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Abstract

Signaling in enzymatic networks is typically triggered by environmental fluctuations, resulting in

a series of stochastic chemical reactions, leading to corruption of the signal by noise. For example,

information flow is initiated by binding of extracellular ligands to receptors, which is transmitted

through a cascade involving kinase-phosphatase stochastic chemical reactions. For a class of such

networks, we develop a general field-theoretic approach in order to calculate the error in signal

transmission as a function of an appropriate control variable. Application of the theory to a

simple push-pull network, a module in the kinase-phosphatase cascade, recovers the exact results

for error in signal transmission previously obtained using umbral calculus (Phys. Rev. X., 4,

041017 (2014)). We illustrate the generality of the theory by studying the minimal errors in noise

reduction in a reaction cascade with two connected push-pull modules. Such a cascade behaves as

an effective three-species network with a pseudo intermediate. In this case, optimal information

transfer, resulting in the smallest square of the error between the input and output, occurs with a

time delay, which is given by the inverse of the decay rate of the pseudo intermediate. Surprisingly,

in these examples the minimum error computed using simulations that take non-linearities and

discrete nature of molecules into account coincides with the predictions of a linear theory. In

contrast, there are substantial deviations between simulations and predictions of the linear theory

in error in signal propagation in an enzymatic push-pull network for a certain range of parameters.

Inclusion of second order perturbative corrections shows that differences between simulations and

theoretical predictions are minimized. Our study establishes that a field theoretic formulation of

stochastic biological signaling offers a systematic way to understand error propagation in networks

of arbitrary complexity.
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INTRODUCTION:

Cell signaling involves the ability of cells to detect changes in the environment and re-

spond to them [1–6], a fundamental necessity of living systems. Several signaling networks

involve proteins, which switch between active and inactive states. By quantitatively describ-

ing how different signaling proteins are functionally linked, we can understand the behavior

of signaling pathways, and the associated bandwidth that determines fidelity of information

transfer [7]. In typical enzymatic networks, environmental information is transmitted into

the cell interior through cascades of stochastic biochemical reactions [8]. Noise inevitably

propagates through the cascade, potentially corrupting the signal. Depending on the pa-

rameters, small changes in the input can be translated into large (but noise corrupted)

output variations. The amplification is essential but it must also preserve the signal content

to be useful for downstream processes. The signaling circuit, despite operating in a noisy

environment, needs to maintain high fidelity between output and the amplified input [9].

Over the years, concepts in information theory have been adopted to assess the fidelity of

signal transmission [10, 11]. Several studies have used mutual information between input

and output signals to quantify the reliability of signal transduction [12–17]. The formalism

has been applied to the study of a variety of networks including cascades and networks with

feedback [12]. These, and other studies have expanded our understanding of the fidelity of

information transfer in biological networks in which both noise and copy number fluctuations

are important.

In a recent paper [18], we considered the problem of how to extract information faithfully

from noisy signals using mathematical methods developed in the context of communication

theory developed over sixty years ago by Wiener [19] and independently by Kolmogorov [20].

The Wiener-Kolmogorov (WK) approach has since proven a useful tool in a variety of

contexts in biological signaling [9, 21, 22]. The WK theory, reformulated by Bode and

Shannon [11], assumes that the input and output are continuous variables that describe

stationary stochastic processes. The goal of approach is to minimize the mean squared error

between the input and output signals, but the optimization is restricted to the space of

only linear noise filters. Recently, we developed an analytic formalism of general validity

to overcome some of the limitations of the WK theory based on exact techniques involving

umbral calculus [23]. We illustrated the efficacy of the non-linear theory with applications
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to push-pull network and its variants including instances when the input is time-dependent.

The use of non-standard mathematics in the form of umbral calculus, perhaps, obscures

the physics of optimal filtering in biological networks in which the effects of non-linearities in

signal amplification have to be considered. Here, we develop an alternate general formalism

based on a many body formulation of reaction diffusion equations introduced by Doi and

Peliti [24, 25]. This formulation converts the signal optimization problem to a standard

field theory, allowing us to calculate the response and correlation functions by standard

methods. The advantage of this formalism is that both discrete and continuum cases can be

studied easily. Non-linear contributions can be calculated using systematic diagrammatic

perturbation scheme for an arbitrary network. Networks where temporal dynamics are

coupled with spatial gradients in signaling activities, which regulate intracellular processes

and signal propagation across the cell, can also be investigated using the present formalism.

Application of the theory to a push-pull network and a simplified biochemical network

recovers the exact results obtained in our previous study. We also extend the formalism to

solve signal transduction in a cascade, which serves as a model for a variety of biological

networks. The formalism is general and is applicable to arbitrary networks with feedback,

time delay and special variations [26]. Our work exploits standard methods in physics,

illustrating the usefulness of a field theoretic formulation at the interface of communication

theory and biology.

THEORY:

Linear Push-Pull Network: In order to develop the many body formalism for a gen-

eral signaling network, we first consider a simple model. The concepts and the general

diagrammatic expansion developed in this context, lays the foundation for applications to

more complicated enzymatic networks as well as signaling cascades. In a typical signal-

ing pathway, for example the mitogen activated protein kinase (MAPK) [27, 28] pathway,

external and environmental fluctuations activate a cascade of enzymatic reactions, thus

transmitting information across the membrane in a sequential manner. This pathway be-

gins with a cell-surface receptor with tyrosine kinase activity, connected to a G protein that

is closely related to Ras, which is known to be an oncogene in vertebrates. This is followed

by a cascade of three serine/threonine protein kinases (termed the MAP kinase cascade).
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Each step involves activation of kinases by phosphorylation reaction and deactivation by

phosphatases [29–33]. A truncated version of such a cascade is a single step (Fig.1), which

we refer to as a push-pull network [18]. The kinase acts as a ”push” element that drives the

substrate to a new state, while phosphatase acts as a ”pull” that returns the substrate to the

original state. All information storage and transmission systems, be they natural cellular

systems or human-made electronic ones, require some sort of mechanism like this to write

and erase information in a controllable fashion. Enzymes remain chemically unaltered while

performing their target reaction, and thus they are capable of carrying out many rounds of

the reaction. Thus, catalytic behavior can result in signal amplification: a single activated

enzyme molecule can, under the right conditions, generate many molecules as product. In

this simple signaling network, there are only two chemical species. One is I(t) (the ”input”)

and the other is O(t) (the ”output”) whose production depends on I(t). The upstream path-

way, which serves as an external signal, creates the species I by the reaction φ
F−→ I with an

effective production rate F . The output O is a result of the reaction I
R(I)−−→ I+O, with a rate

R(I(t)) that depends on the input. The species are deactivated through I
γI−→ φ and O

γO−→ φ

with rates γI and γO respectively, mimicking the role of phosphatases (Fig.1). The input

varies over a characteristic time scale γ−1
I , fluctuating around the mean value Ī = F/γI .

The degradation rate sets the time scale γ−1
O over which O(t) responds to changes in the

input.

The chemical Langevin equations describing the changes in I and O are,

dI

dt
= F − γII + ηI ,

dO

dt
= R(I)− γOO + ηO, (1)

where ηI and ηO are Gaussian white noise with zero mean (〈ηα〉 = 0) and correlation

<ηα(t)η′α(t′)> = 2
√
γαᾱδαα′δ(t − t′) with α = I, O and ᾱ is the mean population α. For

small fluctuations, δα(t) = α(t)− ᾱ, Eq.(1) can be solved using a linear approximation for

the rate function R(I(t)) ≈ R0Ī +R1δI(t), with coefficients R0, R1>0. The result is

δI(t) =

∫ t

−∞
dt′e−γI(t−t′)ηI(t

′), (2)

δO(t) =

∫ t

−∞
dt′
R1

G
e−γO(t−t′)

[
GδI(t′) +

G

R1

ηO(t′)

]
,

where in the second line an arbitrary scaling factor G has been introduced. The solution

for δO(t) has the structure of a linear noise filter equation; s̃ =
∫ t
−∞ dt

′H(t − t′)c(t′), with

c(t) = s(t) + n(t). The signal s(t) = GδI(t) together with the noise term n(t) ≡ GR−1
1 ηO(t)
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constitute the corrupted signal, c(t). The output s̃(t) ≡ δO(t) is produced by convolving

c(t) with a linear kernel H(t) ≡ R1G
−1 exp(−γOt), which filters the noise. As a consequence

of causality, the filtered output s̃ at time t depends only on c(t′) from the past.

The primary goal in transmitting signal with high fidelity is to devise an optimal causal

filter, Hopt(t), which renders s̃(t) as close to s(t) as possible. In a remarkable development,

Weiner [19] and Kolmogorov [20] independently discovered a solution to this problem in

the context of communication theory, which launched the modern era in signal decoding

from time series. In particular, WK proposed a solution that minimizes the square of

the differences between s̃ and s(t) by seeking an optimal filter HWK(t) among all possible

linear filters. In the push-pull network, this means having δO(t) reproduce as accurately as

possible the scaled input signal GδI(t). For a particular δI(t) and δO(t), the value of the

mean squared error E = 〈(s̃ − s)2〉/〈s2〉 is smallest when G = 〈(δO)2〉/〈δOδI〉, which we

identify as a gain factor. In this case, E = 1− 〈δOδI〉2/(〈(δO)2〉〈(δI)2〉).

The optimal causal filter HWK satisfies the following Wiener-Hopf equation[9, 18],

Ccs(t) =

∫ t

−∞
dt′HWK(t− t′)Ccc(t′), t > 0 (3)

where Cxy(t) ≡ 〈x(t′)y(t′ + t)〉 is the correlation between points in the time series x and y,

assumed to depend only on the time difference t− t′. We can evaluate the correlation func-

tions Ccs and Ccc using Eq. (2), and substituting these solutions in Eq. (3), the optimal filter

function can be solved by assuming a generic ansatz, HWK(t) =
∑N

i=1Ai exp(−λit). The

unknown coefficients, Ai, and the associated rate constants λi are found by comparing the

left and right hand sides of Eq. (3). Elsewhere [18], we showed that HWK(t) = γI(
√

1 + Λ−

1) exp(γI
√

1 + Λt). The conditions for achieving WK optimality, H(t) = HWK(t), are [18],

γO = γI
√

1 + Λ, G =
R1

γI(
√

1 + Λ− 1)
, (4)

leading to the minimum relative error,

EWK =
2

1 +
√

1 + Λ
, Λ ≡ R2

1

R0γI
. (5)

The fidelity between the output and input is described through a single dimensionless opti-

mality control parameter, Λ, which can be written as Λ ≡ (R0/γI)(R1/Ro)
2. The first term,

R0/γI , is a burst factor, measuring the mean number of output molecules produced per

input molecule during the active lifetime of the input molecule. The second term, (R1/Ro)
2,
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is a sensitivity factor, reflecting the local response of the production function R(I) near

Ī (controlled by the slope R1 = R′(Ī)) relative to the production rate per input molecule

R0 = R(Ī)/Ī.

In our recent work [18], we extended the WK approach to include non-linearity and the

discrete nature of the input and output molecules I and O [18]. Both these considerations

are relevant in biological circuits where R(I) is non-linear and the copy numbers of I and O

are likely to be small. Starting from the exact master equation, valid for discrete populations

and arbitrary R(I), we rigorously solved the original optimization problem for the error E

between output and input using the principles of umbral calculus[23]. Umbral calculus starts

by noting that R(I) can be expanded as a Newton series (the finite difference analog of the

Taylor series). The main results are as follows. For any arbitrary function R(I) is expanded

as,

R(I) =
∞∑
n=0

σnvn(I), (6)

with vn(I) =
∑∞

m=0(n − m)!(−Ī)m

n

m

 I

n−m

 and σn = <vn(I)R(I)>/(Īnn!), the

relative error can be expressed by an exact expression,

E = 1− Īγ2
Oσ

2
1

(γI + γO)2

[
γOσ0 +

∞∑
n=1

σ2
n

n!γOĪ
n

γO + nγI

]−1

. (7)

The expression above is bounded from below by

E ≥ Eopt ≡
2

1 +
√

1 + Λ̃
, (8)

where Λ̃ = Īσ2
1/(σ0γI). The equality is only reached when γO = γI

√
1 + Λ̃ and R(I) is

an optimal linear filter of the form, Ropt(I) = σ0 + σ1(I − Ī), with all σn = 0 for n ≥ 2.

Obtaining the lower bound is important for noise reduction in biological networks as it

provides insights into energy costs required to reduce the error [10]. It follows from Eq.(8)

that in order to reduce error by a factor of 10 the number of signaling events has to increase

by 104 [10]. Because signaling events are triggered by chemical reactions (in the kinase-

phosphatase network it involves ATP) this requires considerable energy cost.

Field theoretic formulation: In order to generalize the results in our previous

study [18] to arbitrary regulatory networks, we adopt a many body approach pioneered

by Doi and Peliti[24, 25]. Such an approach has been used in the study of a variety of
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reaction diffusion equations [34, 35]. Besides suggesting plausible new ways of examining

how signals are transmitted in biochemical reaction networks, the current theory shows

how standard field theoretic methods can be adopted for use in control theory. By way of

demonstrating its utility, we rederive the exact analytical solution (Eq.(7)) for the relative

error in the push-pull network. In the Doi-Peliti formalism, the configurations at time t in

a locally interacting many body system are specified by the occupation numbers of each

species on a lattice site i. In our case, Ii is the input population and Oi is the output

population. As a consequences of the stochastic dynamics, the on-site occupation numbers

are modified. Arbitrarily many particles of either population are allowed to occupy any

lattice site. In other words, Ii, Oi = 0, 1, · · ·∞. The master equation for the local reaction

scheme that governs the time evolution of the configurational probability with Ii input and

Oi output at site i at time t is obtained through the balance of gain and loss terms. The

result is,

dP (Ii, Oi, t)

dt
= γI [(Ii + 1)P (Ii + 1, Oi, t)− IiP (Ii, Oi, t)] + F [P (Ii − 1, Oi, t)− P (Ii, Oi, t)] (9)

+ γO[(Oi + 1)P (Ii, Oi + 1, t)−OiP (Ii, Oi, t)] +R(Ii)[P (Ii, Oi − 1, t)− P (Ii, Oi, t)].

We use the Fock space representation to account for the changes in the site occupation

number by integer values for the chemical reactions describing the network. Following Doi

and Peliti, we introduce the bosonic ladder operator algebra with commutation relation

[ai, aj] = 0, [ai, a
†
j] = δij for the input population, allowing us to construct the input particle

number eigenstates |Ii〉 obeying ai|Ii〉 = Ii|Ii − 1〉, a†i |Ii〉 = |Ii + 1〉, a†iai|Ii〉 = Ii|Ii〉. A

Fock state with Ii particles on site i is obtained from the vacuum state |0〉, defined by the

relation ai|0〉 = 0, and |Ii〉 = a†i
Ii |0〉. Similarly, we introduce annihilation and creation

operators for output particles bi and b†i that commute with the input ladder operators:

[ai, bj] = 0 = [ai, b
†
j].

Stochastic kinetics for the entire lattice is implemented by considering the master equation

for the configurational probability P ({Ii}, {Oj}, t), given by a sum over all lattice points on

the right hand side of Eq.(9), by noting that a general Fock state is constructed by the

tensor product |{Ii}, {Oj}〉 = Πi|Ii〉|Oi〉. We define a time dependent formal state vector

through a linear combination of all possible Fock states, weighted by their configurational
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probability at time t,

|ψ(t)〉 =
∞∑

{Ii,Oj}

P ({Ii}, {Oj}, t)Π{i,j}a
†
i

Ii
b†i
Oj |0〉. (10)

This superposition state encodes the stochastic temporal evolution. We use standard meth-

ods to transform the time dependence from the linear master equation into an imaginary

time Schrödinger equation, governed by a time-dependent stochastic evolution operator H,

d

dt
|ψ(t)〉 = −H({a}, {a†}; {b}, {b†})|ψ(t)〉. (11)

We may multiply Eq.(9) by a†i
Ii
b†i
Oi |0〉, and sum over all values of Ii, Oi. With the definition

of the state |ψ(t)〉,

|ψ(t)〉 =
∞∑
Ii,Oi

P (Ii, Oi, t)a
†
i

Ii
b†i
Oi |0〉, (12)

the γI term, i.e. γI [(Ii + 1)P (Ii + 1, Oi, t)− IiP (Ii, Oi, t)], in Eq.(9) becomes,

γI

∞∑
Ii,Oi

[(Ii + 1)P (Ii + 1, Oi)− IiP (Ii, Oi)]a
†
i

Ii
b†i
Oi |0〉

= γI

∞∑
Ii,Oi

[P (Ii + 1, Oi)aia
†
i

Ii+1
b†i
Oi |0〉 − P (Ii, Oi)a

†
iaia

†
i

Ii
b†i
Oi |0〉]. (13)

By relabeling the indices in the first sum, we arrive at the desired Hamiltonian expressed in

second quantized representation as, HγI = −γI(1 − a†i )ai. Similarly, terms with coefficients

F , γO and R(Ii) in Eq.(9) give the following contributions, HF = −F (a†i − 1), HγO =

−γO(1 − b†i )bi, HR(Ii) = −R(a†iai)(b
†
i − 1). The total Hamiltonian H takes the following

form,

H = HγI +HF +HγO +HR(I)

=
∑
i

[−γI(1− a†i )ai − F (a†i − 1)− γO(1− b†i )bi −R(a†iai)(b
†
i − 1)]. (14)

A convenient choice for the initial configuration for the master equation describing the

stochastic particle reactions is an independent Poisson distribution at each site,

P ({Ii}, {Oi}; 0) = ΠiP0(Ii)P0(Oi) = Πie
−Ī0e−Ō0O0

−OiI0
−Ii/Ii!Oi!. (15)

with mean initial input and output concentrations Ī0 and Ō0. Just as in quantum mechanics,

Eq.(11) can be formally solved leading to,

| ψ(t)〉 = eHt|ψ(0)〉, (16)
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with the initial state |ψ〉 = eĪ0
∑
i(a
†
i−1)+Ō0

∑
i(b
†
i−1)|0〉.

Our goal is to compute averages and correlation functions with respect to the configura-

tional probability P ({Ii}, {Oi}; t), which is accomplished by means of the projection state

<P| = <0|Πie
ai+bi , for which <P|0〉 = 1 and <P|a†i = <P| = <P|b†i , since [eai , a†j] = eaiδij.

The average value of an observable A({Ii}, {Oi}) is,

<A(t)〉 =
∑

{Ii},{Oi}

A({Ii}, {Oi})P ({Ii}, {Oi}; t), (17)

from which the statistical average of an observable can be calculated using,

<A(t)〉 = <P|A({a†i , ai; b
†
i , bi})|ψ(t)〉 (18)

= <P|A({a†i , ai; b
†
i , bi})e−H(({a†i},{ai};{b

†
i},{bi})t|ψ(0)〉.

We follow a well-established route in quantum many particle theory [36], and proceed

towards a field theory representation by constructing a path integral equivalent of the time

dependent Schrödinger equation (Eq.(11)) based on coherent states [37]. These are defined

as right eigenstates of the annihilation operators, ai|αi〉 = αi|αi〉 and ai|βi〉 = βi|βi〉, with

complex eigenvalues αi and βi. The coherent states satisfy |αi〉 = exp(1
2
|αi|2 + αiα

†
i )|0〉,

the overlap integral <αj|αi〉 = exp(−1
2
|αi|2 − 1

2
|αj|2 + α∗jαi), and the completeness relation∫

Πid
2αi|{αi}〉<{αi}| = π. After splitting the temporal evolution (Eq.(11)) into infinitesi-

mal increments, inserting the completeness relation at each time step, and with additional

manipulations leads to an expression for the configurational average,

〈A(t)〉 ∝
∫

Πidαidα
∗
i dβidβ

∗
iA({αi}, {βi})e−S[α∗i ,β

∗
i ,αi,βi]. (19)

The exponential statistical weight is determined by the action,

S[α∗i , β
∗
i , αi, βi] =

∑
i

[∫ tf

0

{
α∗i (t)

∂αi(t)

∂t
+ β∗i (t)

∂βi(t)

∂t

}
+H(α∗i , β

∗
i , α, β)

]
dt. (20)

Finally, by taking the continuum limit using
∑

i → a−d0

∫
ddx, a0 is a lattice constant,

αi(t) → φ(x, t), βi(t) → ψ(x, t) and αi(t) → ad0φ(x, t), β∗i (t) → ad0ψ
∗(x, t), the expectation

value is represented by a functional integral,

〈A(t)〉 ∝
∫

ΠiD[φ∗, φ, ψ∗, ψ]A({φ}, {ψ})e−S[ψ∗,φ∗,ψ,φ] (21)

with an effective action

S[ψ∗, φ∗, ψ, φ] =

∫ tf

0

[{
ψ∗(t)

∂ψ(t)

∂t
+ φ∗(t)

∂φ(t)

∂t

}
+H(ψ∗, φ∗, ψ, φ)

]
dt. (22)

9



In the Hamiltonian (Eq.(14)), a† and b† are replaced by the field variables φ∗ and ψ∗,

respectively. Similarly, a and b operators become φ and ψ respectively.

The action in Eq.(22) encodes the stochastic master equation kinetics through four in-

dependent fields (ψ∗, φ∗, ψ, φ). With this formulation, an immediate connection can be

made to the response functional formulation using the Janssen - De Dominicis formalism for

Langevin equations [38, 39]. In this approach, the response field enters at most quadrati-

cally in the pseudo-Hamiltonian, which may be interpreted as averaging over Gaussian white

noise. With this in mind, we apply the non-linear Cole-Hopf transformation [40, 41], in order

to obtain quadratic terms in auxiliary fields, φ∗ = eφ̄I , φ = e−φ̄IφI , ψ
∗ = eψ̄O , ψ = e−ψ̄OψO,

to the action in Eq.(22). The Jacobian for this variable transformation is unity, and the

local particle densities are φ∗φ = φI and ψ∗ψ = ψO. We obtain the following Hamiltonian,

H = −γI(−φ̄I +
φ̄2
I

2
)φI − F (φ̄I +

φ̄2
I

2
)− γO(−ψ̄O +

ψ̄2
O

2
)ψO −R(φI)(ψ̄O +

ψ̄2
O

2
). (23)

In the above equation, the exponential term has been expanded to second order. The rate

equations are obtained through δS/δψ̄ |ψ̄=0= 0 and δS/δφ̄ |φ̄=0= 0. The terms quadratic in

the auxiliary fields (ψ̄ and φ̄) encapsulate the second moment of the Gaussian white noise

with zero mean.

In order to obtain fluctuation corrections needed to calculate minimum error in signal

transduction, we write the action in terms of fluctuating fields, δφI = φI − 〈φI〉 and δψO =

ψO − 〈ψO〉 as,

H = φ̄I [γIδφI − γI〈φI〉φ̄I ] +

ψ̄O[γOδψO − {c1δφI +
c2

2
δφ2

I + · · · } − γO〈ψO〉ψ̄O] (24)

where we have expanded R(φI) in a Taylor series,

R(φI) =
∞∑
0

cn
n!

(δφI)
n, (25)

with constant cn. Note this expansion differs from the one used in Eq.(6). The coefficients

of φ̄2
I and ψ̄2

O reflect the noise correlations in Langevin description.

In Fourier space the action becomes

S[Ψ̃,Ψ] =

∫
w

φ̄I [−iw δφI + γIδφI − γI〈φI〉φ̄I ] + (26)

ψ̄O[−iw δψO + γOδψO − c1δφI − γO〈ψO〉ψ̄O]

+Sint[Ψ̃,Ψ]
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where Ψ̃ represents the set {φ̄I , ψ̄O} and Ψ denotes {φI , ψO}. The non-linear contribution

to the action is Sint[Ψ̃,Ψ] =
∫
w
ψ̄O[ c2

2
δφI(w1)δφI(w − w1)] + · · · . Physical quantities can

be expressed in terms of correlation functions of fields Ψ and Ψ̃, taken with the statistical

weight e−S[Ψ̃,Ψ],

〈ΨΨ̃〉 =

∫
D[iΨ̃]

∫
D[Ψ]ΨΨ̃e−S[Ψ̃,Ψ]∫

D[iΨ̃]
∫
D[Ψ]e−S[Ψ̃,Ψ]

. (27)

In order to compute the correlation function involving response fields, it is useful to introduce

the generating functional,

Z[J̃ , J ] = 〈exp

∫
t

∑
α

(J̃α(t)Ψ̃α(t) + Jα(t)Ψα(t))〉 (28)

where α represents the set {φI , ψO}, for which the required correlation functions are obtained

via functional derivatives of Z with respect to the appropriate source fields.

The procedure is readily implemented for the Gaussian theory with statistical weight

e−S0[Ψ̃,Ψ]. In Fourier space, we can write the harmonic function as,

S0[Ψ̃,Ψ] =

∫
w

∑
α

(
Ψ̃α(−w) Ψα(−w)

)
M

Ψ̃α(w)

Ψα(w)

 (29)

with the Hermitian coupling, a (4,4) matrix M(w). With the aid of Gaussian integrals, we

obtain,

Z0[J̃ , J ] = exp

1

2

∫
w

∑
α

(
J̃α(−w) Jα(−w)

)
M−1

J̃α(w)

Jα(w)

 . (30)

From Eq.(30), we now directly infer the matrix of two point correlation functions in the

Gaussian ensemble with the inverse of harmonic coupling matrix M.

APPLICATIONS:

As a first application we apply the field-theoretic formalism to the push-pull network,

which can be exactly solved for the error (Eq.(5)). In the process we illustrate the way the

diagrammatic expansion works in the context of signaling networks, making it possible to

apply the theory to more complicated systems.
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A. Push-Pull network:

The calculation of the error (Eq.(5)) in terms of the control variable (the average num-

ber of phosphatase molecules per cell (P̄ )) requires the correlation functions 〈δOδI〉, 〈δO2〉

and 〈δI2〉. These can be expressed in terms of the matrix elements of (M−1)mn (Eq.(29)).

Subscripts m and n represent the mth row and nth column, respectively. For example,

(M−1)33 is the correlation function 〈δφI(−w)δφI(w)〉. Similarly we can obtain other corre-

lation functions. Now, we can compute power spectra for the input and output molecules by

evaluating the correlation functions of kinase and substrate populations using Eq. (30). We

use perturbation theory for the action corresponding to the push-pull network to compute

the non-linear contribution to the correlation function.

We obtain the following expressions for the power spectra,

〈δφI(−w)δφI(w)〉0 =
2γI〈φI〉

(−iw + γI)(iw + γI)

〈δψO(−w)δψO(w)〉0 =
c2

12γI〈φI〉
(−iw + γO)(−iw + γI)(iw + γO)(iw + γI)

+
2γO〈φO〉

(−iw + γO)(iw + γO)

〈δφI(−w)δψO(w)〉0 =
2c1γI〈φI〉

(−iw + γO)(−iw + γI)(iw + γI)
(31)

The 〈· · · 〉0 is taken with respect to the non-interacting theory (Sint[Ψ̃,Ψ] = 0 in Eq.(26)).

Using these functions, the error (E) and gain (G) are given by,

E =
〈(δψO −GδφI)2〉

G2〈δφ2
I〉

, G =
〈δψO2〉
〈δφIδψO〉

. (32)

By inserting the expressions for the correlation functions in Eq.(31) into Eq.(32), and inte-

grating over w, we obtain the minimum relative error for the linear push-pull network,

E = 1− Īγ2
Oσ

2
1

(γI + γO)2

[
γOσ0 + σ2

1

γOĪ

γO + γI

]−1

. (33)

Higher order corrections to the power spectra 〈δψO(−w)δψO(w)〉 are calculated using per-

turbation theory by evaluating the Feynman diagrams (Fig.(2)),

〈δψOδψO〉 =
〈δψOδψO

∑∞
l (−Sint[Ψ̃,Ψ])l/l!〉0

〈
∑∞

l (−Sint[Ψ̃,Ψ])l/l!〉0
. (34)
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For example, the second order contribution to the 〈δψO(−w)δψO(w)〉 arising from the loop

in Fig.(2) is Ω2
2

2!Ī2

γO(γO+2γI)
(see Appendix A for details). The coefficient Ω2

2 is given by

Ω2
2 =

c22
4

+
c23
4

+ Ī
4
c2c4 + · · · . Higher order terms have a similar structure: for example, the

third order contribution to the power spectra is Ω2
3

3!Ī2

γO(γO+3γI)
, with Ω2

3 =
c23
36

+
c24
16

+ Ī
36
c3c5+· · · .

By evaluating all the diagrams in Fig.(2), we obtain the final expression for the relative error,

E = 1− Īγ2
Oσ

2
1

(γI + γO)2

[
γOσ0 +

∞∑
n=1

Ω2
n

n!γOĪ
n

γO + nγI

]−1

, with Ω1 = σ1. (35)

The form of the result in Eq.(35) coincides with the exact expression (Eq.(7)) for the

relative error previously obtained [18] by using an entirely different approach based on

umbral calculus. However, the coefficients Ωn are expressed in terms of the coefficients cn

used in the series for R(I) (Eq.(25)) rather than σn. The two kinds of coefficients are

non-trivially related through,

σn =
∞∑
m=0

m∑
p=0

p∑
q=0

1

m!

m
p

q
n

Spq(−Ī)m−pĪq−ncm, (36)

where Spq are Stirling’s numbers of second kind. For all n, the leading order term c2n
n!2

of Ωn

is the same as the leading order term of σn.

The sum within the bracket in Eq.(35) is composed of non-negative terms. The minimal

sum E is obtained by setting Ωn = 0 for all n ≥ 2. Thus, E is bounded from below by

E ≥ 1 − Īγ2Oσ
2
1

(γI+γO)2

[
γOσ0 + σ2

1
γO Ī
γO+γI

]−1

. The term on the right hand side is minimized with

respect to γo when γo = γI
√

1 + Λ̃, with Λ̃ = Īσ2
1/σ0γI . At the optimal γO, the equality

becomes E = 2/(1+
√

1 + Λ̃) ≡ Eopt. As σ1 increases, Λ̃ becomes large which is desirable for

high fidelity signal transduction. As long as R(I) is approximately linear in the vicinity of

Ī, the corrections σn (or Ωn) for n > 2 are negligible, and E is close to Eopt. The coefficients

σn for n > 2 must be non-negligible when σ1 is sufficiently large. Such a highly sigmoidal

input-output response, known as ultra-sensitivity [1], is biologically realizable in certain

regimes of signaling cascades. In the limit of a nearly step-like response, non-linearity in

R(I) becomes appreciable around Ī, distorting the output signal and leading to E that is

larger than Eopt. Because E increases with Λ̃ in this limit, the benefits of ultra-sensitivity

vanish.
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B. Signaling Cascades:

A natural extension is to consider a cascade created by an array of connected push-pull

networks. Indeed, in some biological signaling pathways external perturbation is transmitted

through a cascade of reactions involving successive activation by kinases and deactivation

by phosphatases. An example is the stimulation of a receptor tyrosin kinase by epidermal

growth factor, which results in downstream responses of the MAPK network [27, 42].

Because sections B, C and D are related, we explain briefly the results in order to ensure

that the relationship between these sections are clear. In this section we describe the two

cascade network using the field theory framework, and the coarse-graining procedure needed

for obtaining an analytic expression for optimal error. In section C, we show that the two

cascade network behaves as noise filter with a time delay, α−1. By mapping the cascade

to a push-pull network with an intermediate, we show in section D that α can be exactly

calculated. Thus, the results in the three sections provide an analytic theory for optimal

signaling in the two cascade network.

Consider a two step series enzymatic cascade (Fig.(3)) modeled as a sequence of two

enzymatic push-pull loops stimulated by an upstream enzyme. In the first loop, an upstream

enzyme, K phosphorylates the substrate, S, to produce S∗, converting it from an inactive to

active state. Phosphatase (P ) dephosphorylates S∗ to an inactive state S. In the second loop,

S∗ acts as the enzyme for the phosphorylation of T and P , the corresponding phosphatases.

The series of chemical reactions involved in this cascade are,

φ
F−⇀↽−
γk
K

K + S
k1b−−⇀↽−−
k1u

SK
k1r−−→ K + S∗; S∗ + P

ρ1b−−⇀↽−−
ρ1u

S∗P
ρ2r−−→ S + P

S∗ + T
k2b−−⇀↽−−
k2u

S∗T
k2r−−→ S∗ + T ∗; T ∗ + P

ρ2b−−⇀↽−−
ρ2u

T ∗P
ρ2r−−→ T + P (37)

where SK , S∗P , S∗T and T ∗P are the reaction intermediates, and kib, kiu, kir, ρib, ρiu and ρir ,

i = 1, 2, are the rate constants of the stochastic biochemical reactions in the cascade. The

input signal K+SK is transduced into the active substrate output T ∗+T ∗P . In an insightful

article [42], a deterministic approach was used to analyze the system of chemical reactions

in Eq.(37). Here we assume that the reactions are stochastic. In order to develop analytical

results we only consider fluctuations of all species that deviate linearly from their mean
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values. The validity of the asumption is established by comparing the results with kinetic

Monte Carlo (KMC) simulations.

For the network in Fig.(3), the procedure outlined earlier leads to a Schrödinger-like

equation with the following Hamiltonian,

H =−F (K̄ − 1)− γk(1− K̄)K − k1b(S̄K − K̄S̄)KS − k1u(K̄S̄ − S̄K)SK

−k1r(S̄
∗K̄ − S̄K)SK − ρ1u(S̄

∗P̄ − S̄∗P )S∗P − ρ1b(S̄
∗
P − S̄∗P̄ )S∗P

−ρ1r(P̄ S̄ − S̄∗P )S∗P − k2b(S̄
∗
T − S̄∗T̄ )TS∗ − k2u(S̄∗T̄ − S̄∗T )S∗T

−k2r(S̄
∗T̄ ∗ − S̄∗T )S∗T − ρ2u(T̄

∗P̄ − T̄ ∗P )T ∗P − ρ2b(T̄
∗
P − T̄ ∗P̄ )T ∗P − ρ2r(P̄ T̄ − T̄ ∗P )T ∗P .

(38)

We can approximately map the two-step cascade into a two-species coarse-grained net-

work, which acts like a noise filter, as described in detail in Ref. [18]. Consider a signaling

pathway (Fig.(1)) with time varying input I(t) and time varying output O(t). These are the

total populations (free and bound) of the input and output active kinases, with I = K+SK

and O = T ∗ + T ∗P . The upstream pathway provides an effective production rate F of input

I, while the output O results from the reaction I
R(I)−−→ I +O. As before, γI and γO are the

degradation rates for the input and output respectively, mimicking the role of phosphatase.

The input and output correlation functions, evaluated using the field theory formalism, have

the approximate structure,

PI(w) =
2Fγ−2

I

1 + (w/γI)2

PO(w) =
(R1/γoG)2

1 + (w/γ0)2

[
G2PI(w) +

2F (G/γI)
2

Λ

]
(39)

where we have used a linear approximation for R(I) ≈ R0Ī + R1(I − Ī) with R0, R1 >.

Optimality is achieved when γO = γI
√

1 + Λ with gain G = R1/(γI(
√

1 + Λ− 1)). Relative

error with the minimum EWK = 2/(1+
√

1 + Λ). As before, the fidelity between output and

input is controlled by single dimensionless control parameter Λ = (R1/γI)(R1/R0)2. This

mapping allows us to use the general WK result for gain (G) and the minimum relative error

(EWK) to predict the optimality condition, allowing us to calculate the minimum possible

value of E. The results for the error in terms of the mean number of phosphatase are given

by the red lines in Fig.(4).

In order to test the accuracy of our theory we simulated the dynamics of the enzymatic

cascade using the KMC method. The relative error E shown in Fig.(4) is in excellent
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agreement with the theoretical predictions. Interestingly, E achieves a minimum at P̄ = 105

molecules/cell, which is ten times larger than the phosphatase concentration in the one step

enzymatic push-pull loop using similar parameters. Fig.(4) shows that there is a well defined

narrow range of phosphatase population in which the error is minimum. The range decreases

as Λ decreases (Fig.(4)). The minimum value for the relative error does not reach the value

predicted by the WK limit (Eq.(5)). As we show below, the additional error arises from an

effective time delay as the signal passes from one cascade to another. We also demonstrate

that the time delay can alternatively be mimicked by reducing the two cascade system to a

coarse-grained pathway with an intermediate (Fig.(3b)).

C. Noise filtering with time delay:

In order to prove that the two-cascade loop effectively acts like a noise filter with time

delay, we derive the condition for minimum error for the latter following the Bode-Shannon

formulation of the WK theory [11]. In this scenario, the transmitted signal can only be

recovered after a constant delay, α. The output O(t) is produced by convolving the corrupted

signal (input GI(t)+ noise n(t)) with a causal filter H(t). In Fourier space, we obtain,

O(w) = H(w)c(w) = H(w)(GI(w) + n(w)) (40)

where x(w) =
∫∞
−∞ dw x(t)e−iwt for the time series x(t). The relative error is given by [11],

E =

∫∞
−∞

dw
2π

[|H(w)|2Pn(w) + |H(w)− 1|2PI(w)]∫∞
−∞

dw
2π
PI(w)

(41)

where PI(w) and Pn(w) are the power spectral densities (PSDs) of GI(t) and n(t) respec-

tively. We need to minimize E in Eq.(41) over all possible H(w), with the condition that

H(t) = 0 for t < α. The optimal causal filter has the following form [9, 11, 22],

HWK(w) =
eiwα

P y
c (w)

{
PI(w)e−iwα

P y
c (w∗)

}
y

. (42)

The y super and subscript refer to two different decompositions in the frequency domain.

Causality can be enforced by noting the following conditions: (i) Any physical PSD, in this

case Pc(w) corresponding to the corrupted signal c(t) = GI(t) + n(t), can be written as

Pc(w) = |P y
c (w)|2. The factor P y

c (w), if treated as a function in the complex w plane, does

not have zeros and poles in the upper half-plane (Im w〉0). (ii) We also define an additive
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decomposition denoted by {F (w)}y for any function F (w), which consists of all terms in the

partial fraction expansion of F (w) with no poles in the upper half-plane. By using the PSDs,

PI(w) = 2G2γI Ī
w2+γ2I

and Pc(w) = 2G2γI Ī
w2+γ2I

+ 2G2

γIΛ
, we obtain the following optimal filter HWK(w),

HWK(w) =
eα(iw−γI)γI(

√
1 + Λ− 1)

γI(
√

1 + Λ− iw)
. (43)

In the limit α� γ−1
I , the optimal error EWK takes the following form [22],

EWK =
2

1 +
√

1 + Λ
+

2ΛαγI

(1 +
√

1 + Λ)2
, (44)

where the second term in the above equation is the correction due to the time delay to the

WK minimum value of the relative error for an instantaneous filter (α→ 0). The correction

is positive for all values of α and Λ, which implies that time delay must increase the error

in signal transmission. If we add this correction to the WK minimum result for the relative

error of instantaneous filter (Eq.(5)), for specific values of α calculated explicitly in the

following section, we recover the minimum relative error in the signaling cascade. Thus, the

two step enzymatic cascade minimizes the noise but behaves like a single step network with

a time delayed filter.

D. Deriving the time delay α by mapping onto a three-species pathway with an

intermediate:

Alternatively, we can derive an explicit expression for the delay parameter α by using a

different mapping for the original cascade. Instead of mapping onto a two-species network

of I and O with a time delay, we map onto a three-species network (Fig.(3b)) with I, M ,

and O. Here there is no explicit time delay, but an additional species M that will play

the role of a “pseudo” intermediate mimicking the effect of the time delay. This network is

governed by the reactions: φ
F−→ I, I

Ra(I)−−−→ I + M , M
Rb(M)−−−−→ M + O, I

γI−→ φ, M
γM−−→ φ

and O
γO−→ φ. The production functions have the linear form: Ra(I) = σa0 + σa1(I − Ī) and

Rb(M) = σb0 + σb1(M − M̄). Earlier analysis of this network [22] has shown that it behaves

like a time delayed filter, with the minimal error in the same form as Eq.(44), with α = γ−1
M

and effective Λ = Λb

√
1 + Λa, where Λa = Īσ2

a1/σaoγI and Λb = M̄σ2
b1/σboγM .

The original signaling cascade (Fig.(3a)) can be mapped onto the three-species pathway

(Fig.(3b)). This involves identifying the population S∗+S∗P = M as a “pseudo” intermediate,
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with an effective degradation γM . The mapping can be carried out by comparing PSDs

between the two models. For the three-species network these are given by,

PδI(w) =
2γI Ī

w2 + γ2
I

(45)

PδO(w) =
G−2σ2

a1σ
2
b1

(w2 + γ2
M)(w2 + γ2

O)

(
G2PδI(w) +

2G2γMM̄

σ2
a1

+
G2(w2 + γ2

M)2γOŌ

σ2
a1σ

2
b1

)
Now, the PSDs for signaling cascade, calculated from the Doi-Peliti formalism, are given by,

PδI(w) =

∑N−1
i=0 nδI,iw

2i

1 +
∑N

i=1 dδI,iw
2i

and PδO(w) =

∑N−1
i=0 nδO,iw

2i

1 +
∑N

i=1 dδO,iw
2i
, (46)

where the w-independent parameters nδI,i, nδO,i, dδI,i and dδO,i are related to the rate co-

efficients in the cascade reactions (Eq.(37)). Here, N = 7 corresponds to the number of

independent dynamical variables (K,SK , S
∗, S∗P , T, T

∗
P and T ∗). By mapping Eq.(46) into

Eq.(45), we can extract the degradation rate of intermediate species (S∗+S∗P ), γM in terms

of coefficients in Eq.(46),

γ2
M =

1

2
[A+

√
(A2 + 4B)], (47)

with A =
dδO,2
dδO,3

− γ2
I and B = Aγ2

I −
dδO,1
dδO,3

. The time delay parameter α = γ−1
M in the

signaling cascade. With this identification for α we have a complete theory for E, with no

adjustable parameter, as a function of the control parameter, the mean phosphatase levels.

It is tempting to speculate that a multiple (> 2) step cascade might also be mathematically

equivalent to a network with a single pseudo intermediate.

E. Enzymatic Push-Pull Loop:

In considering the cascade model, we focused on the case where fluctuations around

mean populations levels were small enough that the linear approximation is valid. To study

the effects of non-linearity, we will look at a simpler system (one stage of the cascade)

but without any constraints on the size of the fluctuations. A microscopic model for the

enzymatic push-pull network is shown in Fig.(5). The upstream enzyme, K phosphorylates

a substrate S to S∗, thereby converting it from an inactive to an active state. The effective

production rate in the upstream pathway for enzyme K is F . The degradation rate for K

is γK . The enzyme is either free (K) or bound to substrate (SK). The input I is the total

enzyme population I = K + SK . Phosphatase, P , on the other hand dephosphorylates the
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active substrate S∗ to an inactive state S. The output of the two phosphorylation cycle is

O = S∗ + S∗P .

The biochemical reactions for the enzymatic network with the corresponding rate con-

stants are,

φ
F−⇀↽−
γk
K

K + S
kb−⇀↽−
ku

SK
kr−→ K + S∗

S∗ + P
ρb−⇀↽−
ρu
S∗P

ρr−→ S + P. (48)

In the stochastic chemical reactions that govern the phosphorylation/dephosphorylation

steps, the input signal I = K + SK is transduced into the active substrate output S∗ + S∗P .

To derive the conditions for optimality, we follow the procedure outlined in the previous

section. Starting from the master equation, we can derive a Schrödinger-like equation with

the following Hamiltonian,

H = −F (K̄ − 1)− γk(1− K̄)K − kb(S̄K − K̄S̄)KS

−ku(K̄S̄ − S̄K)SK − kr(S̄∗K̄ − S̄K)SK − ρu(S̄∗P̄ − S̄∗P )S∗P

−ρb(S̄∗P − S̄∗P̄ )S∗P − ρr(P̄ S̄ − S̄∗P )S∗P (49)

After using coherent-state path integral formalism, we arrive at the expression for the action

corresponding to the enzymatic push-pull loop from which we calculate the power spectra

for the input and output.

As in the signaling cascade network described in the previous section, we approximately

map the complete enzymatic network into a noise filter [18]. The input and output correla-

tion functions, evaluated using field theory formalism, have the approximate structure given

in Eq.(39). Starting from the full dynamical equations (Eq.(48)), we compute correlation

functions using field theory by solving the Wiener-Hopf relation in Eq.(3), for the optimal

function HWK(t).

Correlation functions of input and output calculated for enzymatic push-pull loop have

the approximate form of Eq.(39), with effective values of parameters γI , γO, R1 and Λ which

have been expressed in terms of loop reaction rate parameters. This mapping allows us to

use WK result for the gain (G) and minimum relative error (EWK) to predict the optimality

and minimum possible value of E. The results for the error in terms of the mean number of

phosphatase are given by the solid lines in Fig.(6).
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In order to illustrate the accuracy of the theory we performed KMC simulations by

choosing the forward and backward reaction rates in Eq.(48) describing the enzymatic push-

pull loop network (all units are in s−1) : kb = ρb = 10−5, ku = 0.02, ρu = 0.5, kr = 3, ρr = 0.3,

F = 1. The deactivation rate γk = 0.01s−1 of enzyme K which controls the characteristic

time scale over which the input signal varies, mimicking the role of phosphatase. Mean free

substrate and phosphatase populations are in the ranges S̄ = P̄ ∼ 103 − 105 molecules/cell.

Fig (6) shows that E is a minimum at a particular value of phosphatase concentration P̄ ,

where optimality condition is satisfied i.e. γO = γI
√

1 + Λ. For a particular value of Λ = 100,

we see minimum error E = 0.18 for the enzymatic push-pull loop. The result of the KMC

simulations (purple circles) are in excellent agreement with the analytical calculation (blue

line) for all Λ values.

In the parameter space used in the results in Fig.(6), a linear theory reproduces the

simulation results well. However, deviations from the predictions of the linear theory are

expected if the input parameters are varied. In order to investigate these deviations we first

obtained the error using the parameter values, kb = ρb = 10−3, ku = 0.02, ρu = 0.5, kr = 3,

ρr = 0.3 using KMC simulations. The relative error for Λ = 100 is shown in purple line in

Fig.(7). The blue line, calculated from linear theory predictions, deviates substantially from

simulations (purple line in Fig.(7)). To improve the predictions of the theory we calculated

second order corrections to E. The result, displayed as green curve in Fig.(7)), shows that

there is improved agreement between theory and simulations. The non-linear corrections,

which are substantial, brings the theoretical predictions closer to the simulation results,

especially near the values of S̄ for which the error is a minimum (Fig.(7))). We suspect

that higher order perturbative corrections will further improve the results based on the

following observation. We fit the dependance of the error for (S̄ > 1600) using the function,

E(S̄) = a+ b(S̄ − S̄min)1.4 + c(S̄ − S̄min)2, where a, b and c are constants and S̄ is the value

of S̄ at which E(S̄min) = a is a minimum. The functional form of E(S̄) is the same for the

exact simulation results, and the predictions of the linear and non-linear theory except the

coefficients a, b and c are different. We, therefore, surmise that higher order terms merely

renormalize the coefficients, keeping unaltered the form of relative error. Consequently, we

conclude that improved estimates of a, b, c from third and higher order contributions should

produce predictions in better agreement with simulation.
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CONCLUDING REMARKS:

In order to assess the accuracy of signal transmission, using the mean square of the error

between input and output as a fidelity measure, we have developed a field theoretic formu-

lation that allows us to predict conditions for optimal information transfer for an arbitrary

stochastic chemical reaction network. The starting point is the classical master equation

for interacting particle systems, which is mapped to a non-Hermitian ’quantum’ many-body

Hamiltonian dynamics. Finally, the coherent-state path integral representation is utilized

to arrive at a continuum field theory description that faithfully incorporates the intrinsic

reaction noise and discreteness of the original stochastic processes. The formulation allows

us to use standard field theory methods to compute the relative error in the information

transfer using perturbation theory to all orders in non-linearity. This approach leads to an

analytical expression for the minimum relative error in signal transduction. The usefulness

of the general field theory formulation is illustrated through signaling networks of increasing

complexity.

Detailed study of an enzymatic push pull loop, the basic unit involved in complex sig-

naling pathways, show that it behaves like an optimal linear WK noise filter, as previously

established using entirely different methods [18]. In this particular case, the joint probabil-

ity P (δI, δO) is approximately bivariate Gaussian, which means the error E is also directly

related to the mutual information M in bits between δI and δO as E = 2−2M [22].

The two-stage enzymatic cascade behaves as an optimal filter without achieving the min-

imum predicted by the WK theory. We attribute the deviation to the time delayed response

of the cascade. By mapping the cascade signaling network to a three-species push-pull like

model with a pseudo intermediate state we derived an explicit expression for the time delay.

We show that the time delay is associated with the degradation rate of the pseudo intermedi-

ate state in the coarse-grained representation of the two-step cascade. We also demonstrate

that in those cases where the linear approximation breaks down, systematic perturbative

corrections can be calculated using our theory, which minimize the difference between the

findings in the simulations and theoretical predictions. The success in this example illustrates

the power of the formalism. Analyzing experimental data using the framework introduced

here will help decipher the design principles governing signaling networks in biology, and

allow us to understand the constraints imposed by noise in information transfer.
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Appendix A: Second order loop correction to the signaling error for the push-pull

network:

Here, we illustrate the calculation of E arising from perturbation expansion of the field

theory for the push-pull network with non-linearity explained in the text. To second order

the diagram needed to compute E is,

E2 = 2(2γI Ī)2

∫
dw

2π

∫
dw1

2π

1

(w2
1 + γ2

I )(w
2 + γ2

O)(w1 − w)2 + γ2
I )

(50)

= 2(2γI Ī)2

∫
dw

2π

1

(w2 + γ2
O)

2πi

2π

1

2iγI

[
1

w(w − 2iγI)
+

1

w(w + 2iγI)

]
= 2

(2γI Ī)2

γI

2πi

2π

[
1

2iγO
− 1

4iγI

]
1

4γ2
I − γ2

O

=
2Ī2

γO(γO + 2γI)
.

In the first line of the above equation, we perform the complex integration in the upper half

plane by evaluating the residues at poles w1 = iγI and w1 = w+ iγI , respectively. Similarly,

in the second line we calculate the residues at poles w = iγO and w = 2iγI .

The coefficient, Ω2
2 (Eq.(35)), is diagrammatically represented as,

where the expression for the loop in the first bracket is 2γI Ī
∫

dw1

2π
1

(w2
1+γ2I )

= Ī. The coefficients

Ωn in Eq.(35) are functions of cn. In turn, Ωns and σns are also connected by the relation

between σn and cn (see main text). For all n, the leading order term ( c
2
n

n!2
) of Ωn and σn is
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identical. Similarly, the third order term is (third term in the Fig.(2))

E3 = 6Ω2
3(2γI Ī)3

∫
dw

2π

∫
dw1

2π

1

(w2
1 + γ2

I )(w
2 + γ2

O)(w1 + w2 − w)2 + γ2
I )(w

2
2 + γ2

I )
(51)

= Ω2
3

6Ī3

γO(γO + 3!γI)
.

The generalization to the nth order term gives En = Ω2
n

n!Īn

γO(γO+n!γI)
.

Appendix B: Action for enzymatic push-pull network:

We give the form of the action here for the enzymatic push-pull network for which the

chemical reaction scheme is given in Eq.(48). Despite the complexity, the action can be

manipulated using Mathematica in order to obtain general expression for the error.

S[Φ̃,Φ] =

∫
w

φ̄K [−iwφK − F + γKφK + kbφKφS − (kr + ku)φSK ] + φ̄SK [−iwSK − (52)

kbφKφS + (kr + ku)φSK ] + φ̄S∗ [−iwS∗ − krφSK − ρuφS∗P + ρbφS∗φP ] + φ̄S[−iwφS + kbφKφS

−ρrφS∗P − kuφSK ] + φ̄S∗P [−iwφS∗P + (ρu + ρr)φS∗P − ρbφS∗φP ] + φ̄P [−iwφP − (ρu + ρr)φS∗P + ρbφS∗φP ]

+
1

2
φ̄2
K [−F − γKφK − kbφKφS − (kr + ku)φSK ] +

1

2
φ̄2
SK

[−kbφKφS − (kr + ku)φSK ] +
1

2
φ̄2
S∗ [−krφSK

−ρuφS∗P − ρbφS∗φP ] +
1

2
φ̄2
S[−kbφKφS − ρrφS∗P − kuφSK ] +

1

2
φ̄2
S∗P

[−(ρu + ρr)φS∗P − ρbφS∗φP ]

+
1

2
φ̄2
P [−(ρu + ρr)φS∗P − ρbφS∗φP−]− kb[φ̄SK φ̄K − φ̄SK φ̄S + φ̄K φ̄S]φKφS − kr[φ̄S∗φ̄K − φ̄S∗φ̄SK

−φ̄K φ̄SK ]φSK − ρu[φ̄S∗φ̄P − φ̄S∗φ̄S∗P − φ̄P φ̄S∗P ]φS∗P − ρr[φ̄Sφ̄P − φ̄S∗φ̄P − φ̄Sφ̄S∗P ]φS∗P −

ρb[−φ̄S∗φ̄S∗P − φ̄P φ̄S∗P + φ̄P φ̄S∗ ]φS∗φP − ku[φ̄Sφ̄K − φ̄K φ̄SK − φ̄Sφ̄SK ]φSK .

Appendix C: Network with spatial dependence:

In this article, we assume that the system is well-stirred, which amounts to neglect of

spatial organization of the cells. Despite this limitation, these stochastic models provide

useful insights into the signaling process. However, this is a poor approximation for certain

aspects of signal transduction. For example, the cell membrane exhibits significant spatial

organization, with diffusion rates approximately two orders of magnitude slower than those

24



in the cytosol. Thus, to unravel the complexities of signaling pathways, quantitative models

must consider spatial organization as an important feature of cell signaling. In order to con-

sider spatial dependence, we need to include the gain and loss term in the master equation,

corresponding to the diffusion of input and output species. The corresponding term in the

Hamiltonian for the input species is HI
dif = D

∑
ij(a

†
i − a

†
j)(ai − aj). A similar term for the

output species is, HO
dif = D

∑
ij(b
†
i − b†j)(bi − bj). Finally, these terms will appear in the

action in the form −Dφ̄I∇2φI and −Dψ̄O∇2ψO respectively.

Appendix D: Mapping between parameters in the network and field theoretic for-

malism:

1). For enzymatic push pull loop, the input and output correlation functions, evaluated

using the field theory formalism, have the approximate structure of Eq.(39). We extract the

effective parameters γI , γO and Λ in terms of rate parameters used in the master equation.

The effective parameters resulting from the mapping are,

γI =
k−γK
k

, γO =
ρrρ+√

ρ2 − 2ρrρ+

Λ =
krκ+k

2ρ2

γKk−[ρ2(k2 − krk+)− ρrρ+k2]
, (53)

where k+ = kbS̄, k− = ku + kr, k = k+ + k−, ρ+ = ρbP̄ , ρ− = ρu + ρr, and ρ = ρ+ρ−.

2). For the signaling cascade, the mapping of Eq.(46) into Eq.(39) results in the following

effective parameters,

γI = d
−1/2
δI,1 , γO = d

−1/2
δO,1 and Λ =

1

γ4
IηδO,1

, (54)

where, dδO,1, dδI,1 and ηδO,1 are complicated functions of rate parameters involved in the

master equation in the signaling cascade.
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FIG. 1. Schematic of a push-pull network, involving an input species I and output species O. The

production of O from I is controlled by the rate function R(I). The degradation rates for I and O

are γI and γO, respectively.
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< 𝛅𝛙𝐎(−𝛚)𝛅𝛙𝐎(𝛚) >=	

𝛀𝟏𝟐	 +  𝟐!𝛀𝟐𝟐	

+  𝟑!𝛀𝟑𝟐	 +⋯⋯⋯⋯

																				
< 𝜹𝝍!𝑶(−𝝎)𝜹𝝍𝑶(𝝎) >𝟎 ≡	

< 𝜹𝝍𝑶(−𝝎)𝜹𝝍𝑶(𝝎) >𝟎≡	

< 𝜹𝝓! 𝑰(−𝝎)𝜹𝝓𝑰(𝝎) >𝟎≡	

< 𝜹𝝓𝑰(−𝝎)𝜹𝝓𝑰(𝝎) >𝟎≡	

FIG. 2. Examples of diagrams for the correlation function 〈δψO(−w)δψO(w)〉. The Ωns are coeffi-

cients with, Ω2
1 = c2

1, Ω2
2 =

c22
4 +

c23
4 + Ī

4c2c4 + · · · , Ω2
3 =

c23
36 +

c24
16 + Ī

36c3c5 + · · · and so on.
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FIG. 3. (a) Enzymatic cascade that arises naturally in mitogen activated protein kinase (MAPK)

networks. In a caricature of such a network, kinase (K) phosphorylates the substrate (S), lead-

ing to the formation of S∗. Deactivation is triggered by reactions with the phosphatase (P ). S∗

phosphorylates the substrate T , producing T ∗ and P reverts it to the original form through dephos-

phorylation. The rate parameters in the chemical reactions (Eq. (37)) used to produce numerical

results (in units of s−1) are : k1b = k2b = ρ1b = ρ2b = 10−5, k1u = 0.02, k2u = 0.3, ρ1u = 0.5,

ρ2u = 1.0, k1r = 3, k2r = 5.0, ρ1r = 0.3, ρ2r = 0.1, F = 1. The deactivation rate γk = 0.01s−1

controlling the characteristic time scale over which the input signal varies. Mean free substrate and

phosphatase populations are in the ranges S̄ = P̄ ∼ 104 − 106 molecules/cell. (b) Three species

coarse-grained signaling network with the indicated rates is intended to capture the physics of the

cascade in (a). The mathematical equivalence between the networks in (a) and (b) is established

in the text.
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FIG. 4. Relative error E for the signaling cascade (red lines show the theoretical predictons; blue

circles are obtained using the kinetic Monte Carlo simulations) for three Λ values. The blue dashed

line gives the predictions (Eq.(44)) using the WK formalism for EWK with time delay. The solid

blue line is the minimal error corresponding to the theory without time delay in Eq.(5). The

comparison shows that the two-loop cascade behaves as a push-pull network with a time delay.

The time delay parameter, α, is explicitly given in Eq.(47). Thus, the theory has no adjustable

parameter.
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FIG. 5. Enzymatic push-pull loop showing phosphorylation of the substrate (S) by kinase (K)

to produce the active form S∗. Phosphatase (P ) reverts it to the original form through dephos-

phorylation. SK and S∗P represent the substrate in the complex with kinase and phosphatase,

respectively. Binding, unbinding and the reaction rate constants are shown with arrows.
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FIG. 6. Relative error E for the enzymatic push-pull loop in Fig.(5). The blue lines correspond to

theoretical predictions. The KMC simulation results are given in purple circles. The dashed line is

the minimal error corresponding to the WK theory (Eq.(5)). The values of the rates corresponding

to the chemical reactions in the enzymatic push-pull network (Eq.(48)) is given in the main text.

For the parameter values the predictions of the linear theory are very accurate.
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FIG. 7. Error E for the enzymatic push-pull loop for different values of S̄ with Λ = 100. The

rate parameters used in Eq.(48) are kb = ρb = 10−3, ku = 0.02, ρu = 0.5, kr = 3 and ρr = 0.3.

The blue line is the result calculated using linear theory. The green line results from second order

corrections to the error E. The KMC simulation results are given in purple line. Clearly inclusion

of non-linear corrections improves the predictions of the theory in the range of S̄ values for which

E is small. Dotted lines are fit with the function a + b(S̄ − 1600)1.4 + c(S̄ − 1600)2 where a, b, c

are constants. For all the curves a, b, c values change but the functional form of E as a function

of S̄ is the same. It is likely that if the theory is extended beyond second order, there should be

further improvement by bringing a, b and c values closer to the simulation results.
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