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We investigate a family of urn models that correspond to one dimensional random walks with
quadratic transition probabilities that have highly diverse applications. Well known instances of
these 2-urn models are the Ehrenfest model of molecular diffusion, the voter model of social influence,
and the Moran model of population genetics. We also provide a generating function method for
diagonalizing the corresponding transition matrix that is valid if and only if the underlying mean
density satisfies a linear differential equation, and express the eigenvector components as terms
of ordinary hypergeometric functions. The nature of the models lead to a natural extension to
interaction between agents in a general network topology. We analyze the dynamics on uncorrelated
heterogeneous degree sequence networks, and relate the convergence times to the moments of the
degree sequences for various pairwise interaction mechanisms.

I. INTRODUCTION

Physical applications of urn problems can be traced to
the Ehrenfest model to describe the Second Law of Ther-
modynamics [1]. However, systems such as the Ehrenfest
model do not adequately describe the dynamics of inter-
acting particle systems [2]. To address this, we introduce
an extension of the Ehrenfest model that incorporates in-
teractions between two agents. In our models, two balls
are randomly drawn from the two urns, and are then re-
distributed stochastically. Naturally, these models have
a wide range of physical applications for various interpre-
tations of the urns themselves, such as well mixed kinetic
reactions [3–5] and thermodynamics [1, 6]. The Moran
model with mutation in population genetics is another
member of our rich class of models [7, 8]. These 2-urn
models also have applications to social opinion dynamics,
in which the voter model [9–11] is the only case that is
a martingale. When the system is generalized to three
or more urns, one can analyze Naming Game dynamics
on the complete graph [12–16] in a similar fashion. The
solutions that we provide here is a generalization of the
solution of the Naming Game with many opinions [17].
Further instances of interacting particle systems are the
contact process, exclusion processes, and stochastic Ising
models [2, 9].

In addition to the class of models that describe inter-
acting particle systems, we also provide their exact so-
lutions. As a result, the method solves a large class of
random walk models with quadratic transition probabil-
ities. The method is an extension of the generating func-
tion solution of the Ehrenfest model formulated by Mark
Kac in 1947 [6]. We utilize a generating function method
for solving for all of the eigenvalues and eigenvectors of
the Markov transition matrix for each model. With the
explicit diagonalization of the transition matrix, we can
compute several quantities depending on the application
of the model. For instance, in sociophysics [16], the ex-
pected time to consensus is one quantity of interest that
we can calculate exactly [12, 14, 18–21]. Based on the

parameters of the model, the method of analysis will
vary. Fig. 1 describes the classification of these models
based upon solvability and relevant macroscopic proper-
ties, which are functions of the model parameters (given
in Sec. II).
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FIG. 1. Classification tree for the 2-Urn problems that shows
all relevant subclasses. Among the linear cases (2γ1 − 2γ2 −
α1 + α2 + β1 − β2 = 0), the martingales (α1 = β1, α2 = β2 =
γ1 = γ2 = 0) are equivalent to the voter model and the non-
martingales constitute a much larger class of models. Among
nonlinear cases, we show that there exists a phase transition
over a single parameter, which results in a metastable distri-
bution. The tree shows a general outline of this article prior
to the network analysis.

The method of calculating all eigenvalues and eigen-
vectors of a transition matrix is complementary to a pro-
cedure by Karlin and McGregor [22] to solve for the prop-
agator. In the latter, the procedure requires a tridiago-
nal transition matrix, whose transition probabilities are
strictly positive, which has a consequence that there are
no absorbing states in the Markov chain. From such as-
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sumptions, authors construct a recursion that yields a
polynomial representation of eigenvectors that is orthog-
onal under a solvable measure. For the bounded models
that are proposed here, the recursion terminates with the
final condition reducing to the characteristic polynomial
of the transition matrix, whose roots become intractable
to calculate for large system sizes. To improve this proce-
dure, we focus on a method that includes absorbing states
as well as pentadiagonal matrix structure. As such, we
primarily consider applications that contain an absorb-
ing state, which also corresponds to a consensus state.
Furthermore, the method presented here exactly solves
for all eigenvalues without finding roots of a potentially
high degree polynomial.

The mechanics of drawing two balls from two urns cor-
responds to pairwise interaction between agents, which
has a natural extension to general networks. In the 2-
urn model, any combination of two balls can be drawn
with equal probability. If we interpret each ball as a node
in a network, then the edges correspond to possible pair-
wise interactions. For the 2-urn model, the network is
a complete graph, in which every node is connected to
every other node. As an extension, we also consider the
case in which the network structure is incomplete. That
is, after choosing a node randomly, a neighboring node is
randomly chosen for pairwise interaction. This is partic-
ularly relevant to social interactions and models, such as
the voter model and the Naming Game.

The manuscript is structured as follows. In Sec. II, we
explicitly define and analyze the 2-urn models. We apply
a generating function method for exactly diagonalizing a
subclass of 2-urn models, which we call linear urn mod-
els. This solvability distinction is the first split in the
diagram given in Fig. 1. In Sec. III, we analyze some
of the exact solutions that can be found as a result of
the diagonalization. These include the m-step propaga-
tor, the moments of consensus time, and local times. In
Sec. IV, we analyze the other cases of the 2-urn mod-
els that are nonlinear, and therefore cannot be explicitly
diagonalized by the generating function method. After
assuming that consensus of one urn is stable, we show
that there is a phase transition over a single parame-
ter, in which the consensus time abruptly changes from
lnN to exponentially large in N . The latter of these sys-
tems tends to a metastable distribution that we solve for
exactly. In Sec. V, we consider the case in which equiv-
alent 2-urn models are posed on networks, and examine
the influence of uncorrelated heterogeneous degree net-
work topology on convergence properties. We show that
for such a class of networks, the consensus time is exactly
equal to the complete graph consensus time multiplied by
a single coefficient that describes the network structure.
A summary of notation is given in the Appendix.

II. LINEAR 2-URN MODELS AND SOLUTION

In this section we will define the 2-urn models as a
stochastically evolving system. We will also define a sub-
class of the general 2-urn framework called linear urn
models. For these linear cases, we solve for all eigen-
values and eigenvectors of the transition matrix for the
probability distribution of macrostates. With these, we
can diagonalize the transition matrix and exactly cal-
culate the probability that the system attains a given
macrostate at an arbitrary future time.

In the general model, there are two urns (call them
A and B) that have N balls distributed between them.
In a discrete time step, two random balls are drawn and
redistributed between the urns stochastically. The re-
distribution probabilities only depend on the urns from
which the balls came and the order that they were drawn.

Let nA(m) denote the number of balls in urn A at dis-
crete time m. The model is characterized by six rate
parameters, which we denote by {α1, α2, β1, β2, γ1, γ2}.
The parameters are defined in terms of the probability
of redistribution between the urns conditioned on which
urns the balls came from and their order. These param-
eters are given to be

α1 = Pr{∆nA = 1|AB}+ Pr{∆nA = 1|BA} (1)

α2 = Pr{∆nA = 1|BB} (2)

β1 = Pr{∆nA = −1|AB}+ Pr{∆nA = −1|BA} (3)

β2 = Pr{∆nA = −1|AA} (4)

γ1 = Pr{∆nA = 2|BB} (5)

γ2 = Pr{∆nA = −2|AA}. (6)

Since these parameters correspond to probabilities, all
parameters must be positive, α1 + β1 ≤ 2, α2 + γ1 ≤ 1,
and β2 + γ2 ≤ 1.

An interpretation of the parameters of the urn model is
the influence of agents in social settings. Values of α1 and
β1 correspond to the impact that an agent has on another
with the opposite opinion. Here, two opposing individu-
als enter a discussion and one of them changes their opin-
ion as a result. This is the case for the voter model, which
has parameter configuration {1, 0, 1, 0, 0, 0}. The other
parameters, α2, β2, γ1, and γ2 can correspond to muta-
tion and competition between individuals. Also, these
parameters can represent push-pull factors to Lee’s model
of migration [23], and quadratic transition probabilities
reflect the assumptions made in Gravity models of migra-
tion and trade [24, 25]. Existing models with explicit pa-
rameter configurations also include the Moran model of
genetic drift, with parameters {1−µ1, µ2, 1−µ2, µ1, 0, 0},
where µ1 and µ2 are mutation probabilities [7, 8]. For
these models, the population size, N , is not always large
and thus the discrete stochastic treatment we provide is
necessary.

The parameters affect the transition probabilities of
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the urn model when nA = i, which are given to be

p
(1)
i = α1

i(N − i)

N(N − 1)
+ α2

(N − i)(N − i− 1)

N(N − 1)
(7)

p
(2)
i = γ1

(N − i)(N − i− 1)

N(N − 1)
(8)

q
(1)
i = β1

i(N − i)

N(N − 1)
+ β2

i(i− 1)

N(N − 1)
(9)

q
(2)
i = γ2

i(i− 1)

N(N − 1)
. (10)

Here, we define p
(k)
i = Pr{∆nA = k|nA = i} and

q
(k)
i = Pr{∆nA = −k|nA = i}. Notice that the parame-
ter choice {1,1,1,1,0,0} exactly simplifies to the Ehrenfest

model. Let a
(m)
i = Pr{nA(m) = i}. We introduce the

finite difference operator ∆ki acting on a grid function φi

defined as ∆ki[φi] = φi+k − φi. We form the single step
difference equation that describes the probability distri-
bution in macro-state:

a
(m+1)
i − a

(m)
i = ∆−1i[p

(1)
i a

(m)
i ] + ∆−2i[p

(2)
i a

(m)
i ]

+ ∆+1i[q
(1)
i a

(m)
i ] + ∆+2i[q

(2)
i a

(m)
i ]. (11)

This constitutes a pentadiagonal Markov transition ma-
trix for the system. We solve for all eigenvalues and
eigenvectors of this model by extending the procedure
for diagonalizing the voter model [20]. For eigenvalue
λ and eigenvector v with components ci, let G(x, y) =

∑

i cix
iyN−i be the generating function for the eigen-

vectors. We rewrite the spectral problem for the single
step propagator given in Eq. (11) as a partial differential
equation for G using the differentiation and shift prop-
erties of G [20, 26–28]. The partial differential equation
(PDE) for G is

N(N − 1)(λ− 1)G = γ1(x
2 − y2)Gyy + α1x(x− y)Gxy

+ α2y(x− y)Gyy − γ2(x
2 − y2)Gxx − β1y(x− y)Gxy

− β2x(x − y)Gxx. (12)

To solve this equation, we make the change of variables
u = x− y and H(u, y) = G(x, y). We show below that H
has the same structure asG. That is, we defineH(u, y) =
∑

i biu
iyN−i. We make this change of variables because

we can solve for bi and λ exactly when

2γ1 − 2γ2 − α1 + α2 + β1 − β2 = 0, (13)

which we call the linearity constraint. The rationale for
relating Eq. (13) with linear systems is given below. If
this parameter constraint is not satisfied, then the gener-
ating function method does not produce explicit results
for the eigenvalues and eigenvectors. Making these sub-
stitutions gives the equation for H :

N(N − 1)(λ− 1)H = [γ1u
2 + (2γ1 + α2)uy]Hyy

+ [(α1 − 2γ1)u
2 + (α1 − 4γ1 − 2α2 − β1)uy]Huy

+ (γ1 − α1 − γ2 − β2)u
2Huu. (14)

Rewriting this as recursion relation for bi and solving
for bi gives.

bi =
{[(−2γ1 + α1)(i − 1) + (2γ1 + α2)(N − i)]bi−1 + γ1(N − i+ 2)bi−2}(N − i+ 1)

N(N − 1)(λ− 1)− (α1 − 4γ1 − 2α2 − β1)i(N − i)− (γ1 − α1 − γ2 − β2)i(i− 1)
. (15)

This allows us to find all eigenvalues exactly. Since
ci = 0 for i < 0 and i > N , we require bi = 0 for i < 0
and i > N as well. Since Eq. (15) is an explicit linear
difference equation, every bi = 0 unless the equation is
singular for some i = k. However, this corresponds to the
trivial solution to the eigenvalue problem. Thus, the de-
nominator of Eq. (15) must be zero when i = k. Solving
for λ shows that the eigenvalues are

λk = 1− (−α1 + 4γ1 + 2α2 + β1)k(N − k)

N(N − 1)

− (−γ1 + α1 + γ2 + β2)k(k − 1)

N(N − 1)
. (16)

for k = 0 . . .N . This allows bk to take any value. Values
for bi for any i > k can be found by repeated application

of Eq. (15). Expressing H(u, y) in the original coordi-
nates, gives

G(x, y) =
N
∑

i=0

N
∑

j=i

(−1)j−i

(

j

i

)

bjx
iyN−i, (17)

which shows that H and G have the same form [20].
Thus the spectral problem is solved for all urn models
that satisfy 2γ1 − 2γ2 − α1 + α2 + β1 − β2 = 0. If this
equality constraint does not hold, then bi could not be
solved explicitly. This parameter constraint is related to
the equation for the mean density of the system. Let ρ̄
be the expected value of ρ = nA/N . Using the transition
rates, we find that

E[∆nA|nA = i] = 2p
(2)
i + p

(1)
i − q

(1)
i − 2q

(2)
i . (18)
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For ∆t = 1/N , we have that ∆nA = ∆ρ/∆t. Replacing
i/N → ρ̄, we find that for large N , the equation for ρ̄ is

dρ̄

dt
= 2γ1 + α2 + (α1 − 4γ1 − 2α2 − β1)ρ̄

+ (2γ1 − 2γ2 − α1 + α2 + β1 − β2)ρ̄
2. (19)

This differential equation is linear if and only if 2γ1 −
2γ2 − α1 + α2 + β1 − β2 = 0, which coincides exactly
with our solvability condition for the above generating
function method. Therefore, we define a linear urn model
as any 2-urn model whose parameter configuration yields
2γ1 − 2γ2 − α1 + α2 + β1 − β2 = 0. If this condition is
not satisfied, we call the model nonlinear. We conjecture
that no other change of variables (x, y) → (u, v) will solve
the nonlinear cases in this fashion, although a proof of
this claim is not given. This is the first major categorical
distinction shown in Fig. 1.
The treatment of the spectral problem by generating

functions is equivalent to a similarity transformation of
the transition matrix. Let T denote the transition ma-
trix given by Eq. (11) and let w = Pv for some trans-
formation matrix P. Then, the spectral problem for w

is given by PTP
−1

w = λw. The generating function
method prescribes the matrix P so that the new matrix
L = PTP

−1 is lower triangular with a bandwidth of at
most two. The transformation, P, is exactly the upper
Pascal matrix [29]. This matrix and its inverse is given
component-wise by

[P]ij =

(

j

i

)

(20)

[P−1]ij = (−1)j−i

(

j

i

)

. (21)

We use the convention that
(

j
i

)

= 0 when i > j, which

implies that P and P
−1 are upper triangular.

The spectral decomposition of the transition matrix
can be found by this similarity transformation. We do
this by diagonalizing the matrix L = WΛW

−1. Here,
Λ = diag(λ0, . . . , λN ) and W are the eigenvectors of L.
The components of these eigenvectors are bi correspond-
ing to eigenvalue λk. Since bi = 0 for i < j, W is lower
triangular. Therefore, W−1 can be found explicitly via
forward substitution. Diagonalization of L allows us to
explicitly diagonalize the transition matrix as

T = P
−1

WΛW
−1

P. (22)

Note that the matrix of eigenvectors is given by P
−1

W.

A. Tridiagonal Case: Hypergeometric Solution

When the transition matrix for the 2-urn model is tridi-
agonal (γ1 = γ2 = 0), we find that the generating func-
tion for the eigenvectors can be reduced even further in
the above solution. We return to Eq. (15) and consider
two cases:

1. Case: α2 − α1 6= 0

Iterating Eq. 15 when γ1 = γ2 = 0 and taking bk = 1
gives

bi =

i
∏

j=k+1

−[j + α2N−α1

α1−α2

](j −N − 1)

(j − k)
[

j + k + (α2+β2)N−(α1+β2)
α1−α2

] , (23)

which has explicit solution given by

bi =
(−1)i−k(k + α2N−α2

α1−α2

)i−k(k −N)i−k

(i − k)!
[

2k + (α2+β2)N−(α2+β2)
α1−α2

]

i−k

. (24)

Here, the notation (x)i denotes the Pochhammer symbol
[30], which is defined for non-negative integer n by

(x)n = x(x+ 1) . . . (x+ n− 1). (25)

For i < k, recall that we take bi = 0. Taking these as the
coefficients for H(u, y) gives

H(u, y) =

ukyN
N−k
∑

i=0

(−1)i(k + α2N−α2

α1−α2

)i(k −N)i

i!
[

2k + (α2+β2)N−(α2+β2)
α1−α2

]

i

(

u

y

)i

(26)

Recalling that u = x − y and taking y = 1 gives the
conventional generating function for the components of
the kth eigenvector, given by

gk(x) = G(x, 1) =

N
∑

i=0

cix
i (27)

Since G(x, 1) = H(x− 1, 1), we have

gk(x) = (x− 1)k2F1(k +A, k −N ; 2k +B; 1− x) (28)

where

A =
α2

α1 − α2
(N − 1) (29)

B =
α2 + β2

α1 − α2
(N − 1). (30)

2. Case: α1 = α2

This case corresponds to the generalization of the
Ehrenfest urn model by Krafft and Schaeffer [31, 32].
This is because we assume γ1 = γ2 = 0, α1 = α2 = α,
and therefore β1 = β2 = β by the linearity constraint.
Taking Eq. (15) with these parameters gives

bi =

i
∏

j=k+1

−α(j −N − 1)

(α+ β)(j − k)
(31)

=

(

− α

α+ β

)i−k
(k −N)i−k

(i− k)!
(32)

=

(

α

α+ β

)i−k (
N − k

i− k

)

. (33)
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Therefore, H is given by

H(u, y) = ukyN
N−k
∑

i=0

(

N − k

i

)[

αu

(α + β)y

]i

(34)

= ukyN
[

αu

(α+ β)y
+ 1

]N−k

. (35)

Taking gk(x) = G(x, 1) = H(x−1, 1) as the conventional
generating function for the eigenvector components gives

gk(x) = (x− 1)k
(

αx+ β

α+ β

)N−k

, (36)

which is a generalization of the solution to the Ehrenfest
model given by Kac [6].

III. APPLICATIONS OF THE SPECTRAL
SOLUTION

The immediate consequence of the explicit diagonal-
ization of the transition matrix is the solution of the m
step propagator. That is, we can find all future proba-
bility distributions of macrostates explicitly. Let dk be
the initial distribution expressed in the eigenbasis. That
is, dk are the components of d = W

−1
Pa

(0). With dk
known, all future probability distributions are given by

a
(m)
i =

N
∑

k=0

dkλ
m
k [vk]i. (37)

Using this, other exact solutions can be found, such as
the expected time to consensus and expected local times.
These are summarized in Table III and the details are
given in the following subsections.

A. Consensus Time

The consensus time is the amount of time spent be-
fore the system reaches an absorbing state in which all
of the balls are in a single urn. In this section, we only
consider linear models in which consensus of B is absorb-
ing. This is because if both consensus of A and B were
absorbing, then α2 = β2 = γ1 = γ2 = 0. By linearity,
we have α1 = β1, which reduces to the voter model on
the complete graph. These are the only cases of the 2-
urn models that are martingale, and has already been
addressed in previous work [20]. Therefore, we only con-
sider the non-martingale cases in which consensus of one
urn is absorbing. For nA = 0 to be an absorbing state,
we require Pr{∆nA = 0|nA = 0} = 1. For this to be
true, we need α2 = γ1 = 0.
We can find the moments of the consensus time by

using the solution to the spectral problem. Let sm be the
probability that the system reaches consensus at discrete
time m. Let τ = m/N be the consensus time. Then, we
have

TABLE I. Summary of Exact Solutions

Quantity Discrete Solution

Macro-state
probability

a
(m)
i =

∑N

k=0 dk[vk]iλ
m
k

Consensus time E[τp] ∼

N
∑

k=1

dkp!

[N(1− λk)]p+1
×

{

β1[vk]1 +
2γ2

N − 1
[vk]2

}

Local time E[M] ∼
1

N

N
∑

k=0
λk 6=1

dk
1− λk

vk

E[τp] =

∞
∑

m=1

sm(m/N)p (38)

The probability of consensus, sm, can be expressed as
the probability that the system is one step from con-
sensus multiplies by the probability that the system
moves into the consensus state. This is expressed as

sm = q
(1)
1 a

(m−1)
1 + q

(2)
2 a

(m−1)
2 . Since a

(m)
i is given by the

diagonalization of the transition matrix, we write this as

sm =

N
∑

k=1

dkλ
m−1
k

{

β1

N
[vk]1 +

2γ2
N − 1

[vk]2

}

(39)

Making this substitution into Eq. (38) and evaluating
the infinite geometric series gives

E[τp] ∼
N
∑

k=1

dkp!

[N(1− λk)]p+1

{

β1

N
[vk]1 +

2γ2
N − 1

[vk]2

}

,

(40)
which is given in Table III.
This solution for the moments of consensus time is ex-

act, however it doesn’t clearly describe how it depends
on N asymptotically. We can approximate the consensus
time without resorting to the full diagonalization of the
transition matrix. We do this by estimating when the
survival probability of the system becomes small (1/N).
With high probability, the drift moves the system near
consensus in O(1) time. Then, the probability that the
system has not reached consensus by discrete time m can
be estimated by λm

1 . Since we define the consensus time
to be τ = m/N , we wish to solve

λτN
1 =

1

N
. (41)

Using the eigenvalues given by Eq. (16), we have that
λ1 = 1− (β1−α1)/N . Therefore, solving for τ and using
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lnλ1 ∼ −(1− λ1), we find that

E[τ ] ∼ lnN

β1 − α1
+O(1). (42)

Figure 2 compares simulation data against this estimate
and shows that there is good agreement between them.
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FIG. 2. Consensus times for three linear models averaged
over 3 000 runs is plotted on a logarithmic scale in N . These
models have parameter configurations {1/4, 0, 1, 1/4, 0, 1/4}
(◦), {1/2, 0, 1, 1/6, 0, 1/6} (×), and {3/4, 1, 1/2, 0, 1/12} (⋄).
Solid lines are the estimates given by Eq. (42) with a fitted
additive constant. The constant is dominated by the loga-
rithm for large N .

B. Local Time

The local time is the amount of scaled time (m/N)
that the system spends at each macrostate prior to con-
sensus. Again, we assume that consensus of B is the
only absorbing consensus state. The local time is given
as a vector M, whose components, Mi, are the local time
for the corresponding macrostate. Let Mi(m) be the
local time for macrostate nA = i by time m. To find
the expected local time, we consider E[∆Mi(m)], where
∆Mi(m) = Mi(m+1)−Mi(m). The change in the local
time from step m to m + 1 is 1/N if the system is in
macrostate nA = i and 0 otherwise. So, the expected

change in the local time is equal to a
(m+1)
i . This implies

that the expected time spent at a macrostate prior to

consensus is expressed as

E[Mi(∞)]−E[Mi(0)] =
∞
∑

m=0

E[∆Mi(m)] =
1

N

∞
∑

m=0

a
(m+1)
i .

(43)
E[Mi(0)] is exactly the initial probability distribution of

the model: a
(0)
i . Using the diagonalization of linear urn

models given by Eq. (37), we can find E[Mi(∞)] exactly.
Making the substitution, evaluating the geometric series
gives, and organizing Mi(∞) into the vector M gives

E[M] =
1

N

N
∑

k=1

dkvk

1− λk

. (44)

The k = 0 term is not included because d0 = 0. This is
because k = 0 corresponds to the consensus state, and we
stop measuring the local time once consensus has been
attained. This result is also stated in Table III.

IV. NONLINEAR MODELS

Here we study models for which 2γ1 − 2γ2 − α1 +
α2 + β1 − β2 6= 0. This means that the eigenvalues and
eigenvectors of the transition matrix cannot be explic-
itly found by the generating function method proposed
in Sec. II. We show below that nonlinear models also
have a much wider range of qualitative behaviors that
would be difficult to extract from a similar generating
function method. In particular, we consider nonlinear
models such that consensus of B is an absorbing state.
First, we will show that there exists a phase transition
across α1 = β1.

A. Phase Transition

Here we consider similar stable consensus type models
as in the linear case. That is, when all of the balls are
in urn B, then all of them will remain in urn B with
probability 1. Consensus of B is an absorbing state in
the Markov chain model. For this to be true, we must
set γ1 = α2 = 0. We take Eq. (19) and make these
substitutions to find

dρ̄

dt
= (−2γ2−α1+β1−β2)ρ̄

(

α1 − β1

−2γ2 − α1 + β1 − β2
+ ρ̄

)

.

(45)
Clearly, ρ̄1 = 0 is stationary. This is anticipated because
consensus of B is an absorbing state. However, this root
is not always stable, and that there exists a phase transi-
tion when α1 = β1. This can be seen by considering Eq.
(45) for ρ̄ ≪ 1.
The second root, ρ̄2, can be expressed by a single pa-

rameter, ω. We let

ω =
α1 − β1

2γ2 + β2
(46)
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and observe that

ρ̄2 =
ω

1 + ω
. (47)

The location and stability of the roots are characterized
completely by ω because for ω > 0, the root at the origin
is unstable and ρ̄2 becomes stable. The root ρ2 also ex-
ists within the physical domain (0 ≤ ρ̄ ≤ 1), which indi-
cates that the system is attracted to a metastable state.
Stochastically, the system will also randomly fluctuate
within this interval and always has a non-zero probabil-
ity of achieving consensus. So, even though the system is
attracted to the metastable distribution with high prob-
ability, it will eventually achieve the consensus state in
finite time. The consensus time for the metastable case,
however, is exponential with N . The special case when
γ2 = β2 = 0 should be interpreted as ω = ±∞ and
corresponds to a biased voter model [19]. In this case,
the consensus time may not be exponential because the
stable equilibrium is a consensus state.
For ω < 0, the origin is stable, and ρ2 is unstable. In

this case, the solution to Eq. (45) is the logistic function.
For ρ̄ small, the equation resembles a linear model, so
the consensus time is qualitatively the same as the linear
cases. That is, the consensus time is E[τ ] ∼ lnN/(β1 −
α1). So, we will only focus on the remaining cases: the
phase transition itself (ω = 0) and the metastable state
(ω > 0).
When ω = 0, the two roots are coincident, which in-

dicates a transcritical bifurcation [33]. Fig. 3 shows the
bifurcation diagram of these nonlinear 2-urn models.
Although the consensus time is proportional to lnN

when ω < 0, we will show that when ω = 0, this value
increases to

√
N for γ2 + β2 6= 0.

1. Consensus formation with mutation

Socially, we consider a model that may correspond to
the decay of a popular trend, A, that dominates the sys-
tem. Those who do are not involved with the trending fad
are considered to have state B. Those who do not accept
A can be convinced to adopt it with probability α1 when
exposed to it. Similarly, people with A can be dissuaded
from it with probability β1 when exposed to agents with-
out A. Also, an individual may be turned away from the
fad if they are exposed to it for long enough. That is, if
an individual with A is exposed to many individuals with
A, then the trend may seem less unique, and the agent
no longer adopts it, which is a sociologically observed
tendency [34]. If A is perceived as a fad, then people
will be less likely to adopt it [35]. We model this by as-
suming that if A speaks with another A, then the fad is
rejected with probability β2 and the listener becomes B.
It may also be reasonable to assume the both individuals
would reject the fad simultaneously, which would occur
with probability γ2, but for simplicity, we set γ2 = 0.
We wish to find the amount of time until nobody ac-

cepts A, and everyone is in state B. To simplify the anal-

−4 −2 0 2 4

−
1

0
1

2
3

ω

ρ
FIG. 3. Bifurcation diagram showing the stability of the sta-
tionary points of Eq. (45) for nonlinear consensus models.
The solid lines indicate that the point is stable, while dashed
lines indicate that it is unstable. The red lines correspond to
the root at ρ̄1 = 0, and the blue curve corresponds to the sec-
ond root, ρ̄2. For ω > 0, the system attracts to a metastable
state and for ω < 0, the systems resemble linear models.

ysis, we will consider the case in which α1 = β1 = β2 = 1,
although any configuration of parameters could be con-
sidered, provided ω = 0. Let T (ρ) be the time to consen-
sus. Using first step analysis, we find that T satisfies

T (ρ) = p(ρ)T (ρ+∆ρ) + r(ρ)T (ρ)

+ q(ρ)T (ρ−∆ρ) +
1

N
, (48)

where ∆ρ = 1/N and

p(ρ) = ρ(1− ρ) (49)

q(ρ) = ρ(1− ρ) + ρ2 (50)

r(ρ) = 1− p(ρ)− q(ρ). (51)

We also have the boundary condition T (0) = 0. Expand-
ing by Taylor’s theorem to second order gives

−1 ∼ v(ρ)
dT

dρ
+

1

2N
D(ρ)

d2T

dρ2
(52)

where

v(ρ) = −ρ2 (53)

D(ρ) = 2ρ(1− ρ) + ρ2. (54)

The system is dominated by the drift term when the
system is not near consensus. Therefore, ρ approaches
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FIG. 4. Solutions for the consensus time given by Eq. (62)
compared with simulation data. The lines are the theoret-
ical prediction and the points are simulation data averaged
over 1000 runs. Three networks are considered: the complete
graph (black, ◦), and two scale free networks with ν = 1 (blue,
△) and ν = 2 (red, +).

consensus in O(1) time. After this time has passed, we
assume that these two terms in Eq. (52) balance. Let
ρ = δξ for some δ ≪ 1 that balances the drift and diffu-
sion terms. The derivatives are then transformed by

d

dρ
=

1

δ

d

dξ
. (55)

So, after dropping higher order terms, Eq (52) is given
by

−1 ∼ −δξ2
dT

dξ
+

ξ

Nδ

d2T

dξ2
. (56)

For these terms to balance, we choose δ = 1/
√
N . Now,

we wish to solve

ξ
d2T

dξ2
− ξ2

dT

dξ
= −

√
N. (57)

We are given one boundary condition, T (0) = 0, yet we
wish to solve a second order equation. Since the time for
the system to approach consensus is O(1) and that the
consensus time is monotonic, the derivative of consensus
time with respect to ρ is at most O(1). So, the deriva-
tive of T with respect to ξ tends to zero. This is stated
mathematically by

lim
ξ→∞

dT

dξ
= 0, (58)

which supplies the second boundary condition. Now, the
solution to Eq. (57) is

T (ξ) =
√
N

∫ ξ

0

∫

∞

u

1

s
e−

1

2
(s2−u2)dsdu. (59)

We are particularly interested in the case when A initially
dominates the system. Furthermore, since the integral
converges exponentially, we can take ξ → ∞ without
significantly changing the value. So, to find T (∞), we
take

s =
√
2r sec θ (60)

u =
√
2r tan θ. (61)

Making this change of variables, the integral can be sim-
plified to

T ∼
√

π3N

8
. (62)

This result is used extensively when analyzing heteroge-
neous networks in Sec. V. Figure 4 shows the agreement
between Eq. (62) and simulation data for the complete
graph as well as scale free networks.

B. Metastable Consensus Time

The other interesting case is when ω > 0, in which
there is a stable fixed point of the drift equation in the
feasible region 0 ≤ ρ ≤ 1. Even though the deterministic
part of the system is attracted to ρ2 with high probabil-
ity, it is not the absorbing state of the system. Consen-
sus of B is stable with probability 1, yet ρ2 is stable only
with probability close to 1. Therefore, ρ2 is the mean
of a metastable distribution that exists apart from con-
sensus. In terms of the Markov chain model, consensus
corresponds to the eigenvalue 1 of the transition matrix
and the metastable distribution is an eigenvector with
eigenvalue that is transcendentally close to 1.
We have two goals of this section. The first is to find

the metastable distribution for a particular metastable
urn process and the second is to find the corresponding
consensus time. As in the above case, we restrict our
study to a particular parameter configuration to serve as
a canonical example of the solution. Once the balls have
been selected from the urns, the model that we consider
is given by the following rules:

1. If the balls came from different urns, place both in
A.

2. If the balls came from the same urn, place both in
B.

It is evident from these rules that consensus of B is an
absorbing state. If all balls are in urn B, then the balls
are always drawn from the same urn and replaced in B
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with probability 1. This model has the parameter config-
uration α1 = 2, γ2 = 1, and all others equal to 0. By Eq.
(46), we have that ω = 1 and therefore, ρ2 = 1/2. Since
ω > 0, the bifurcation diagram in Fig. 3 indicates that
ρ2 = 1/2 is stable and constitutes a metastable state.
Let λ be the eigenvalue that corresponds to the

metastable distribution, φi. Since λ is exponentially close
to 1, 1−λ is a transcendentally small term. Since φi con-
stitutes components of a eigenvector, we can choose how
scale it. Conditioned on the information that the system
is not in consensus, then φi = Pr{nA = i}. So, for φi to
constitute a probability distribution, we need the sum of
the components to be 1. So, we let ci be the components
of the unscaled eigenvector corresponding to λ and scale
it so that

φi =
ci

∑N
i=1 ci

. (63)

With this, we obtain a recursion relation for ci from
the eigenvalue problem for ci and λ:

0 = p
(1)
i−1ci−1 − (p

(1)
i + q

(2)
i )ci + q

(2)
i+2ci+2. (64)

We also require that ci = 0 when i < 0 and i > N .
Also, we set cN = 1 to begin the recursion. We know
that cN 6= 0 because if cN = 0, it would imply that the
system can never achieve this state, which is not true.
So, we take Eq. (64) and solve for ci−1 to find

ci−1 =
(p

(1)
i + q

(2)
i )ci − q

(2)
i+2ci+2

p
(1)
i−1

. (65)

Given cN = 1 and ci = 0 for i > N , we can use Eq. (65)
to find ci for 1 ≤ i ≤ N − 1. This yields a distribution
that is asymptotically a Gaussian, and is shown in Fig.
5.
Now that we found the metastable distribution, our

second goal was to find the consensus time. The strategy
is to use Eq. (40), which gives the consensus time in
terms of the eigenvalues and eigenvectors. When using
Eq. (40), we take d1 = 1 and all other dk = 0 for [v1]i =
φi and λ1 being the eigenvalue for φi. That is, Eq. (40)
reduces to

E[τ ] =
2φ2

N2(N − 1)(1− λ)2
. (66)

Since we found the dominant eigenvector in the system,
all we need is the corresponding eigenvalue. We find it
by considering the column-sum of the transition matrix
T. Since all of the columns sum to 1, we multiply both
sides of Tv = λv by 1

T on the left to obtain 1
T
v =

λ1T
v. Unless λ = 1, we must have that the sum of

the components of v is zero. This is important because
∑N

i=1 φi = 1 in order to be a probability distribution
conditioned that the system has not reached consensus.
This implies that φ0 = −1 in order for the sum of the
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FIG. 5. Solution for the metastable distribution generated
by Eq. (65) for N = 30. The distribution is asymptotically
a Gaussian function because the diffusivity is smooth. Near
ρ2 = 1/2, which is the mean, the diffusivity can be approxi-
mated by a constant. This yields a Gaussian to leading order.

components from i = 0 . . .N is zero. If we take i = 0 in
the eigenvalue problem, then we find that

λφ0 = φ0 + q
(2)
2 φ2. (67)

For φ0 = −1, we have that 1 − λ = q
(2)
2 φ2. Substituting

this into Eq. (66) gives

E[τ ] =
N − 1

2φ2
(68)

where φ2 is easily found by (65) and (63). Fig 6 compares
simulation data against the results in Eq. (68).

V. HETEROGENEOUS DEGREE NETWORK
MODELS

In the above analysis, we considered social models ex-
clusively on the complete graph. It has been observed
that the ordering dynamics of the Naming Game – a
similar social model – do not significantly change when
comparing real world networks against complete graphs
[36, 37]. This yields credibility to complete graph analy-
sis for some sparse real world networks. However, the use
of a fully connected graph may not be an accurate ap-
proximation of the dynamics on sparse networks, which
are also more socially realistic. For the voter model,
which is a case of the above general social framework,
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FIG. 6. Simulation data (◦) of the consensus time averaged
over 500 runs is plotted against the exact solution shown in
blue, given by Eq. (68). The horizontal axis is on a linear
scale in N and the vertical axis is on a logarithmic scale. The
apparent linear relationship indicates the exponential nature
of the consensus time in this case.

TABLE II. Parameters of the Network Model

Input

AA AB BA BB Output

− α12 α11 γ1 AA

β22 − r0 α21 AB

β21 r1 − α22 BA

γ2 β11 β12 − BB

the system orders differently based on network structure
[18–20, 38].

The structure of the 2-urn models yields a natural ex-
tension to incomplete graphs. Each node has one of two
states: A or B. For the general network model, we choose
a node randomly and then choose a random neighbor.
The nodes then update their spins with probabilities that
depend on the order that the nodes were selected and
their spins. We now have twelve parameters that char-
acterize each model, each of which are transition prob-
abilities. Table II shows the probability of accepting a
particular update as a function of the spins and their or-
der. So, if the first node has state B and the second node
has state A, then the probability that they both become
A is α11. For parameters that have two subscripts (e.g.
α11), the second digit refers to which node is updated.
The first digit is for consistency with the complete graph
(2-urn) notation.

These models have a very wide range of applications.
For instance, the voter model has α11 = β11 = 1 and all
others zero, while the invasion process has α12 = β12 = 1,
and all others equal to zero [19]. Generalized versions of
the Moran model have parameters β21 = µ1, α21 = µ2,
β11 = 1 − µ2, and α11 = 1 − µ1 [39]. We can also cast
movement of individuals, or particles, between sites by
interpreting state A as occupied and B as unoccupied.
Of particular interest in the literature is the coalescing
random walk, in which particles move from site to site
and cluster together when moving into an occupied site
[21, 38, 40]. This is accomplished in our framework by
r1 = 1, β21 = 1 and all other parameters set to zero.
The annihilating random walk is similar to the coalesc-
ing random walk, but is characterized by the fact that
the two particles are removed if one moves into an occu-
pied site [40, 41]. This is given by r1 = 1, γ2 = 1 and
all other parameters set to zero. Furthermore, we can
consider directed networks which determines the flow of
information throughout the network. These represent a
mere fraction of the possible applications of this general
network model.

Clearly not all parameter configurations on all net-
works can be solved as swiftly and concisely as the above
2-urn models. Even a generalized treatment of each case
is beyond the scope of this article. However, we explore
some of the previous examples imposed on a popular
class of networks that we call uncorrelated degree het-
erogeneous graphs. These are random networks that are
generated with a given, fixed degree sequence. The net-
work is then chosen uniformly from the set of all graphs
with that degree sequence [19, 42–45]. In the following
subsections, we solve two models of consensus formation,
which are both closely related to their complete graph
counterpart.

To find ordering dynamics, we begin by following the
procedure prescribed in Refs. [19, 46] to coarse-grain
the system and look for solutions in the mean-field of
the network. This is done by considering the number
of nodes with state A that have degree k and averaging
over all adjacency matrices with a given degree sequence
that are also uncorrelated and heterogeneous. For the
voter model, Refs. [19, 46] indicates that the system
reduces to a one-dimensional diffusion process. However,
in the general case of the 2-urn models on heterogeneous
networks that we consider, the process does not reduce
to a simple diffusion process. Despite this, we present
a perturbation technique to solve for expected times to
consensus, which can be applied whenever consensus is
an absorbing state in the Markov chain. We proceed by
identifying the coarse grained system as an urn model,
similar to the 2-urn models of except there are more than
two urns Sec. II. In the new urn model framework, each
degree value in the network corresponds to a pair of urns,
call them Ak and Bk. This framework allows us to relate
the network model to nonlinear 2-urn models, for which
we directly apply the solutions given in Sec. IV.
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A. Consensus model: listener first

Here we explore a model of consensus formation on
uncorrelated heterogeneous networks. We interpret the
situation in the following way. During a single update,
the first node that is chosen is called the listener. This
individual chooses one of its neighbors to be the second
node, called the speaker. Then, we assume that only the
listener is allowed to update its state. We also assume
that consensus of the B state is an absorbing macrostate.
That is, if every node is in state B, every node will remain
in state B with probability 1.
Now we express these ideas as a parameter config-

uration in the above framework. Since only the first
node is allowed to change its state in an update, we set
α12 = γ1 = β22 = r0 = r1 = α22 = γ2 = β12 = 0. By
assumption, consensus of B is an absorbing state, so we
additionally take α21 = 0. This leaves us with parame-
ters α11, β21, β11. We then drop the second digit in the
subscripts since it is implied that only the first node is
allowed to change. This corresponds to a 3-parameter
system: α1, β2, β1.
We wish to express the transition probabilities of the

system in terms of known quantities. First, we must
establish the notation used in the following discussion.
Let A be the adjacency matrix of the network and let Nk

be the number of nodes with degree k. Also let ki be the
degree of node i and let k be a vector with components
ki. Let ηi = 1 if node i has state A and ηi = 0 if node i
has state B and is the microstate at time t. The vector η
takes components ηi. Similarly, let nk be the number of
nodes of degree k of state A and let n take components
nk. Also, let ρk = nk/Nk and ρ =

∑

k nk/N . These are
all related functions of the microstate. Let Dk be the set
of all nodes with degree k. Let µp be the pth moment of
the degree distribution of the network, which is given by

µp =
∑

k

Nk

N
kp. (69)

Also, we define zp to be the expected value of η with
probability measure proportional to kpi . We could also
define zp as the normalized instantaneous average value
of the p-degree of A nodes. This is written explicitly by

zp =
k
p · η
Nµp

. (70)

Here, kp is the component-wise power of k. That is, the
ith component of kp is kpi . Finally, we can express the
transition probabilities of the network model:

Pr{∆nk = 1} =
∑

i∈Dk

∑

j

α1Aij

Nki
(1− ηi)ηj (71)

Pr{∆nk = −1} =
∑

i∈Dk

∑

j

Aij

Nki
[β1ηi(1− ηj) + β2ηiηj ].

(72)

In order to find the consensus time, we replace Aij

with mean adjacency matrix of the uncorrelated degree
heterogeneous networks [19]. Note that we are interested
in analyzing the dynamics over an ensemble of random
networks in mean-field, and the connection of the net-
work is independent of the urn-process. We also show
numerically in Fig. 7 that averaging trajectories over an
ensemble of networks agrees with this mean-field assump-
tion. Since the edges of the network are uncorrelated,
the probability that nodes i and j have an edge is pro-
portional to their respective degrees. The expected value
of the components of the adjacency matrix, therefore, is

E[Aij ] =
kikj
Nµ1

. (73)

Upon substitution of Aij → E[Aij ] and simplification, we
express the coarse-grained transition probabilities below
in terms of the products ρk and z1

p(ρk, z1) = α1
Nk

N
(1 − ρk)z1 (74)

q(ρk, z1) = β1
Nk

N
ρk(1− z1) + β2

Nk

N
ρkz1. (75)

What is significant here is that a single variable z1(t) –
the normalized average degree of the A nodes at time
t – plays the role of mean-field macrostate (over all de-
grees k) and allows the coarse-grained transition prob-
abilities to be expressed component-wise in k as binary
(quadratic) interactions between the kth macrostate and
z1. This also allows us cast the system as an urn model
in which each degree k corresponds to a pair of urns (Ak

and Bk). Here nk would correspond to the number of
balls in urn Ak. The movement of balls among these
urns is coupled only by z1.
We use the transition probabilities to generate an ordi-

nary differential equation (ODE) for the time evolution
of the expected value of ρk. Taking ˙̄ρk ∼ E[∆ρk/(1/N)],
we acquire the following ODE system:

˙̄ρk = [α1(1 − ρ̄k)− β2ρ̄k]z1 − β1ρ̄k(1 − z1). (76)

Note that this system is coupled together only by the
variable z1. We will first show that ρk → z1 as the system
evolves. This is found by expressing the equation for
˙̄ρk − ż1. To do so, we need ż1. Multiplying Eq. (76) by
Nk

Nµ1

and summing over k gives

ż1 = [α1(1− z1)− β2z1]z1 − β1z1(1− z1). (77)

Note that Eq. (77) can be solved, with solution

z1(t) =
ω(1 + ω)−1

1 +
(

ω
(1+ω)z1(0)

− 1
)

e−(α1−β1)t
. (78)

where ω is given in Eq, (46). Note that when ω > 0,
z1 → 0 as t → ∞. When ω < 0, we have z1 → ω(1+ω)−1
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instead. This solution holds only if ω 6= 0. The point
ω = 0 is a bifurcation point, in which the solution is

z1(t) =
[

β2t+ z1(0)
−1

]−1
. (79)

Once we show that each ρk → z1, we will have explicit
solutions of each ρk. Now, ˙̄ρk − ż1 can be expressed as

˙̄ρk − ż1 = −(ρ̄k − z1)[(α1 + β2)z1 + β1(1− z1)] (80)

Note that the expression in the bracket of Eq (80) is
always positive and bounded away from 0. Therefore,
Eq. (80) shows an exponential convergence of ρ̄k to z1
for each k. This principle is depicted in Fig. 7.
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FIG. 7. The listener only consensus model is simulated for
a network with N = 3000 with N10 = N25 = N50 = 1000.
The model was simulated with α1 = β1 = β2 = 1. The initial
condition is ρ10 = 1, ρ25 = 0.5, and ρ50 = 0. Also plotted is
the exact solution for z1 given by Eq. (79). This shows that
each ρk converges to z1 as the system evolves.

Now that we understand how the system orders, we
now calculate the consensus time, T (ρ), where ρ takes
components ρk. The procedure is to relate the problem
to a complete graph and then use previously established
techniques. For simplicity, we take α1 = β1 = β2 = 1.
Note that Eq. (77) converges to a stable center manifold
near z1 = 0. Because of this, the noise terms will be
significant near z1 ∼ 0. Therefore, we incorporate these
terms in our analysis of the consensus time. We first
establish the backwards equation for T :

− 1

N
=

∑

k

{

q(ρk, z1)T (ρk − 1/Nk) + [−q(ρk, z1)

− p(ρk, z1)]T (ρk) + p(ρk, z1)T (ρk + 1/Nk)

}

. (81)

We expand T to two terms and express the backwards
equation as

−1 =
∑

k

(

vk
∂T

∂ρk
+

Dk

2Nk

∂2T

∂ρ2k

)

(82)

where

vk = (1− ρk)z1 − ρk(1− z1)− ρkz1 (83)

Dk = (1− ρk)z1 + ρk(1− z1) + ρkz1. (84)

Now we use the fact that each ρk converges to z1 expo-
nentially for each k. That is, we take each ρk = z1 and
substitute into the backward equation for T . The change
of variables affects the derivatives, giving

∂

∂ρk
→ kNk

Nµ1

∂

∂z1
. (85)

Now the backward equation is

−1 =
∑

k

[

v(z1)
kNk

Nµ1

dT

dz1
+

k2Nk

2N2µ2
1

D(z1)
d2T

dz21

]

. (86)

Here,

v(z1) = −z21 (87)

D(z1) = 2z1(1− z1) + z21 . (88)

This simplifies to

−1 = v(z1)
dT

dz1
+

µ2

2Nµ2
1

D(z1)
d2T

dz21
. (89)

Note that Eq. (89) has exactly the same form as Eq.
(52). The primary difference is the appearance of µ2/µ

2
1.

To solve this, we follow the same procedure as the com-

plete graph model and simply replace N with N
µ2

1

µ2

. This

gives that the consensus time is

T ∼
√

π3

8

Nµ2
1

µ2
. (90)

There are a few things to note about this solution.
Firstly, the form of the solution can be separated into
the complete graph solution in Eq. (62) multiplied by

the topological parameter
√

µ2
1/µ2. This may indicate

that similar network models can be decomposed into a
separable solution. That is, the consensus time for some
models might be decomposed into the complete graph
solution multiplied by an appropriate topological param-
eter. Secondly, the fact that µ2

1/µ2 ≤ 1 indicates that
sparse network topology only decreases the time to con-
sensus. This implies that the complete graph solution is
an upper bound for the consensus time for these models.
Figure 4 depicts this solution for the complete graph and
two scale free networks.
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B. Consensus model: speaker first

We now consider a different model from the above lis-
tener first model. Instead of assigning the first node to be
the listener, we designate the first node to be the speaker.
Then the speaker chooses to convey its message to a ran-
domly chosen neighbor (the listener). We assume that
only the listener updates their state based on this inter-
action. We also assume that consensus is an absorbing
state, as in the listener first case.

These assumptions produce a model with parameters
α12, β12, β22. All other parameters equal zero, and for
convenience, we drop the second subscript. We briefly
outline the analysis, as it follows the same paradigm as
the listener first model. The transition probabilities for
the model are given by

Pr{∆nk = 1} =
∑

i

∑

j∈Dk

α1Aij

Nki
ηi(1− ηj) (91)

Pr{∆nk = −1} =
∑

i

∑

j∈Dk

Aij

Nki
[β1(1− ηi)ηj + β2ηiηj ].

(92)

We substitute Aij → E[Aij ] and simplify the transition
probabilities to obtain

pk(ρk, ρ) = α1
k

µ1

Nk

N
ρ(1− ρk) (93)

qk(ρk, ρ) =
β1k

µ1

Nk

N
(1− ρ)ρk +

β2k

µ1

Nk

N
ρρk (94)

We now generate the mean field ODE system for ρ̄k, and
obtain

˙̄ρk =
k

µ1
[α1ρ(1− ρk)− β1(1− ρ)ρk − β2ρρk] (95)

To simplify the analysis, we take α1 = β1 = β2 = 1.
Note that the rate of change is proportional to k. We
now multiply Eq. (95) by Nk

kNµ
−1

and sum over k. Since

α1 = β1 = 1, this yields

ż−1 = − 1

µ1µ−1
ρ2 (96)

Since z−1 is monotonically decreasing, the system will
globally converge to ρk = 0. This indicates that the
convergence is very slow if the system is near consensus.
This is due to the fact that the parameters are chosen at a
phase transition, similar to the complete graph. The slow
convergence is also indicative of a stable center manifold.
Linearizing the system for ˙̄ρk around ρk = 0 gives

˙̄ρk =
k

µ1
(ρ− ρ̄k) (97)

This system has a Jacobian matrix given by

∂ ˙̄ρk
∂ρ̄l

=
kNl

Nµ1
l 6= k

∂ ˙̄ρk
∂ρ̄k

=
k

µ1

(

Nk

N
− 1

)

.
(98)

It is a simple exercise to show that 1 is an eigenvector
of the above Jacobian, whose eigenvalue is 0. In addi-
tion all other eigenvalues have negative real part by the
Gershgorin circle theorem [47]. This indicates that the
system tends to the center manifold near consensus, and
the system then converges slowly to consensus. Further-
more, the eigenvector 1 indicates that each ρk tends to
the same value. Making this substitution into Eq. (96)
gives

ż−1 = − 1

µ1µ−1
z2
−1, (99)

which has solution,

z−1 =

(

C +
t

µ1µ−1

)−1

(100)

for some constant C. Now, we determine the consensus
time by writing the backwards equation for T . The equa-
tion takes the form given in Eq. (82), however vk and Dk

are given by

vk =
k

µ1
[ρ(1− ρk)− (1− ρ)ρk − ρρk] (101)

Dk =
k

µ1
[ρ(1 − ρk) + (1 − ρ)ρk + ρρk]. (102)

We now apply the idea that each ρk tends to a common
value given by the slow variable z−1. We make the change
of variables ρk = z−1. The partial derivatives are now
transformed by

∂

∂ρk
→ k−1Nk

Nµ−1
(103)

Substituting these into Eq. (82) yields the ODE for the
consensus time given by

−µ1µ−1 = v(z−1)
dT

dz−1
+

1

2N
D(z−1)

d2T

dz2
−1

, (104)

where

v(z−1) = −z2
−1 (105)

D(z−1) = 2z−1(1− z−1) + z2
−1. (106)

The reduced equation for T is remarkably similar to Eq.
(52). Thus, we have translated the corresponding prob-
lem to a 2-urn case with a single topological parame-
ter µ1µ−1. Following the same steps as the complete
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graph case, we have shown that the consensus time for
the speaker first model is

T ∼ µ1µ−1

√

π3N

8
. (107)

It is simple to show that for every degree sequence,
µ1µ−1 ≥ 1. This implies that this sparse graph struc-
ture will only slow down the rate of convergence, which
is in contrast to the listener first case which showed a
decrease in consensus time. Since the listener first model
converges more quickly, it appears that imposing one’s
state upon others is less effective in achieving consensus
than listening to the messages of others. Also, the so-
lution once again exhibits a separable form, in which a
single topological parameter is multiplied by the com-
plete graph solution.

VI. DISCUSSION

The 2-urn models, and their extension to general net-
work topology, are a rich class of models with a wide
variety of behaviors. They are an extension of the Ehren-
fest model of molecular diffusion, in which only one ball
is chosen to change urn. By drawing two balls instead
of one and allowing the redistribution to be stochastic,
we introduce a class of models that have a wide range
of applications from social dynamics to population ge-
netics. Remarkably, for this class of models, we found
that linearity of the ODE for mean density of urn A was
necessary and sufficient for solvability by our generating
function method. The seemingly unrelated notions of lin-
earity of a differential equation and the diagonalization
of a large transition matrix in a discrete Markov chain
are, in fact, equivalent for these models. This method
is a significant contribution to the field, since exact di-
agonalization of the Markov transition matrix for all N
gives exact solutions to the probability distribution for all
future times, consensus times, local times, etc. Further-
more, the eigenvectors describe the shape of the distri-
bution as it tends toward stationary, and the eigenvalues
describe the rate of convergence.
The work presented here on the 2-urn models opens

a wide range of questions for further study. In partic-
ular, we can contrive other random walk models with
more general polynomial transition probabilities, instead
of restricting to the quadratics that correspond to specific
urn-ball models. These in turn yield higher order partial
differential equations for a generating function G that
in turn necessarily require new conditions for solvability.
We have not shown that the 2-urn models are the max-
imal set of models for high degree transition probability
distributions.
Another avenue that can be considered is to introduce

multiple urns, yet retain a two ball interaction mecha-
nism. This approach has been considered for the multi-
state voter model on the complete graph, which is a
model with M urns [48]. A related model that has been

analyzed by this procedure is the Naming Game with K
opinions, which has 2K − 1 urns [17]. The work suggests
that there is a great opportunity for studying highly com-
plex models in these terms.
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Appendix A: Summary of Notation
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TABLE III. Definitions and Notation

Symbol Definition

N Total number of balls.

nA(m) Number of balls in urn A.

at time-step m.

p
(k)
i Pr{∆nA(m) = k|nA(m) = i}.

q
(k)
i Pr{∆nA(m) = −k|nA(m) = i}.

{α1, α2, β1, β2, γ1, γ2} Constant parameters for

the 2-Urn model.

a
(m)
i Pr{nA(m) = i}.

ci ith component of

a given eigenvector.

G(x, y) G(x, y) =
∑

i cix
iyN−i.

g(x) g(x) = G(x, 1).

ρ nA(m)/N .

vk kth eigenvector of the

Markov transition matrix.

λk kth eigenvalue of the

Markov transition matrix.

τ Consensus time.

M Vector of local times.

ω ω = α1−β1

2γ2+β2

.

T Expected time to consensus: E[τ ].

µp pth moment of the degree distribution.

A Adjacency matrix.

Nk Number of nodes with degree k.

ki Degree of node i.

ηi ηi = 1 if node i takes state A,

ηi = 0 if node i takes state B.

zp
1

Nµp

∑

i k
p
i ηi.

nk Number of nodes of degree k.

with state A.

ρk nk/Nk.
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[21] C. Cooper, R. Elsässer, and T. Radzik, SIAM J. Discrete

Math 27(4), 1748 (2013).
[22] S. Karlin and J. L. McGregor, Trans. Amer. Math. Soc.

85, 489 (1957).

[23] E. S. Lee, Demography 3, 47 (1966).
[24] J. J. Lewer and H. Van den Berg, Econ. Lett. 99, 164

(2008).
[25] J. E. Anderson, Am. Econ. Rev. 69, 106 (1979).
[26] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Phys.

Rev. E. 64, 026118 (2001).
[27] M. E. J. Newman, Phys. Rev. E 66, 016128 (2002).
[28] E. A. Bender and S. G. Williamson, Foundations of Com-

binatorics with Applications (Dover, New York, 2006).
[29] A. Edelman and G. Strang, Am. Math. Monthly 111,

189 (2004).
[30] M. Abramowitz and I. A. Stegun, Handbook of Mathe-

matical Functions with Formulas, Graphs, and Mathe-

matical Tables (Dover, New York, 1964).
[31] O. Krafft and M. Schaefer, J. Appl. Prob. 30, 964 (1993).
[32] H. Dette, J. Appl Prob. 31, 930 (1994).
[33] S. Strogatz, Nonlinear Dynamics and Chaos: With Appli-

cations to Physics, Biology, Chemistry and Engineering,
Vol. 272 (Westview Press, 2001).

[34] W. Kornblum, Sociology in a Changing World (Cengage
Learning, 2007).

[35] J. Berger and G. Le Mens, Proceedings of the National
Academy of Sciences 106, 8146 (2009).

[36] L. Dall’Asta, A. Baronchelli, A. Barrat, and V. Loreto,
Phys. Rev. E 74, 036105 (2006).

[37] A. Waagen, G. Verma, K. Chan, A. Swami, and
R. D’Souza, Phys. Rev. E 91, 022811 (2015).

[38] J. T. Cox, Ann. Probab. 17, 1333 (1989).
[39] M. A. M. de Aguiar and Y. Bar-Yam, Phys. Rev. E 84,

031901 (2011).
[40] R. Arratia, Ann. Probab. 9, 909 (1981).
[41] J. Cardy and U. C. Täuber, Phys. Rev. Lett. 77, 4780

(1996).
[42] T. Luczak, in Proceedings of the Symposium on Random

Graphs, Poznan (1989) pp. 165–182.
[43] M. Molloy and B. Reed, Random structures & algorithms

6, 161 (1995).
[44] M. Molloy and B. Reed, Combinatorics, probability and

computing 7, 295 (1998).
[45] M. E. J. Newman, SIAM Rev. 45, 167 (2003).
[46] R. Blythe, J. Phys. A 43, 385003 (2010).
[47] S. Roman, Advanced Linear Algebra, 3rd ed. (Springer-

Verlag, New York, 2008).
[48] W. Pickering and C. Lim, Phys. Rev. E 93, 032318

(2016).


