jectured that the CZD can be approximated—at least
in the experimentally important region near the central
peak, away from the tails—by a generalization of the
simple analytic expression known as the “Wigner sur-
mise” [36, 37]. This is a 1-parameter family of functions,
whose parameter S has been conjectured to be related to
the critical nucleus size ¢ and to the growth exponent «
through = i/a [21, 36].

This conjecture has stimulated numerical work in 2D,
as well as analytical studies on 1D model, which are
amenable, if not to exact solutions, at least to detailed
and controlled approximations.

Up to now, most theoretical investigations have been
limited to DLA growth. Of the few studies considering
the ALA regime, arguably the most prominent for 2D
islands is Ref. [25]; more recently, Ref. [39] presents sig-
nificant results on point islands. In the present paper,
we report the first detailed analysis of a 1D model which
exhibits a crossover between DLA and ALA. We inves-
tigate the model using numerical kMC simulations, rate
equations, and by computing analytically the CZD. We

also study the “gap length distribution” (GLD), the dis-
tribution of the distances between aggregates. The ideas
used in the 1D model are extended to describe growth
on 2D systems. This situation is experimentally more
relevant than the 1D case but is also more complex and
does not allow the explicit calculation of many quantities
[6-14].

The model presented here is meant as a minimal model,
from which we can learn general properties of systems
which exhibit a crossover between different nucleation
regimes. Attachment-limited aggregation is obtained
through an additional energy barrier, ¢,, lowering the
attachment rate of monomers diffusing on the substrate
towards a cluster edge. The various scaling regimes are
studied in the framework of rate equations for monomers,
sub-critical, critical, and stable clusters. The detailed
behavior of the system is investigated by solving nu-
merically the fragmentation equation for the GLD in
the framework of the so-called “point-islands model”,
which is described below. The CZD and the GLD are
computed, and then compared with an analytic—though
approximate—treatment. Investigation of the CZD, in
particular, are motivated not only for intrinsic theoreti-
cal interest but also because of their usefulness for real
systems of technological relevance [22, 35, 38]. Moreover,
the intermediate, crossover region has a rich and complex
behavior.

As expected from [25, 39], we found that the presence
of an attachment barrier, €,, associated with the hin-
dered aggregation process changes the growth exponents
of the densities of islands and monomers. Additionally, €,
modifies the GLD and CZD. This dependence, in princi-
ple, allows us to determine the barrier from experimental
data. The model proposed in this paper is probably the
simplest to implement numerically and, therefore, is an
excellent testing ground which can be used to improve
the analysis of experimental data.

II. MODEL DESCRIPTION

In epitaxial growth, monomers are deposited onto a
substrate at a constant rate F; the temperature T of
the substrate is usually selected in such way that the
evaporation of deposited monomers can be neglected. As
usual, the critical nucleus size i is defined as the size of
the largest unstable island. This means that the decay
time of a stable island would be longer than the typi-
cal time that a monomer requires to become attached to
an island. Note that the critical island size depends on
temperature. An island with s monomers which is stable
at some temperature may become unstable at a higher
temperature.

In the proposed model, the monomers diffuse (with
diffusion constant D) until they are captured by an island
Only the islands consisting of ¢ + 1 or more monomers
are completely stable. Islands smaller than 7 + 1 are
unstable, i.e., the monomers belonging to such islands



can diffuse away with diffusion constant D. For the sake
of simplicity, we adopt the point island model, where the
size of an island is just the number of monomers which
have attached to it but all are on the same lattice site;
for more information see Refs. [23, 28, 33, 41-49].

In our growth model, monomers must hop onto an al-
ready occupied site in order to be incorporated. If the
occupied site is a stable island, the diffusion process is
hindered by an additional attachment barrier €, which
reduces the diffusion constant to D’. The associated
characteristic length I, = exp(e,/kpT) — 1 is usually
defined to measure the asymmetry between D and D’
[50, 51]. One can show that D and D’ are related by
D/D’ =1,+1 [52]. This diffusion model implies that the
ratio between the probability Ps to move the monomer to
a stable island and the probability Py to a site with fewer
than 4 4+ 1 monomers is given by Py/Ps = exp(e,/kpT).
Thus, the probability to move to a stable island is given
by Ps = 1/[ns + (2d — ng) exp(e./kpT)], where ng is
the number of stable islands which are next neighbors
of the monomer and d is the dimension of the system.
Consequently, Py = 1/[ng exp(—e¢./kpT) + (2d — ng)].
The assumption that the extra barrier only acts when
monomers attach to a stable island implies that nucle-
ation is independent of [,. One can justify the alterna-
tive assumption that an attachment barrier also exists
for unstable clusters [39].

The evolution of this system is frequently described in
terms of the coverage 8 = F't, where t is the time. Since
we neglect the evaporation of monomers previously de-
posited, 6 is the number of monomers on the substrate.
Two important quantities commonly used to describe the
time evolution of the point-island model are the total
density of free (diffusing) monomers, Ny, and the den-
sity of islands with size j, N;. On the other hand, for 1D
we define the spacing distribution functions, p(™ (£)dL
as the probability that for an island at the origin there is
another island at a distance between £ and £ + dL, with
the condition that there are n additional islands inside
the gap between them. The structure of the point-island
system is usually described through the gap length dis-
tribution function p(®)(£) and the capture zone distribu-
tion P(£) = 2p(M)(2£) [41]. In a 1D system, the capture
zone of an island is simply the distance between the mid-
points of the gaps to the left and to the right of the island
[23, 41, 45]. The scaled spacing is £ = L/ (L), with (L)
the average of £. Then, the scaled spacing distributions
are given by

p(0) = (L) p™(L(L)) and P(0) = 2pV(20). (1)

In the 2D case, the substrate is not divided into gaps, and
the structure formed by the islands is more complex than
that in 1D. Instead of the gaps, the Voronoi cell/capture
zone (CZ) of an island is defined by all the points on the
substrate that are closer to the island than to any other
island on the substrate.

III. RATE EQUATIONS

The time evolution of both the total density of [sta-
ble| islands N =}, ; N; and of free monomers N; can
be studied by standard rate equations in the mean field
(MF) approximation [27]. From Appendix A, N; and N
obey

le_ . D i1 D
and
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respectively. The first term on the right side on Eq. (2)
represents deposition of monomers in units of F', the sec-
ond one the nucleation of new islands, and the last one
relates to the capture of monomers by preexisting islands.
As usual [23, 46], o, is the capture coefficient (or “ker-
nel”) for critical islands while o is the capture kernel for
stable islands. In general, o, is a function of tempera-
ture, but also of the critical nucleus size i. However, in
our point-island model the bond energy inside an unsta-
ble island vanishes, and it is effectively infinite inside a
stable island. As a consequence, o, is independent of 1,
and can be chosen constant.

There is, however, a complication. The nucleation pro-
cess (i+1)A — I, where A is an adatom and I an island,
has an upper critical dimension d. = 2/i [3]. Conse-
quently, for a 1D system mean-field theory breaks down
when i = 1. As we will recall below, one knows how to
include corrections through the capture kernel o,,. When
i = 2, there will be logarithmic corrections [3] that can
be neglected for our purposes. When i > 2, o, can in our
case be assumed to be a constant, as discussed above. For
a 2D system, o, is coverage independent (neglecting log-
arithmic corrections). The aggregation process A+I — I
has d. = oo; therefore, o is a function of time for all val-
ues of i. Note that the dimensional dependence of Egs.
(2) and (3) is contained in the capture kernels.

The different behaviors can be characterized in terms
of the density of islands N as a function of the coverage,
6 (or equivalently the deposition rate F).

A. Growth exponents in 1D

From classical nucleation theory for the aggregation
regime, if nucleation and aggregation are diffusion lim-
ited, N oc 0%, where B = 1/4 fori=1and 8 = 1/(2i+3)
for i > 2 [3]. We derive the corresponding scaling rela-
tions for the case of attachment-limited aggregation.

In the low-coverage, L, regime, the density of free
monomers is much larger than that of islands (V7 > N).
In this regime, Eq. (2) reduces to dNy/df ~ 1, and the
density of monomers is given by N; =~ 6. To determine
the density of islands, it is necessary to calculate o,,. The



case i = 1 and I, = 0 was studied in Ref. [46], where o,
was calculated by estimating the density of monomers at
a distance x from a given monomer, n;(x), in the aggre-
gation regime. From nq(z), it is possible to calculate the
incoming flux to the monomer, 2 D dn;(z)/dx|,_,, which
by definition is also given by ¢, D N;. This process leads

to
AF \?
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Even though Eq. (4) was calculated by using high-
coverage arguments, Amar et al. [46] found that it is
adequate even in the L regime.

This result also applies for ¢ = 1 and arbitrary at-
tachment barriers because in this case the predominant
process is also the island formation which, given our as-
sumptions, does not depend on l,. From Egs. (3) and
(4) it is easy to find

4 (D 3 5
(2 .

For i > 1, o, can be replaced by a constant (o) which
depends on neither D/F nor [,; see Ref. [53]. For
i = 2 there are logarithmic corrections, which we neglect.
Then, for any value of [,, N behaves as

1 D
~ o2

~ 9i+2 6
i+2 " F (6)

Consistent with our assumption, in the L regime there is
no dependence on l,. Numerical results (not shown) from
kinetic Monte Carlo (kMC) simulations of a 1D point-
island model support this statement: for low 6 the be-
havior of N and N; is the same for [, = 0 and [, = 250.

In contrast to the L regime, the aggregation, A, regime
depends strongly on [,. In this regime, the densities sat-
isfy N > Nj and dN; /df < 1 because the dominant pro-
cess is the attachment of monomers to preexisting stable
islands. Thus, Eq. (2) can be written as

D
1—FO'SN1N%O; (7)

consequently Ny ~ (D o, N/F)~1. Inserting the latter in
Eq. (3) yields

AN  , (F\' )
—_— = —_— s N 5
where 02 is the capture kernel for unstable clusters in

the aggregation regime. We now extend the method
of Ref. [23] to calculate o4 for arbitrary I, and i. In
the continuum limit, the stationary density of diffus-
ing monomers at position z inside a gap with length L,
ny(z, L), is given by the solution of

d*ny(z, L)

D
dx?

+F=0, 9)

with I dny (2, £)/dz|,_, = n1(0,£) and
lo dny(z,L)/dz|,_, = -—ni(L,L£). Note that for
l, = 0 the stable islands are perfect traps, while for
l, — oo they behave as reflecting boundaries. The
solution of Eq. (9) can be found easily:

nl(x,ﬁ):%(laﬁ—kﬁx—ﬁ). (10)

The total flux of monomers into a stable island is given
by

_dm(z, L)
=0t dx

1 <dn1(x, L)

Js:ﬁl dx

x=0> , (11)

where dny(z,L)/dx|,_,+-) represents the derivative of
ni(x, L) at the right [left] boundary of the island. By
using Eq. (10), we find

FECZ

X 12
D (12)

s =
where £LY% = (LT 4+ £7)/2 is the length of the island’s
capture zone (CZ), LT and £~ being the lengths of the
gaps to the right and left of the island, respectively. The

total number of monomers inside a gap with length £ is
then

L 2 3

I L°F  FL
= d = R —
ne /0 xni(z, L) 5 5D

(13)

implying that the total number of monomers inside a gap
for [, > 1 is larger than that same number for [, < 1, by
a factor 61,/L > 1. The total density of free monomers
can be calculated from

N, =N /dynyp(o)(y), (14)

which implies

Flo (65)  F ()

MN=—7% 12DN’

(15)

where ¢, = NL is the scaled length of the gap and (---)
is the average taken over the ensemble of islands. Defin-
ing the scaled length of a capture zone oy = NLZ,
averaging Eq. (12) over all islands and using Eq. (15), it
follows that in the case of vanishing barriers, I, = 0,

05 =12(lc;) N/ (£3) = a1 N, (16)

with (s.,) = 1 and a; ~ 7.5. Similarly, in the limit of
strong barriers, [, > 1,

o5 =2 <€cz>/la <€§> = bl/laa (17)

For i = 1, o, is then given by Eq. (4) while oy is
given by Eq. (16) or (17) depending on the value of .
Accordingly, in the limit {, < 1, N; and N take the form
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FIG. 1. Time evolution of a) N1 and b) N for D/F = 5 x 10° and large but finite attachment barriers I, = 250. Three different

values of 7 were considered: 1, 2 and 3. See text for discussion.
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and N(0) ~ <89F> (18)
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respectively. Last expression for N was obtained previ-
ously in Ref. [3]. On the other hand, in the limit I, > 1,

os is given by Eq. (17); hence, integrating we find

30AFQI2]7 LF2  \3
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(19)
The densities in the case ¢ > 2 with vanishing barriers

can be calculated similarly by taking o, = o as a con-

stant and assuming that o, = a;V has the same form as
Eq. (16). Thus, after integration it is found

| i1 1/2
Dia; ¢ 0a)’

i

N(0) ~ <°1Fi0)w and Ny (0) ~ (W>M

(20)
where ¢; = (2i + 3)o2.
Finally, in the case ¢ > 2 and strong barriers, we take
os="b;/l, and o, = af. After integration we obtain

[,F? \ 72
and Np(0) =~ (D%-Q) ,
(21)

i 7i+1 iJer
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with ¢o = (i + 2)o2.

The quantities a; and b; are numbers defined anal-
ogously to a; and by, respectively. They depend on ¢
through the i-dependence of the probability distributions
used in the averaging process.

For ¢ = 1, the crossover coverage 6. between the L
and the A regime can be found for [, < 1 and [, > 1,

0. la <1 la>1
i=1 (F/D)l/S li/lB(F/D)S/IB
i>2 (F/D)S/(2i+5) [la (F/D)Q]l/(“‘?’)

TABLE I. Crossover coverage 8. for different values of ¢ in the
regime of weak and strong attachment barriers. In all cases
there are numerical factors of order unity.

by equating Eq. (5) to Eq. (18) [l, < 1], and Eq. (5)
to Eq. (19) [l, > 1], respectively. It is straightforward
to compute the crossover coverage 6. for i > 2 by an
equivalent procedure. The results are shown in Table I.

The corresponding island densities scale as:

F % i+2 Ia %

(22)

for I, < 1 and [, > 1, respectively.

Therefore, the crossover coverage and the correspond-
ing island density also increase with [,: as a matter of
fact, when [, — oo attachment is completely suppressed,
and the aggregation regime disappears altogether. How-
ever, for i = 1 and typical values of D/F ~ 10%, one
would need I, ~ 108 in order for 6. = 1.

For large barriers, there is a region in the crossover
where the island density is proportional to the coverage,
as follows. At early deposition times (small coverage),
aggregation is negligible:

0sD'N1N(0) < 0,(i + 1)DNIHL (23)

In this regime deposition is balanced by nucleation

D .
1—(i+ 1)0quf“ ~ 0, (24)



Exp| i i=1 | i=2 | i=3

la/(s): KT [>1|<1|>1|<1|>1|<K1|>1
a | 5tz |am|1/4]1/3]2/7|1/2(1/3(3/5
ar | 5t || 1/2]2/313/7|1/2(1/3(2/5
B | stm |as|V/4|1/3]1/7|1/4(1/9(1/5
B | 575 |55 |-1/2]-1/3|-2/7|-1/4]-2/9|-1/5
Egs. 18 |19 | 20 | 21 | 20 | 21

TABLE II. In the aggregation regime we define the exponents
according to N o< (D/F)™*0” and N; o< (D/F)~**0"1. *For
la < (s), the entries for general i do not apply for ¢ = 1.

then, from Eq. (3) the density of monomers can be writ-
ten as

F 1/(i+1)
N~ |— 25
! [(i + 1)0uD} (25)
Consequently, the island density satisfies
1D 0
N=xo,NiT'—=0= (26)

F~ i+l

A summary of the scaling exponents of the densities
of monomers and islands, N; o« (F/D)* §% and N o
(F/D)* 0" in the A regimes can be seen in Table II. To
evaluate the exponents we used Egs. (18) to (21), and
we assumed that o} and b; depend on neither D/F nor
la.
Figure 1 illustrates the behavior of N; and IV in kMC
simulations of the point-island model, as a function of
the coverage for D/F = 5 x 105. The panels exhibit log-
log plots of the free monomers (left) and island density
(right) for a large but finite attachment barrier. Straight
lines are drawn in each panel according to the power-
law exponents predicted by the rate equation analysis for
the corresponding values of [, and of the critical nuclei.
Crossovers between the L and A regimes can be identified
as the coverages at which these straight lines cross each
other, for each value of i. Excellent agreement was also
found for the case of vanishing attachment barriers (not
shown).

As expected from Egs. (2) and (3), in the L regime the
exponents do not depend on [,. This is a consequence
of our assumption that nucleation is independent of [,.
In the A regime, for a given coverage, N increases with
l, because each stable island acts as reflecting boundary
favoring the nucleation of new stable islands. In the quite
unphysical limit [, — oo, islands can only nucleate, but
cannot grow in size beyond i + 1.

The validity of Eq. (26) was also corroborated by nu-
merical simulations (not shown).

B. Growth exponents in 2D

For the 2D case, the growth exponents can be cal-
culated following an analogous procedure to that used

in the 1D case. However, the 2D case is intrinsically
simpler because, if we neglect logarithmic corrections,
the capture coefficient o, can be taken as a coverage-
independent constant for all values of i. From Egs. (2)
and (3), the evolution of N and Ny in the L regime is
given by Ny ~ ¢ and

Do .
N~ —% pit2 2
Fi+2)" (27)

By assumption, the early-time evolution is independent
of the aggregation barrier.

For the A regime with zero and weak barriers, Eq. (7)
is satisfied, leading to [43]

o 2/(i+2) ,
Ny (D> g—1/(i+2), (28)
and
F\/+2) 4
N <D> g1/(1+2), (29)

For strong barriers the monomers need many attempts
to be incorporated into a stable islands favoring the for-
mation of new islands. As in the 1D case, at early de-
position times (small coverage), aggregation is negligi-
ble and deposition is balanced by nucleation implying
N =~ Z._%l. This regime lasts until Eq.(23) breaks down,
which happens at a i-dependent critical coverage Ggl)
obeying aleN(ng)) ~ oy(i + 1)(ls + 1)Ni™, so that
using Egs.(25) and (26), and letting o, =~ 0, = 1, as well
as D/D' =1, + 1, yields

) , ] r i/(i+1)
0 ~ (I, + 1)(i + 1)0+2/G+D (D) . (30)

We can estimate 93) for the values D/F =5 x 106, lg =
250 used in our simulations; we find 9&1) ~ 0.71 and
9&2) ~ 0.11 for 7 = 1 and 2, respectively. This implies,
at least qualitatively (since we set o5/, = 1) that the
regime, in which the island density is proportional to
the coverage, becomes harder to observe as the critical
nucleus size i increases, for a given value of [,. In other
words, we predict that the same 6. will be observed for
i =1 and 2 when [, is approximately 7 times larger for
i = 2 than for ¢ = 1, with our choice of parameters.
This prediction is well borne out by our simulations, as
discussed below. ‘

The condition 1 > 6 > 61" defines the aggregation (A)
regime. In this regime, the relation

D
1——=0sNi1N =0 (31)

F
holds. However, in 2D the attachment coefficient o,
depends on both [, and N if aggregation is attach-
ment limited. Indeed, o acquires a dependence on the



length of the island perimeter, which in turn scales like
Ly = 1/\/N (since in the aggregation regime the av-
erage distance between islands Ly is the only relevant
length scale.) As a consequence, both vanishingly small
and very large barriers can be described by letting

la
o5 =0 (1 + ﬁN) (32)
the free monomer density N; take the form
F la
Ny =~ W (1 + £N> (33)

where Ly = 1/v/N. The second term in the parenthesis
on the right side of Eq. (33) describes the action of the
barrier at the perimeter of an island of typical linear size
R ~ L. The latter holds in the aggregation regime.
Inserting (33) into (3) yields

PG
for I, < Ly, and
o 2i/(i+3)
N~ <D> (35)

for l, > Ly.

Eq. (33) does not hold, however, for point islands, since
the latter have, by definition, a boundary of vanishing ex-
tension. Eq. (33) becomes in this case Ny ~ Ay (14 L),
and the same growth exponent as in Eq. (34) is found for
any value of the attachment barrier.

The predicted power-law behavior of V; and N is con-
firmed by our kMC simulations for i = 1, 2 and 3 (not
shown) and for various attachment barriers. Our results
agree with those reported in Ref. [39]. The point-island
model turns out to be not appropriate to describe the
crossover between DLA and ALA in 2D, if one only con-
siders the behavior of the island density as a function of
F. We will show, however, that the CZD strongly de-
pends on the attachment barrier in 1 and 2D even for
the point-island model.

IV. SPATIAL DESCRIPTION OF NUCLEATION
A. Fragmentation model in 1D

Both the spacing (gap) distribution functions between
islands (L) and the capture-zone distribution P(L)
have relevant physical information about the nucleation
process. We restrict our studies to the aggregation
regime, where there is a quasi steady-state. A good de-
scription of the nucleation inside the gaps is required
to calculate p(©) (L) and P(L). Following Ref. [41], let

Q(z, L) be the joint probability density that a given new
nucleation occurs at position z inside a gap of length L.
Of course x < L; otherwise Q(x, L) = 0. Let g, (x) be
the probability density that a given nucleation occurs at
position z inside a gap of any size. Then

wio) = [ T dLQ ). (36)

Similarly, the probability density ¢, (£) that a given nu-
cleation occurs anywhere inside a gap of length £ is given
by

L
4 (L) = / dx Q(x, L), (37)

Finally, the probability density that a nucleation occurs
at position z in a gap of length £ under the condition
x=xz/L<1is

P = / T AL LQL L), (38)

Note that pX(x) can be interpreted as the average nu-
cleation probability density over the system of islands.
An analytical expression relates the gap-size distribution
p9(z) and Q(, L):

gdp(o) (0)
i

+2p0(0) = —qc(0) +2¢.(0);  (39)

for additional information see Refs. [23, 41]. By using
Eq. (39) and an approximation for Q(z, L), one can cal-
culate p(®)(s). Several analytical solutions for Eq. (39)
with simple fragmentation kernels pX(x) can be found in
Refs. [57, 58]. In particular, it is well established that the
left tail of the distribution p(®)(¢) depends on the frag-
mentation kernel pX(x) while the right tail depends on
qc(¢). In Refs. [57-59] it was shown that for large ¢

pO(0) o =2l (40)

for some constant ¢ > 0, and ~ is given by ¢7 =
qc(0)/p®(¢). On the other hand, for small ¢

PO (0) oc £ (41)

with pX(x) = x* (a1 +azx + -+ ).

However, an integro-differential equation like Eq. (39)
is generally hard to solve analytically or numerically.
Nevertheless, Eq. (39) can be solved easily in a statis-
tical way, even for complex functional forms of pX(x);
see Refs. [23, 41]. While Eq. (39) can also be solved us-
ing a self-consistent method [60], the statistical method
allows one to determine directly all spacing-distribution
functions, p(™ (¢), defined in Sec. II.

In the spirit of Ref. [41], it reasonable to propose

Qe.£) = ol £) 0 (),



where
a- [ T acw(e) yO (L), (43)
0

w(L) is proportional to the rate of nucleation inside a
gap of size L, i.e., proportional to the number of nucle-
ations inside a gap per unit time. On the other hand,
p© (L) is the size distribution of the gaps and (z, L)
is the probability of nucleation inside a single gap. In
the fragmentation approach, the information about the
nucleation process is contained in p(z, £) and w(L). We
have chosen p(z, £) and w(L) as fundamental quantities
to describe nucleation because they have been studied
for different values of ¢ and l,, see Ref. [51]. The next
section is devoted to the calculation of these quantities.

1. Mean Field (Uniform Nucleation) Approzimation (MF)

In the MF approximation, the probability of nucle-
ation at position z inside a gap with length £, p(z, £),
is assumed—as in the Walton relation [61]—to be pro-
portional to n(z, £)*!, with nq(z, £) given by Eq. (10)
23, 41, 59):

ny(z, L)1
fo'c dzni(z, L)L

with 7 + 1 the minimum number of monomers required
to form a stable island. Inserting ni(x, £) from Eq. (10),
one can calculate the integral in Eq. (44) explicitly for
arbitrary ¢ and [,

o, L) = (44)

£ - .
/ dzny(z, L) = [L (41, + D)3 F(by, ba, bs), (45)
0

with
F(by,ba,bs) = (B [4ba,b3,b3] — B [1b1,b3,b3]), (46)
where BJ,-,-,] is the incomplete beta function, b1 2 =

1F(1+ 41,1/,41)_1/2 and b3 = 2+ 4. In the simplest case,
i =1, p(x, L) takes the form

22— L(l,+x 2
ol 0) = o Lot
(L24+10L1,+3012)

Note that for I, = 0, we recover the established result
p(z, L) =30 (2? — Ca:)2 /L5 [23, 41]. For the case [, —
00, the dependence on z disappears, and p(z,£) = 1/L.
The total nucleation rate of a single gap with size L,
w(L), is proportional to the integral in Eq. (45). After
some algebra, we find that w oc £2713 for £ > [, while
w o< L2 for £ < 1,. Additionally, for i = 1, using the

integral in Eq. (45), w(L) takes the form

2
() > o7
Then, for zero barriers (I, = 0) we recover the well-known
result for i = 1, w(L) o L% [23, 41]; for large barriers
w(L) o I2£3. The attachment barrier increases the nu-
cleation rate inside gaps.

L3(L2+10L1, +301%).  (48)

2. Castellano and Politi approzimation (CP)

In the Castellano-Politi (CP) approach, the unnormal-
ized probability of nucleation at position n inside a gap
with size L, g(n, L), is given by

G(n, L) = O(n;t +1). (49)

t=0

where ®(n;t) is the probability of nucleation inside a gap
at the position n and time ¢, see Refs. [51, 62-64]. The
total nucleation rate w(L£) inside a gap with size £ can
be calculated from Eq. (49):

! ()] S bl G0

where 7.5 = L/[(12D)(L + 61,)] is the average time
that a single monomer spends inside a gap and 74y =
1/(FL) is the typical time between consecutive deposi-
tions. In Eq. (50) the factor F' £ represents the number
of monomers arriving into the gap per unit time, the
factor inside square braces is the probability to find 4
monomers at the time of the (i + 1)-th deposition and
the last factor is the conditional nucleation probability
given that there are ¢ + 1 monomers inside the gap, see
Ref. [51]. CP [62-64] showed that in the limit of large
gaps and for i = 1, w(L) =~ 0.4F? L*/D for zero and weak
barriers, w(£) ~ 0.5 F%2 £31,/D for strong but finite bar-
riers, and w(L) = (F £)~*! for infinite barriers. For large
values of [, and arbitrary ¢, one can calculate the nucle-
ation rate. Following Refs. [51, 52], for large gaps w(L)
can be written as

w(L) oc FiFLE L2 (51)

In Ref. [51], w(L£) was calculated from Eq. (50) by
solving Eq. (49) numerically. The results agree with the
ones given by Eq. (51) in the limit of large [,. In Table III
we summarize the results, using the CP approach, for
the exponent v in w(£) o LY presented in Ref. [51].
The results show that for ¢ > 3, CP’s approach gives the
same 7y values as the MF approximation, even for small
or zero attachment barriers. In order to understand this
result, we recall that the dynamics of ¢ + 1 monomers in
d = 1 can be interpreted as that of a single monomer in
dimension d = i + 1. Some properties of random walks
such as recurrence, number of visited sites, etc. , depend
on d. The behavior of 7 seems to be a consequence of
this fact. The results shown on Table ITI suggest a critical
dimension d. = 3 (i = 2). In fact, the non-integer value of
~ for ¢ = 2 seems to be related to the typical logarithmic
corrections that appear when the dimension of the system
is equal to d..

As reported in Refs. [41, 42], we anticipate corrections
to these v values. First of all, in our system we have
an ensemble of gaps, and each gap has a nucleation rate
which depends on its length. Second, the CP approach



L>1, L<l,

v | CP |MF |CP (2i+1) |MF (i+2)
i=1| 4 | 5 3 3
i=2|6.875| 7 5 4
i>3| 2i+3 2i+1 i+2

TABLE III. Exponent v of the nucleation rate in 1D in the
CP and MF approximations [51]. The MF values of v are
i+ 2 and 2i + 3 for I, > L and L > [,, respectively. For
L > lq, CP and MF essentially coincide for ¢ > 2 (v = 2i+ 3)
with small discrepancies for i = 2. However, for i = 1 CP
approach gives v = 4 while MF gives v = 5.

assumes that when the (i +1)* monomer arrives, the av-
erage monomer density profile has reached its stationary
state. This is not true for large gaps because they have
faster nucleation than smaller ones. Consequently, the
average monomer density profile does not have sufficient
time to reach its stationary state given by Eq. (10).

3. Phenomenological Model (PM)

In the MF approach, Eq. (42) is completely determined
by Egs. (44) and (45). The MF expressions give good re-
sults for arbitrary ¢ and small values of [, but fail for large
values of the attachment barrier [41, 62—64]. On the other
hand, while Eq. (42) can be evaluated in CP’s method
by using Eqs. (49) and (50), there are no explicit expres-
sions for p(n, L) or w(L) for general i and I,. Hence, to
make progress we adopt a simpler model which uses some
results from both the MF and CP approaches. First, the
MF approximation suggests a polynomial approximation
for pX(x). An advantage of this simplification is that
solutions of Eq. (39) have been thoroughly studied for
this kind of kernel; see Sec. 6 in Ref. [57]. For arbitrary
values of ¢ and [,, it is generally reasonable to propose

pX(X) =aip X+ -+a;41 Xi+1+' . -+a2(i+1) X2(i+1). (52)

where the a; are unknown coefficients which depend on
l, and ¢. Taking into account the following properties of

PX(x):
L p*(x) = pX(1 = x) (symmetry)
2. fol dx pX(x) = 1 (normalization)

minimizes the number of fitting parameters. A simple
calculation shows that, for [, > 0, there are just i fit
parameters in Eq. (52). Furthermore, for I, = 0 and
arbitrary 7 there are no fitting parameters, and pX(y) is
equivalent to that obtained from Eqs. (38) and (42) in
the MF approach, pX(x) = ax*t(1 — x)"*!, with the
constant a determined by the normalization condition.
This implies that in Eq. (52) a; = 0 for j < ¢ + 1 while
for j > ¢+ 1 the a; are binomial coefficients (times a);
e.g., pX(x) = a(x? —2x® + x*) fori = 1.

Second, we propose

w(ﬁ) ~ £ with 7(£> _ {’Yex_:l, lf€>£c (53)

Vexs if £ <4,

where 7., is an integer exponent close or equal to the
one given by CP’s method, and /. is a phenomenological
critical scaled size for the gaps. Eq. (53) captures the
lower nucleation-rate exponent for large gaps. We used
this approach successfully to describe the nucleation pro-
cess for the case i = 1 and [, = 0 [41]. In fact, the choice
v =4 for £ < 1.7 and v = 3 for £ > 1.7, with an appro-
priate description of p(x, L), gives excellent results for
both p(®(¢) and P(¢) [41]. Henceforth, we will refer to
this approach, embodied in Eqgs. (52) and (53), as the
phenomenological model (PM).

B. Fragmentation model in 2D

The functional forms of the CZ distribution in the A
regime, for arbitrary dimension and critical-nucleus size
with [, = 0, have been the subject of recent discussion
and some controversy [36, 37, 45, 54-56]. However, as
far as we know, almost nothing has been said about the
case of hindered aggregation (I, > 0) [21]. The structure
formed by the islands in 2D is more complex than that in
1D, thwarting analytical calculation of many quantities.
In the 2D case it is necessary to describe the nucleation
inside capture zones instead of nucleation inside gaps.
Following Ref. [65], let ¢°(A) be the probability density
to put a new center within a Voronoi cell having a scaled
area A. Following Eq. (53), we propose for the 2D case
the analogue of w(L) for 1D

[
A =%

He
where jis is the ¢! moment of P(A). In Eq. (54) it
is assumed that nucleation occurs inside capture zones
rather than inside gaps, which are ill-defined in 2D . The
exponent ¢ determines the large-A4 tail of the CZD, [66].
For instance, ¢ = 1 and ¢ = 2 imply exponential and
Gaussian decay, respectively. Additionally, ¢"(r,.A) is de-
fined as the probability density that, for a particular cell
with scaled size A, the new center is located at a scaled
position r with respect to the center of the preexisting
cell. For simplicity, just the isotropic case is considered,
inviting the introduction of the physically-motivated ex-

ponent §:

P(A), (54)

q"(r, A) ~1°,

However, the slope of the monomer density, n(r), van-
ishes along the boundaries of the CZ. A simple way to
accomplish this goal for the point-island model is to pro-
pose

r=|r|. (55)

fo<r<kR,

5
(e, A) ~ T 56
a(rA) { if kR, <1< R, (56)

(k R.)°,



where 0 < k < 1 is a constant, and R, = (A/7)'/? is the
average [scaled] radius of the CZ.

Note that in this fragmentation model, the probability
to put a new center inside a cell depends only on the cell
itself, regardless of the positions of neighboring centers
or the areas of their surrounding cells. The simplest case
corresponds to ¢ =1, 6 = 0, and k = 1. These param-
eters imply ¢"(r, A) «x 1/A4; thus, every empty point of
the lattice has the same probability to receive a new cen-
ter. It is well accepted that, in this case of homogeneous
nucleation, the CZ can be well described by the gamma
distribution [67]:

o a—le—a.A (57)

PA) ~ Ia)

where a = 7/2 (in 2D). This framework has been used
to describe the CZD for several systems [65].

Previous work (see [65]) has shown that the power ¢
controls the small- A behavior of the CZD P(A), although
how this precisely occurs remains unknown. In [65] anal-
ysis of the DLA (I, = 0) regime led to the conjecture that
6 = 1 for critical nucleus size i = 1. Here we extend the
conjecture to § = ¢ for i > 1, testing it with numerical
simulations. In contrast, for large barriers nucleation oc-
curs at random positions and the CZ distribution should
be the same as for a Poisson point process, i.e., P(A)
is given by Eq. (57). As mentioned before this implies
¢ =1 and d = 0 regardless the value of i. Consequently,
we can neglect the spatial dependence on the density, i.e.,
ny(r) ~ n with n a constant. Thus, the probability of
a nucleation inside a particular CZ depends only on its
size because ¢°(A) ~ [drrni™t ~ A = ¢ = 1. Addi-
tionally, the probability to have nucleation at a distance
r from the center is the same for all points inside the CZ,
so that 6 = 0.

For zero and weak barriers in the aggregation regime,
numerical evidence suggests 1.5 < ¢ < 2 for all values
of i; see the insets in Fig. 5 and more details in Refs.
[54, 56).

In Ref. [65] for zero barriers it was proposed § =1 for
i = 1 because nq(r) grows linearly close to stable islands.
For general ¢ we propose § = i. As far as we know, the re-
lation between ¢ and ¢ in P(A) ~ AS remains unknown;
however, it is clear that § controls the small-A tail of the
CZD.

V. RESULTS
A. CZD and GSD for 1D

Now we show several examples illustrating our phe-
nomenological approach. In the numerical simulations
we use D/F = 5 x 10% and § = 0.25. First, consider
the cases with ¢ = 1. For [, = 0, according to the CP
method v, = 4 (see Table III), and we found empirically
L. = 1.7; the results are shown in Fig. 2. As shown in

10

Fig. 2(a), in this case a barrier with I, = 10 is strong
enough to change considerably the fragmentation kernel
pX(x) compared with the case of zero barriers. Conse-
quently, the attachment barrier also changes the func-
tional form of p(®)(¢) and P(¢) (not shown). Next we
consider ¢ = 1 with a strong barrier [, = 250. Conse-
quently, 7., = 3 and we found ¢, = 2.65. The com-
parison between the PM and the numerical simulation is
shown in Fig. 2. The insets show the first four spacing
distributions in log-log plots. The PM describes the tails
of the distributions.

Figures 3 and 4 show the results for ¢ = 2 and 3, re-
spectively. In all cases, the agreement between numerical
results for pX(x), p® (¢) and P(¢) and the ones given by
the PM is good. Even higher spacing distributions are
well fitted by our model (see insets). Figures 3 (a) and
4 (a) show the numerical results for the fragmentation
kernel, pX(x), for i = 2 and 3. In both cases, the numer-
ical data are also well fitted by Eq. (52) and arbitrary
lo. Additionally, for I, = 0 the MF approach for pX(x)
becomes a better approximation as i increases.

For zero barriers we found 7er = 4, Yex = 5, and
Yew = 7 for ¢ = 1, 2, and 3, respectively. These expo-
nents are in agreement with the ones reported in Ref. [42],
where 4.130 < 7ep < 4.383, 5.364 < 7ep < 6.112, and
6.094 < e, < 7437 for ¢+ = 1, 2, and 3, respectively.
However, the exponents for ¢ = 2 and 3 used in the PM
are different from the ones given by CP’s approach. This
is not an unexpected result: as mentioned earlier, the as-
sumption that nq(x, £) has reached the stationary state
at the time of the (i 4 1)*" deposition is not true for large
gaps. The failure of this assumption is more pronounced
as i increases. For large gaps w(£) oc L7 with 4 an expo-
nent which increases with ¢, i.e., the higher the exponent
the larger the difference between nucleation rates of large
and small gaps. For a given coverage (6 = 0.25 in Figs. 2
to 4) the density of islands decreases as ¢ increases. For
instance, N(0.25) is about, 0.1, 0.03 and 0.01 for ¢ = 1, 2
and 3, respectively. Then, the average gap length is ten
times larger for ¢ = 3 than that for ¢ = 1. Thus, we can
expect that the CP approach gives good results for ¢ = 1
but fails for i = 2 or 3 due the large average gap length.

For a given value of i and large values of [,, the expo-
nent 7., decreases and pX(x) becomes flatter, i.e., the nu-
cleation events are more uniformly distributed along the
gap. For zero and weak barriers, the absorbing bound-
aries decrease the probability of finding particles near
gap edges compared with lattice sites near the middle
of the gap. Consequently, the probability of nucleation
near gap edges also decreases, so that its maximum value
is at the middle of the gap. In the case of strong bar-
riers, the density of particles is practically flat because
the monomers need many attempts before being incor-
porated into an island. Consequently, the probability of
141 monomers encountering each other is practically the
same for all lattice sites, i.e., nucleation events are more
uniformly distributed than in the case of weak barriers.
Furthermore, pX(0) = pX(1) = 0 for all finite values of [,.
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FIG. 2. Case i = 1: (a) Fragmentation kernel pX(x), (b) gap size distribution p(®(£), and (c) capture zone distribution p* (¢)
for a 1D system. The parameters used in the PM are . = 1.7, ey, = 4 for [, = 0, and ¢. = 1.75, e, = 3 for [, = 250. For
lo = 10, p© (¢) and p¥ (¢) (not shown) differ little from those for I, = 250. The insets give log-log plots of the first four spacing
distributions.

00 02 04 06 08 10 0 1 2 3 0
‘ ‘ ‘ ‘ ‘ ‘ 08
1.2
2.0 {20
1.0
1.6 11.6 06+
- - 087
~ 121 A T 112 < S
S e N e 06 < 0.4+
& os{ 7 i=2 and 91=10° > qos 04l . 10
// = /—1=0 \t . q: = 0.24 e /- - 1=25040.2
047, © /== -1=250 V104 0247 . —120 {02
, \ ? o /- - 1=250
0.0 ; ; ; ; 0.0 4 0.0+ 0.0
00 02 04 06 08 10 0 1 2 3 0 1 2 3 4 5
” / /

(a) (0) (©)

FIG. 3. Case i = 2: (a) Fragmentation kernel pX(x), (b) gap size distribution p(® (¢£), and (c) capture zone distribution p* (¢)
for a 1D system. The parameters used in the PM are £, = 1.5, ez = 5 for [, = 0, and £. = 1.2, vyep = 4 for I, = 250. As in
Fig. 2 the insets give log-log plots of the first four spacing distributions.
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FIG. 4. Case i = 3: (a) Fragmentation kernel pX(x), (b) gap size distribution p® (¢), and (c) capture zone distribution p*(¢)
for a 1D system. The parameters used in the PM are ¢, = 1.5, er = 7 for I, = 0 and £. = 1.0, Ve, = 3 for I, = 250. As in
Fig. 2, the insets give log-log plots of the first four spacing distributions.

This result is reproduced by the CP approach but not by B. CZD for 2D
MF, which predicts pX(0) = pX(1) # 0 for I, > 0.
Consider first the case of weak barriers. From our nu-
merical experimentation we estimate x = 0.3 for i = 1
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FIG. 5. Capture zone distributions for kMC simulations in 2D (dense discrete symbols) with (a) ¢ = 1 and (b) ¢ = 2 with [, = 0
(narrower set of curves) and I, = 250 (broader set). In all cases the fragmentation (PM) approach (dash-dotted curves) gives
excellent results. The insets show log-log plots of the kMC results for P(A). Note that Eq. (57), kMC results for I, = 250 and
the PM with ¢ =1, § = 0 and k = 1 are almost indistinguishable for both i values.

and k = 0.8 for ¢ = 2. For both values of ¢ we have used
¢ =2. Wetake d =1fori=1and § = 2 for i = 2.
In this way, the nucleation probability inside a capture
zone grows (linearly for ¢« = 1 and quadratically for i = 2)
with r for points near the island, while it becomes con-
stant for points far away. As mentioned before, we can
expect that these parameters also describe the CZ dis-
tribution for strong barriers and times longer than 7.
For strong barriers in the crossover regime, the density
of monomers becomes almost constant for all values of ¢,
implying 6 =0 and ¢ = 1.

Figure 5 shows the comparison between the results of
kMC simulations and the fragmentation model for i = 1
and i = 2. There is good agreement for both values of i
in the cases of zero and strong barriers in the aggregation
and crossover regimes, respectively. Note that, at least
for i =1 and ¢ = 2, strong barriers imply that P(A) can
be approximated by Eq. (57), suggesting that n;(r) can
be taken as a constant independent of r for the crossover
regime.

VI. CONCLUSIONS

The phenomenological model we presented is quite
general and simple but retains the most relevant phys-
ical properties of the 1D and 2D systems. In both cases
and for arbitrary ¢ and [,, the structure generated by
the point islands can apparently be described in terms
of two different probabilities which describe the nucle-
ation process inside a gap for 1D and inside a capture
zone for 2D. Furthermore, by describing the nucleation
in conjunction with an appropriate fragmentation model,
we can find the growth exponents and the CZD or GSD.
Since the CZD is usually measurable experimentally, we
can use it to actually calculate microscopic parameters
of the model such as 7 and [,.

Specifically, in 1D the mean nucleation probability
density pX(x) and the gap-size-dependent nucleation rate
w(L) are enough to understand the nucleation process.
For small values of [, most of the nucleation events occur
near the middle of the gap, and pX(x) has a well-defined
maximum. For large values of [, the nucleation events
are more homogeneously distributed along the gap, and
pX(x) is almost flat near the middle of the gap. For all
values of I, and i, pX(0) = 0 = pX(1), implying that the
density of monomers changes quickly near stable islands.

Additionally, p(9) () o ¢# for £ — 0 where p is given by
the MF theory for weak barriers (u = 2(i + 1)) while for
large barriers 1 < 1, so that the GSD changes quickly for
small values of £. Assuming that the CZD can be written
as the convolution product of two GSDs, the behavior
of the CZD for small ¢ is given by P({) o« ¢?#*1. The
CP approach gives “exact” results for w(£) and pX(x),
but some corrections are necessary, mainly because of
the assumption—untrue for large gaps—that when the
(i + 1) monomer arrives, the density of monomers has
achieved its stationary state. MF describes pX(x) well for
zero and weak barriers. Table III shows the exact values
of v, for different values of i; in general we found good
agreement with numerical data taking the nucleation-
rate exponent v = 7., — 1 for £ > ¢..

Despite its implicit simplifications (such as homogene-
ity and isotropy), our model proves to be a powerful tool
to describe CZDs in 2D. The effect of the attachment
barrier is included through the density of monomers in-
side a CZ, n(r). For the 2D case and arbitrary 4, large
barriers imply that for the crossover regime there is a
homogeneous distribution of monomers inside the CZ,
which leads to the case where the position of the islands
are not correlated: 6 = 0 and ¢ = 1. Consequently, for
large barriers in the crossover regime, P(A) is indepen-
dent of the value of i. For large times the DLA regime
is recovered. The attachment barrier is reflected in the



exponents 7y, 0 and in the constant x used in our frag-
mentation model. For weak barriers in the aggregation
regime, § = 4. For strong barriers in the crossover regime,
0 = 0. The value of ¢ is near 2 for weak barriers and for
strong barriers in the aggregation regime, but for strong
barriers in the crossover regime ¢ = 1.

ACKNOWLEDGMENTS

D.L.G’s work was supported by Colciencias grant
123365842816 FP44842-014-2015 with ancillary support
of the Vicerrectoria de investigaciones de la Universidad
del Valle C.I. 1072 , work at the University of Maryland
by NSF Grant No. CHE 13-05892.

Appendix A: General Rate Equations

In the point-island model, the time evolution of the
densities of free monomers, N7 and of islands containing
n monomers, N,, is given by the rate equations [23, 27,
46)

dN ) ) D
791 =(L=N) = (i +1)N; = (i + ) ou 5 N N;
D
_ le Z 0n Np, (A1)
n>i+1
dN, D
a0 fN1(0n—1 Np—1=0n Nu) +Np—1 = Nn, (A2)
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respectively. The fraction of the substrate which is not
covered by stable islands is 1 — N. The second term of
Eq. (Al) and the last two terms of Eq. (A2) represent
the direct deposition of monomers on top of islands with
sizes i, n — 1, and n, respectively. The formation of new
islands is represented by the third and the first terms of
Eqgs. (A1) and (A2), respectively. Finally, the last term
of Eq. (A1) represents the aggregation of monomers to
stable islands. Since we are interested on the evolution
of the total density of islands, the sum over n > i is
performed on Eq. (A2). Consequently

N D
df = leo'i N1+Nl

de F (A3)

In our simulation, monomers are deposited only on empty
sites. Thus, the second term of Eq. (A1) and the last one
of Eq. (A3) can be neglected. Finally, because of our
assumption that bonding energies vanish inside unstable

islands, Walton’s relation [61] reads N; = Ni . After
some algebra, and using the definition
—L Y oN (A4)
US - N Un n

n>i+1

for the capture coefficient of stable islands, it is straight-
forward to obtain Egs. (2) and (3).
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