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We present a Ginzburg-Landau theory of microphase separation in a bidisperse chiral membrane
consisting of rods of opposite handendness. This model system undergoes a phase transition from
an equilibrium state where the two components are completely phase separated to a state composed
of microdomains of a finite size comparable to the twist penetration depth. Characterizing the
phenomenology using linear stability analysis and numerical studies, we trace the origin of the
discontinuous change in microdomain size that occurs during this phase transition to a competition
between the cost of creating an interface and the gain in twist energy for small microdomains in
which the twist penetrates deep into the center of the domain.

I. INTRODUCTION

When two immiscible fluids are mixed, they typically
undergo bulk phase separation. Applications ranging
from food science, catalysis, and the function of cell mem-
branes require the arrest of this phase separation to form
microstructures. A common pathway to accomplish this
is to introduce a third component, such as a surfactant,
that stabilizes interfaces between the two fluids [1]. Here,
we theoretically demonstrate a novel mechanism for mi-
crophase separation in fluid membranes that is mediated
by the chirality of the constituent entities themselves,
and hence does not require the introduction of a third
component. In addition to identifying a design principle
to engineer nano structured materials, this work could
shed light on the role of chirality in compositional fluc-
tuations and raft formation in biomembranes [2–7].

Our theory is motivated by a recently developed
colloidal-scale model system of fluid membranes, com-
posed of fd-virus particles [8–13]. The system contains
two species of virus particles that have opposite chirality
and different lengths (Fig 1). In the presence of a de-
pletant, they self-assemble into a monolayer membrane
that is one rod length thick. The competition between
depletant entropy, mixing entropy of the two species, and
molecular packing forces leads to a rich phase behavior
within a membrane, including bulk phase separation of
the two species, microdomain formation, and homoge-
neous mixing. In particular, the experiments find that
in the regime where a single species forms a macroscopic
membrane, limited only by the amount of material, a
mixture of two species leads to the formation of circular
monodisperse microdomains (rafts) of one species in a
background of the other. Recently, Xie et al. [14] showed
that, given the existence of such microdomains, chirality
mediates repulsive interactions between domains. Here,
we consider the forces that allow such microdomains to
exist at equilibrium by stabilizing them at a finite size.

To understand the mechanisms controlling mi-
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crodomain formation, we develop a continuum Ginzburg-
Landau theory that captures the physics of chirality and
compositional fluctuation in a 2D binary mixture of rods
with opposing chiralities. The primary physics that we
incorporate into the theory is a coupling between the
twist of the director field and the compositional fluctua-
tions [15]. By using linear stability analysis and numer-
ical solutions of the time-dependent Ginzburg-Landau
equations, we show that the tendency of the molecules
to twist arrests the phase separation of the two species,
and stabilizes a microdomain phase whose phenomenol-
ogy closely mimics that observed in experiments. In par-
ticular, the theory shows a discontinuous jump in the
microdomain radius as the system transitions from a
microphase separated state to bulk separation, a phe-
nomenon observed in the experiments as well. In con-
trast, previously studied mechanisms of microphase sep-
aration lead to a domain size that continuously diverges
as the system approaches bulk phase separation [16–19].
Moreover, while previous work showed that the incom-
patibility between chiral packing and crystalline order
leads to self-limited filamentous bundles [20, 21], our
work demonstrates the emergence of chiral-mediated mi-
crodomains in liquid-liquid phase separation.

II. MODEL

The Ginzburg-Landau (GL) model involves two fields:
a director field n̂ (r) that characterizes the orientation
of the rods with respect to the membrane normal and a
pseudo-scalar field ψ (r), which characterizes the differ-
ence in densities of the two species of rods with opposing
chiralities [15]. We choose a coordinate system in which
the layer normal of the membrane lies along the z axis
and normalize the order parameter ψ such that ψ = ±1
correspond to the homogeneous one-component phases.
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The GL functional is taken to be of the form:

βF =

∫
d2r

[
1

2
K1(∇ · n̂)2 +

1

2
K2 (n̂ · ∇ × n̂− q (ψ))

2

+
1

2
K3 (n̂×∇× n̂)

2
+
C

2
sin2 θ−ψ

2

2
+
ψ4

4
+
λψ
2

(∇ψ)
2

]
The physics incorporated in the GL functional can be

summarized as follows: i) The first three terms arise from
the Frank elasticity associated with director distortion,
with K1, K2 and K3 being the elastic constants associ-
ated with splay, twist and bend respectively [22]. The
twist term involves a pitch q(ψ (r)) that encodes the chi-
rality and hence the associated tendency of the rods to
develop a spontaneous non-zero twist. In a mixture of
left and right handed rods, q is naturally a function of
the composition, which introduces a coupling between
n̂ (r) and ψ (r). ii) The term C

2 sin2 θ encodes the fact
that the rods in the membrane tend to align with the
layer normal [22], and gives rise to the standard mecha-
nism of twist expulsion seen in Smectic C systems. When
ψ = ±1, the terms discussed in (i) and (ii) reduce to the
theoretical description used successfully to describe sin-
gle component chiral membranes in earlier works [23–25].
iii) The compositional fluctuations encoded in the field ψ
are described by a standard ψ4 theory below the criti-
cal point that leads to bulk phase separation, with an
energetic cost to forming interfaces controlled by the pa-
rameter λψ. Thus, the difference in the length of the
rods that leads to phase separation in the experimental
system is represented as an effective interaction, and our
2D model does not include information about the spa-
tial variation of the membrane in the third dimension.
Such height fluctuations were recently theoretically con-
sidered in the context of single-species membranes [26].
Moreover, our results neglecting height fluctuations are
qualitatively consistent with those of Ref. [27], which ap-
peared after the initial version of this manuscript was
made public and does include height fluctuations in a de-
scription colloidal raft formation. Consistent with that
comparison, we find that including height fluctuations in
our theory does not qualitatively change the results.

In the following, we work in the single elastic constant
approximation of the Frank elasticity: K1 = K2 = K3 ≡
K. We model the variation of q with composition through
a minimal linear coupling, q(ψ) = q0 + aψ, which is al-
lowed by symmetry and defines the coupling parameter a.
We nondimensionalize the GL functional using the twist

penetration depth λt ≡
√

K
C as the characteristic length

scale. To minimize the number of parameters, we choose
the same values for K and C for each species. A different
choice would lead to a different twist penetration length
inside and outside of domains [14] but would not qualita-

tively change our results. We then define ψ′ = ψ

(1−Ka2)1/2

to absorb the (uninteresting) ψ2 term which arises from
the coupling between twist and composition, rescale βF
by (1−Ka2)−2, and define the dimensionless parameters:

FIG. 1. (color online) a) Schematic of the experimental sys-
tem. b) The primary results of this work summarized in a
phase diagram as a function of the smectic alignment param-
eter J and the twist-composition coupling parameter a. The
lines indicate the phase boundary between the microphase
separated and bulk phase separated states as obtained from
linear stability analysis (black/solid) and numerical integra-
tion of Eqs. 2-3 (green/dashed). The snapshots show config-
urations at steady state obtained from numerics at the indi-
cated parameter values (o). c) Illustration of the evolution to
steady state for two parameter sets. The left panel shows the
evolution of the composition field, and the right panel shows
the twist profiile in the steady state. The results shown here
and in the rest of the main text are for a 60-40 mixture with
λψ = 0.1, and q0 = 0.1

a′ = a
(
1−Ka2

)1/2
, λ′ψ =

λψ/λ
2
t

(1−Ka2) , J = K
(1−Ka2)2 , and

q′0 = q0(1−Ka2).
The GL functional then becomes:

βF =

∫
d2r′ [fLC + fψ + fCross]

fLC =
J

2

[
(∇′ · n̂)

2
+
(
q′20 − 2q′0n̂ · ∇′ × n̂

)
+ (∇′ × n̂)

2

+sin2(θ)
]

fψ =

[
−ψ
′2

2
+
ψ′4

4
+
λ′ψ
2

(∇′ψ′)2
]

fCross = [−Ja′ψ′ (n̂ · ∇′ × n̂) + Ja′q′0ψ
′] (1)

This nondimensionalized GL functional is used in all of
our subsequent analysis, and the ′’s are dropped for com-
pactness of notation.

We model the dynamics by the time-dependent GL
equations with a conserved composition field ψ: ∂tψ =
∇2 δF

δψ (Model B dynamics), and a non-conserved direc-

tor field ∂tn̂ = − (I− n̂n̂) · δFδn̂ (Model A dynamics)[28].
The n̂ dynamics accounts explicitly for the fact that it
is a unit vector. The time constants for the relaxation
dynamics of ψ and n̂ have been chosen to be same and
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set equal to 1. The resulting equations are :

∂tψ = ∇2
(
−ψ + ψ3 − λψ∇2ψ − Ja (n̂ · ∇ × n̂) + Jaq0

)
(2)

∂tn̂ = − (I− n̂n̂) ·
(
−J∇2n̂− 2Jq∇× n̂ + J n̂×∇q

+J(nxx̂+ ny ŷ)) (3)

III. LINEAR STABILITY ANALYSIS

Eqs.(2-3) admit homogenous steady states of the form
ψ = ±1 and n̂ = ẑ. As a first step in understand-
ing the dynamics of phase separation, we analyze the
instability of the homogeneous state to small fluctua-
tions of the form ψ = 1 + δψ and n̂ = ẑ + δn. [29]

We introduce Fourier transformed variables X̃ (k, t) =∫
d2reik·rX (r, t). Without loss of generality, we choose

a coordinate system in the plane of the membrane such
that the x axis lies along the spatial gradient direction.
We find that the longitudinal fluctuations in the director
δñx decouple from the other variables (Appendix B) and
we obtain the linearized equations

∂t

(
δψ̃
δñy

)
=

(
−2k2 − λψk4 ik3Ja
−ikJa −J − Jk2

)(
δψ̃
δñy

)
(4)

The homogeneous state is found to be linearly unstable
to modes k that satisfy

λψk
6 − (Ja2 − 2− λψ)k4 + 2k2 < 0 . (5)

FIG. 2. (color online) a) The largest eigenvalue ω(k) of the lin-
ear stability matrix in Eq.(4) as a function of the wavevector k
for indicated values of the alignment strength J , with a = 0.5
and λψ = 0.1. b) Dependence of the optimal microdomain
size on Ja2 obtained by three different analysis methods: the
steady-state mean radius of microdomains obtained by nu-
merical integration(upper line), the radius which minimizes
the GL free energy (calculated as described in the text) (mid-
dle line), and wavelength corresponding to the fastest-growing
mode calculated by linear stability analysis (lower line), for
λψ = 0.1. Throughout this manuscript, all lengths are given
in units of the twist penetration length λt.

We see from Eq. 5 that the k = 0 mode is always
marginally stable, and that the linear instability is con-
trolled only by the combination Ja2 and does not depend

individually on the strengths of the smectic alignment
and the twist-composition coupling. At a critical value
of Ja2 determined by (Ja2 − 2− λψ)2 = 8λψ, the mode

with kf = (2/λψ)1/4 becomes unstable (see Appendix B).
For parameters at or beyond the critical value, the aver-
age microdomain radius can be estimated as r = 2π/kf,
where kf is the fastest growing mode. Fig. 2 shows the
largest eigenvalue ω(k) of the linear stability matrix in
Eq.(4) for different parameters. For any non-zero value
of λψ, the instability occurs at a finite k, which demon-
strates that the instability of the homogeneous phase is
to microdomains of a finite size. The transition from a
macroscopically phase separated state (infinite domain
size, k = 0) to a microphase separated state should thus
be accompanied by a discontinuity in the domain size
(see Appendix B).

Numerical analysis of Eqs.(2-3) verifies this discontin-
uous change in the domain size. We solve Eqs.(2-3) nu-
merically by using an implicit convex splitting scheme to
evolve the equation for ψ and the forward Euler method
to evolve the director field (see Appendix E). We initial-
ize the system with random compositional fluctuations
around a homogeneous mixture with ψ = 0.2 and we ex-
plore the phase space spanned by J and a. For most of
the results shown here, we choose λψ = 0.1, as the inter-
face width in the experiments is found to be much smaller
than the twist penetration length [12]. As shown in sec-
tion IV and Fig. 6 of Appendix C, changing λψ leads
to quantitative but not qualitative changes. Also, we set
q0 = 0.1 as the preferred chiral twists of the two species
of rods in the experimental system are not equal. The
phase diagram obtained from numerics is shown in Fig.
1. It is evident that linear stability analysis captures all
qualitative aspects of the numerically determined phase
diagram. The steady state domain sizes obtained from
numerics are shown in Fig. 2 and clearly demonstrate
the discontinuous change accompanying the phase tran-
sition. We note however that the effect of q0 on the phase
transition is not captured by the linear stability analysis
since this parameter enters only at higher order (see Fig.
8, Appendix D).

The formation of finite-sized microdomains is con-
trolled by a competition between chirality and interfa-
cial tension. A similar competition exists even in a chi-
ral membrane of a single species, where the interfacial
tension exists between the membrane edge and the bulk
polymer suspension. A theoretical analysis of this system
[23] showed a transition between membranes of finite size
and unbounded macroscopic membranes. Within such a
membrane, the twist is expelled to the edge, decaying
over a length λt, and the membrane size grows continu-
ously as the transition is approached. Here we see that
introducing a second species with opposite handedness
into such a membrane provides a mechanism for the twist
to penetrate the interior of the membrane. As shown in
Fig. 1, the director twists at the edge of each domain,
and then untwists (twists in the opposite direction) into
the background. This twist is confined to within approx-
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imately λt of a domain edge. The ability of the inter-
face to accommodate twist is the mechanism that leads
to the formation of microdomains in the region of pa-
rameter space where each species by itself would form a
macroscopic membrane.

To quantitatively unfold this mechanism, and to un-
derstand the discontinuous change in domain size that
occurs at the transition, we examine how the spatial vari-
ations in ψ and n̂ influence the free energy Eq. (1). To
this end, we calculate the free energy of a domain of ra-
dius R of one species in a background of the other. We
do so by assuming profiles for ψ and n̂ that are consis-
tent with the results obtained from numerical integration
(see Appendix B). The optimal domain size is then de-
termined by the value of R at each J , a, q0, λψ, for
which the free energy is minimized (Fig. 3). The result-
ing domain sizes are consistent with those obtained from
linear stability analysis and numerical integration (Fig.
2). Note that, by considering a single droplet embedded
in an infinite membrane, we are neglecting inter-domain
interactions in this calculation. This assumption is con-
sistent with the fact that inter-domain interactions have
a range of λt (distance over which twist penetrates in
the background) and therefore are small for larger spac-
ings between domains. This assumption is also consistent
with the experimental observation of Sharma et al. that
the preferred domain size is independent of inter-droplet
spacing (Fig. 4 a-c of Ref. [12]).

FIG. 3. (color online) a) The free energy density in a domain
f (solid/black), along with the separate contributions (fLC

(dot-dashed/blue), fψ (dashed/red) and fCross (dotted/pink))
are shown as a function of domain radius R, measured in
units of λt, for J = 30 and a = 0.7. The domain radius is
varied from 0.2λt to 20λt. b) The same free energy density
contributions as in (a) but focusing on the behavior at small
R.

The origin of the discontinuity in domain size is re-
vealed by examining the variations in different contribu-
tions to the free energy density (fLC, fψ and fCross) as the
microdomain size changes. Fig. 3 shows these variations
for a parameter set in the microphase separation regime.
Note that in an extensive system with clear scale sep-
aration between bulk and interface, the interfacial con-
tribution to a free energy density decays with increasing
domain size, while the bulk contribution remains con-

stant. In contrast, we see that fLC and fCross are super-
extensive for small domain sizes, only becoming exten-
sive asymptotically. This superextensivity is significant
only for domain sizes of the order of the twist penetra-
tion length (R ∼ 5λt). Thus, finite-sized microdomains
appear only when the increase in fLC and fCross with
R is sufficient to outcompete fψ at these small domain
sizes. As Ja2 decreases, the super-extensive behavior di-
minishes, forcing the critical domain size (at which fLC
and fCross dominate over fψ) to larger R. At the thresh-
old value of Ja2, fLC and fCross become extensive before
dominating over the interfacial tension, and macrophase
separation sets in.

FIG. 4. (color online) a) The theoretical twist profile ob-
tained from dynamical analysis is compared with the one ob-
tained from the experiments [12]. b) The theoretical free en-
ergy density profile as a function of the microdomain radius
for the parameters J = 20 and a = 0.7 is compared against
the experimentally determined free energy. The radius is in
units of the twist penetration length observed in the exper-
iments: λt = 0.48µm. The theoretical free energy has also
been shifted to match the experimental curve at the mini-
mum.

The source of the super-extensive growth in fLC and
fCross can be understood from the dependence of twist
profiles on R. For large R, twist decays exponentially
from the domain edge (Fig. 6 in Appendix C); thus
ensuring scale separation between the bulk and the in-
terface. On the other hand, such a separation does not
exist for small microdomains where the twist penetrates
to the center of the domain.

IV. COMPARISON WITH EXPERIMENTS

Finally, we assess the ability of our theory to repro-
duce experimental measurements on the fd -virus system.
We first estimate values of J and a corresponding to the
experimental system by fitting against the experimen-
tally measured twist profile (Fig. 4a); specifically, a is
determined by the maximum twist at the edge of a mi-
crodomain and J is then determined by its radius. In
Fig. 4b we then compare the free energy as a function
of microdomain size estimated by the quasi-static cal-
culation described above against the experimental free
energy, which was determined from the dependence of
growth and shrinkage rates on domain size. We see that
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the calculation closely matches the experiments for larger
than average domains but underestimates the probabil-
ity of observing smaller microdomains. We do not un-
derstand the source of this discrepancy. However, one
possibility is the neglect of the length difference between
the two species in our theoretical analysis.

In conclusion, we have presented a theory of mi-
crophase separation in membranes, which is driven by
chirality of its constituent entities. The underlying mech-
anism of microphase separation can be traced to the gain
in twist energy in these structures, which can accommo-
date twist at the interfaces. We have provided quantita-
tive analysis that unfolds the precise factors leading to
the appearance of microdomains. We have also shown
that the microdomains have a natural length scale deter-
mined by the twist penetration depth, and therefore the
domain size does not increase continuously as the sys-
tem transitions to the macrophase separated state. Mi-
crodomains that are much larger than the twist penetra-
tion depth fail to gain enough free energy from the twist-
ing at the interface to compensate for the free energy cost
of creating an interface where the composition changes.
By reducing λψ, this limiting length can be made larger,
however the transition is discontinuous for all finite val-
ues of λψ. This feature of the microdomains is appealing
from the perspective of creating nanostructures since the
domain size can be tightly controlled.
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Appendix A: Non-dimensionalization of free energy

We begin with the free energy considered in the main
text. With the one-constant approximation for the Frank
free energy, and explicitly writing the constants r0 and
u0 for the ψ4 theory, this is given by

βF =

∫
d2r


K

2

[
(∇ · n̂)2 + (n̂ · ∇ × n̂− q (ψ))

2

+ (n̂×∇× n̂)
2
]

+
C

2
sin2 θ +

r0ψ
2

2
+
u0ψ

4

4
+
λψ
2

(∇ψ)
2

}
We then non-dimensionalize by rescaling all lengths with

respect to the twist penetration depth λt ≡
√

K
C , result-

ing in

βF =

∫
d2r


K

2

[
(∇ · n̂)2 + (n̂ · ∇ × n̂− q (ψ))

2

+ (n̂×∇× n̂)
2

+ sin2 θ
]

+
λ2t r0ψ

2

2
+
λ2tu0ψ

4

4
+
λψ
2

(∇ψ)
2

}
We now substitute q(ψ) = q0 + aψ, collect the ψ2 terms
and (without loss of generality) set λtr0 = −1 and λtu0 =
1, resulting in

βF =

∫
d2r

{
K

2

[
(∇ · n̂)2 + (n̂ · ∇ × n̂− q0)

2

+ (n̂×∇× n̂)
2

+ sin2 θ
]

−Kaψ [n̂ · ∇ × n̂− q0]

−ψ
2 −Ka2ψ2

2
+
ψ4

4
+
λψ
2

(∇ψ)
2

}
To keep the minima associated with our composition

variable at ±1, we define ψ′ = ψ

(1−Ka2)1/2 . We then

divide the entire free energy by
(
1−Ka2

)2
and make

the following transformations: a′ = a
(
1−Ka2

)1/2
,

λ′ψ =
λψ

(1−Ka2) and J = K
(1−Ka2)2 , q′0 = q0(1 − Ka2).

We then drop the ′s and get the final free energy used in
the rest of the discussion (Eq. 1 of the main text):

βF =

∫
d2r

{
J

2

[
(∇ · n̂)2 + (n̂ · ∇ × n̂− q0)

2

+ (n̂×∇× n̂)
2

+ sin2 θ
−2aψ (n̂ · ∇ × n̂− q0)]

−ψ
2

2
+
ψ4

4
+
λψ
2

(∇ψ)
2

}

Appendix B: Details of Linear Stability Analysis

In this section we provide details of the linear stability
analysis leading to Eq. 4 in the main text. The dynamics
of the director field, n̂ is described by:

∂n̂

∂t
= n̂× n̂× ∂F

∂n̂
, (B1)

where

∂F

∂n̂
= −J∇2n̂− 2Jq∇× n̂ + J n̂×∇q + J(nxx̂+ ny ŷ) ,

(B2)
and q = q0 + aψ. The dynamics of the composition field
ψ is described by:

∂ψ

∂t
= ∇2

(
− Jan̂ · (∇× n̂)− ψ + ψ3 − λψ∇2ψ

)
(B3)

These equations admit homogeneous steady states of the
form ψ = ±1 and n̂ = ẑ. We linearize Eqs. B2 and B3
about a homogeneous solution and construct equations
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for δψ = ψ − 1 and δnxx̂ + δnyŷ = n̂− ẑ. The resulting
linearized equations are:

∂δnx
∂t

= J∇2δnx − Jδnx + Ja∂yδψ (B4)

∂δny
∂t

= J∇2δny − Jδny − Ja∂xδψ (B5)

∂δψ

∂t
= ∇2

(
−Ja(∂xδny−∂yδnx)+2δψ−λψ∇2δψ

)
(B6)

Introducing a fourier transform of the form X̃ (k, t) =∫
d2reik·rX (r, t) for the fields δn̂ and δψ, and without

loss of generality, choosing a coordinate system in the
plane of the membrane such that the x axis lies along
the spatial gradient direction k, we obtain:

∂t

 δψ̃
δñx
δñy

 = −2k2 − λψk4 0 −ik3Ja
0 −J − Jk2 0

ikJa 0 −J − k2J

 δψ̃
δñx
δñy


(B7)

We observe from Eq. B7 that the δnx fluctuations decou-
ple from the other fluctuations and the linearized prob-
lem of interest reduces to: ∂δψ̃∂t

∂δñy
∂t

 =

[
−2k2 − λψk4 iJak3

−iJak −Jk2 − J

] [
δψ̃
δñy

]
(B8)

The eigenvalues ω(k) of the matrix determine if and for
what values of the parameters the homogeneous state
becomes unstable to one of these k-modes. The mode
with the largest positive value of ω(k) defines the leading
instability.

The eigenvalues of the matrix satisfy:

(2k2 +λψk
4 +ω(k))(Jk2 +J+ω(k))−J2a2k4 = 0 (B9)

We show plots of the numerical solutions for the disper-
sion relation ω(k) for a few values of J and a in the
main text. It is clear from this equation that the k = 0
mode is marginally stable for all parameters and that
the leading instability occurs at a finite value of k and is
determined by values of (J, a, λ) that simultaneously sat-

isfy (i) ∂ω(k)
∂k = 0 and (ii) ω(k) = 0. The linear stability

analysis thus clearly indicates that there is a discontinu-
ous change in k and, therefore, implies that the droplet
radius should change discontinuously at the transition
from bulk phase separation (all nonzero k modes stable)
to microphase separation.

We can calculate the wavevector kf characterizing the
growing mode at the onset of the instability from Eq. B9.
Condition (ii) implies:

λψk
4
f − (Ja2 − 2− λψ)k2f + 2 = 0

The roots of this equation at nonzero k are:

k2f =
(Ja2 − 2− λψ)

2λψ

(
1±

√
(Ja2 − 2− λψ)2 − 8λψ

(Ja2 − 2− λψ)

)
(B10)

At the onset of the instability, these two roots have to be
degenerate (the condition for ω(kf) having a maximum),
which implies that:

(Ja2 − 2− λψ)2 = 8λψ .

Therefore,

kf = (
2

λψ
)1/4

The fastest growing wavelength, and therefore the op-
timum droplet size in the microphase separated regime
thus depends only on λψ, and the boundary marking the

onset of the instability is given by (Ja2−2−λψ) =
√

8λψ.

Appendix C: Quasistatic calculation

To better understand the origin of the microphase sep-
aration with a discontinuous change in the domain size,
we calculate the free energy density, f(R) of a circu-
lar droplet of radius R with ψ = 1 in a background
of ψ = −1. A diffuse interface between the drop and
the background is initialized using the radially symmet-

ric function ψ(r) := tanh
(

x√
2λψ

)
. This represents the

solution to
δFψ [ψ]
δψ = 0 (see [30]). A drop of radius R is

placed inside a larger system of radius Rsys, chosen to
be 5 twist penetration lengths (λt) larger than R. The
director profile is then obtained by numerically equili-
brating the GL equations for the director field with the
prescribed static order parameter field ψ. The numerical
solutions to the GL equations show that : i) on aver-
age, the domains are circularly symmetric, ii) the tilt of
the director is tangential to the edge of the disk, and
iii) droplets of the same radius R at two different values
of the parameter set exhibit the same functional form of
the tilt profile. Thus, the numerically obtained profiles
for the twist in n̂ are only a function of the radius R.
Choosing a cylindrical coordinate system, the director

can be represented as ~n = sin(θ)φ̂ + cos(θ)ẑ. For a cir-
cularly symmetric tilt profile, the different contributions
to the free energy can be written in these coordinates as

FLC =

∫ Rsys

0

[1

2
J
(dθ
dr

+
sin(2θ)

2r
− q0

)2
+

1

2
J
sin4(θ)

r2

]
2πrdr,

FCross =

∫ Rsys

0

[1

2
J
(dθ
dr

+
sin(2θ)

2r
− aψ

)2]
2πrdr,

Fψ =

∫ Rsys

0

[
− ψ2

2
+
ψ4

4
+
λψ
2

(
dψ

dr

)2 ]
2πrdr.(C1)
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These expressions are evaluated using the numerically
obtained profiles θ(r) and ψ(r) for a droplet of radius R
and are reported and discussed in the main text.

FIG. 5. (color online) Comparison of twist and ψ profiles pre-
dicted by the quasistatic calculation (black line) with results
from the numerical integration of the full model dynamics
(blue dots). The profiles from the dynamics are ensemble-
averaged over droplets of the same size in equilibrium con-
figurations. a) Twist profiles for droplets with radius greater
than twist penetration depth λt. b) Twist profiles for droplets
with radius smaller than λt, exhibiting a cutoff of the expo-
nential decay inside the droplet. c) ψ profile for droplets with
radius larger than λt. d) ψ profile for droplets with radius
smaller than λt.

Note that we consider a single droplet in an infi-
nite background in the quasistatic calculation, whereas
the full set of equations models systems with multiple
droplets. Thus, we are neglecting the effect of inter-
actions between droplets in the quasistatic model. As
noted in the main text, this choice is made to focus
the quasistatic calculation on the physical mechanisms
that affect droplet size. Existing experimental and the-
oretical results indicate that inter-droplet interactions
only become significant at smaller inter-droplet spacings
than arise in our dynamical simulations [12, 14]. More-
over, a comparison of the quasistatic calculation with
the ensemble averaged profiles (ψ and θ) of equilibrium
droplets of the same size from the dynamical simulations
(which do include inter-droplet interactions) shows semi-
quantitative agreement (Fig. 5). In particular it is worth
noting that the twist decays rapidly with exponential de-
cay into the background even in the presence of neigh-
boring drops in the dynamical simulations. Further, Fig.
(6) shows that order parameter profile does not depend
strongly on the parameters J and a. This result can be
understood by noting that the order parameter profile
in the dynamical simulations is controlled primarily by
minimization of Fψ; the cross terms which couple ψ to

twist only weakly affect the spatial variation of ψ.
As noted in the main text, this quasistatic calculation

shows that the source of the super-extensive growth in
the free energy densities fLC and fCross, and the eventual
asymptote to extensive growth, can both be understood
from the dependence of twist profiles on R (Fig. (6),(5)).
For large domains, twist decays exponentially from the
domain edge, while for small domains , the twist pene-
trates into the center of the domain and thus contributes
to the bulk free energy.

FIG. 6. (color online) Dependence of twist and ψ profiles on
J and a obtained from dynamical simulations by ensemble-
averaging over equilibrium droplets of same size. a) Twist
profiles for droplets with radius greater than twist penetration
depth λt for indicated values of J and a. b) Twist profiles for
droplets with radius smaller than λt, exhibiting a cutoff of the
exponential decay inside the droplet. c) ψ profile for droplets
with radius larger than λt. d) ψ profile for droplets with
radius smaller than λt.

Note that near the edge of a domain, the twist be-
comes sufficiently large that the present theory may be-
come inaccurate. Additional terms could be added to the
free energy following the approach of Kaplan et al. [24].
However, this cannot change the basic mechanism iden-
tified here since this region is confined to the very edge
of a domain, whereas the stabilization of finite -sized do-
mains arises due to penetration of some twist all the way
into a domain interior.

Appendix D: Effect of varying λψ and q0

We performed additional sets of numerical integration
and additional linear stability analyses to determine the
effect of the parameters λψ and q0 on phase behavior and
droplet sizes. As shown in the main text, the onset of the
instability depends on λψ according to (Ja2−2−λψ)2 =
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8λψ. The phase boundary from numerics is shown for
two distinct values of λψ in Fig. 7b.

As shown in Fig. 7a, the width of the droplet interface
is roughly proportional to λψ, while it is independent of
chirality and bending modulus (Fig. 6).

FIG. 7. (color online) a) Change in ψ profile as a function of
λψ for droplets of the same size normalized to 1 for J = 40
and a = 0.6, calculated by numerical simulations. b) Location
of the boundary between micro and bulk phase-separation
calculated by numerical simulations for λψ = 0.1 (red/solid)
and λψ = 1 (blue/dashed)

We also performed numerical integration of the dynam-
ical equations for different values of the chirality offset
parameter q0. Although this parameter does not affect
the instability to linear order, the results from the dy-
namical simulation show that it shifts the instability to
larger values of a, as shown in Fig. 8. =

FIG. 8. (color online) Location of the boundary between
micro and bulk phase-separation for q0 = 0.1 (lower line),
q0 = 0.5 (middle line) and q0 = 0.7 (upper line) for λψ = 0.1
calculated from the numerical simulations. The line is a poly-
nomial interpolation to serve as a guide to the eye.

Appendix E: Numerical Method

In order to numerically time evolve the coupled equa-
tions (2-3) in the main text, we consider a periodic do-
main Ω := [0, Lx] × [0, Ly]. The domain is discretized
with a uniform mesh of spacing h such that Lx = m · h
and Ly = n ·h. Thus the points on the uniform mesh are
given by xij = (xi, yj)

T where xi = 0+ i ·h, yj = 0+ j ·h
and 1 ≤ i ≤ m, 1 ≤ j ≤ n are integers. For simplic-
ity we denote scalar valued functions on this mesh as
fij = f(xi, yj). Now the discrete laplacian of the scalar
field f at (xi, yj) is defined as :

∆hfij =
1

h2
(fi+1,j + fi−1,j + fi,j+1 + fi,j−1 − 4fij)

(E1)
and the discrete gradient is given by

∇hfij :=

(
1

2h
(fi+1,j − fi−1,j) ,

1

2h
(fi,j+1 − fi,j−1)

)T
.

(E2)
These represent the central difference approximations for
the derivatives, and other gradient operators including
the curl are computed in a self consistent manner. We
refer the interested reader to [31] (see Appendix E) for
details of the discrete spaces, operators and implemen-
tation of boundary conditions. Finally we use a uniform
discretization of time tk := 0 + k · s, where s > 0 is the
time step and k is a positive integer. We now represent
the fully discrete scalar function at (xi, yj) at time tk by
f(tk, xi, yj) := fkij to simplify the notation. Given n̂kij
and ψkij we use a classic forward Euler approximation for

time stepping vector field n̂ to obtain n̂k+1
ij . The phase

field ψ (Cahn Hilliard type equation) can in principle be
time evolved using a forward Euler method. This how-
ever leads to severe time step restrictions i.e., s ∼ O(h4)
for numerical stability (see [32]). In order to improve
the efficiency we use a semi-implicit convex splitting ap-
proach proposed by D. Eyre in [32] (also see [31], Section
3 for generalizations). This scheme is unconditionally
stable and presents no time step restrictions for the Cahn
Hilliard equations.

Thus given ψkij and n̂k+1
ij , the latter obtained from a

forward Euler method, we use the following scheme to
obtain ψk+1

ij :

ψk+1
ij − ψkij = s∆hµ

k+1
ij ,

µk+1
ij =

(
−ψkij + (ψk+1

ij )3 − λψ∆hψ
k+1
ij

−Ja
(
n̂k+1
ij · ∇h × n̂k+1

ij

))
.

(E3)

The above equations are solved using a Full Approxima-
tion Storage (FAS) non-linear multigrid algorithm with
a Gauss Seidel smoothing scheme. We used a grid of
512 × 512 with a grid size of 0.1 in terms of the twist
penetration length and a time step of the order of the
distance.
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