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We consider evolving networks in which each node can have various associated properties (a
state) in addition to those that arise from network structure. For example, each node can have a
spatial location and a velocity, or some more abstract internal property that describes something
like social trait. Edges between nodes are created and destroyed, and new nodes enter the system.
We introduce a “local state degree distribution” (LSDD) as the degree distribution at a particular
point in state space. We then make a mean-field assumption and thereby derive an integro-partial
differential equation that is satisfied by the LSDD. We perform numerical experiments and find
good agreement between solutions of the integro-differential equation and the LSDD from stochastic
simulations of the full model. To illustrate our theory, we apply it to a simple continuum model
for osteocyte network formation within bones, with a view to understanding changes that may
take place during cancer. Our results suggest that increased rates of differentiation lead to higher
densities of osteocytes but with a lower number of dendrites. To help provide biological context,
we also include an introduction to osteocytes, the formation of osteocyte networks, and the role of
osteocytes in bone metastasis.

I. INTRODUCTION

Networks, in which entities (“nodes”) interact with each
other via “edges”, are a useful representation of com-
plex systems [1]. They have often been very helpful for
formulating and answering questions in biology, sociol-
ogy, engineering, and numerous other fields. Because
the present work is motivated by a biological applica-
tion, let’s consider a few examples from biology. Many
systems—such as blood vasculature [2], leaf venation [3],
and fungi [4, 5]—can be treated as biological transporta-
tion networks, in which edges carry resources and nodes
operate as junctions. Some of these studies exploit ideas
from fluid mechanics and energy minimization to investi-
gate flow through various media [4, 6–8]. To give another
type of example, in evolutionary game theory, a node can
represent a biological agent, and edges indicate interac-
tions in a “game” between those agents [9]. Applications
range from behavioral ecology [10] to investigating tumor
heterogeneity in cancer [11]. Changes in node fitness can
depend on, for example, a node’s phenotype and its im-
mediate neighbors [12].

Many of the above examples involve “spatial networks”
[13], and spatial constraints can exert significant influ-
ence (directly and/or indirectly) on both network struc-
ture and function. In the aforementioned examples, the
networks are embedded in space, and one thus can assign
physical locations to the nodes and edges. This is clearly
important when considering dynamical processes (such
as biological contagions [14]) on those networks [15].

Some spatial networks grow in time as they form: new
nodes and edges can join a spatial network, and the spa-
tial domain can expand. For example, cities often grow

outwards or arise when borders from multiple settlements
coalesce [16–18]. Fungi, which are living networks, ex-
pand to reach nutrients, and such growth induces flows
of mass [4, 5].

In the present paper, we propose a framework for de-
scribing evolving spatial networks. We then apply this
framework to examine the formation of osteocyte net-
works in bone (see Fig. 8 for a schematic). During bone
formation, cells called osteoblasts secrete bone matrix
and differentiate into cells called osteocytes, and the en-
suing growth process results in a network of connected
cells that communicate by chemical diffusion via gap
junctions [19–22]. In Section VII, we develop and an-
alyze a model for this process, with the motivation of
using network analysis to study bone cancer. In patho-
logical bone, the highly regulated bone-remodeling sig-
naling pathway is disrupted, and it may be possible to
gain insight into the nature of this disruption using tools
from network analysis. See [23] for a recent paper on
osteocyte networks.

There are myriad models of network formation [1].
There are at least three possible ways of formulating such
a model: (i) all nodes and edges are created simultane-
ously with a single algorithmic step (e.g., the standard
Erdős–Rényi (ER) random graphG(n, p) [1, 24] and stan-
dard random geometric graphs [25]); (ii) nodes and edges
have an implicit order of creation but time is not con-
sidered explicitly (e.g., in some preferential-attachment
models [26, 27]); or (iii) nodes and edges have an order
of creation and time is considered explicitly (e.g., in some
preferential-attachment models [28, 29] and in adaptive
network models [30]). Because we want to incorporate
time explicitly, we will consider spatial networks in cate-
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gory (iii) in the present paper. See also the recent work
by Zuev et al. on geometric preferential-attachment mod-
els [31].

When studying a model in category (iii), it is common
to employ kinetic approximations [28, 29, 32, 33]. Such
approximations often allow one to construct a “master
equation” to obtain approximate and/or asymptotic ex-
pressions for quantities such as degree distributions, com-
ponent sizes, and cycle sizes [32]. These equations can
take the form of an ordinary differential equation (ODE),
partial differential equation (PDE), or other continuous
model. By carefully constructing a general state space of
the system, we derive an extension to the ODE master
equations given in [28, 29, 32, 33] to obtain a master equa-
tion in the form of an integro-partial differential equation
(IPDE) that incorporates this state space.

Our work illustrates how to use a master-equation ap-
proach to study spatial networks. As an illustration of
its potential, we examine degree distributions in a very
general model of evolving spatial networks and use our
results to gain insights on osteocyte network formation
in bone. An important benefit of using an explicit time-
dependent kinetic approach is that it allows one to incor-
porate nodes that move through a state space (e.g., par-
ticles that diffuse). Note that we will often use the terms
“nodes” and “particles” interchangeably (depending on
the context). When considering spatially-embedded net-
work models, the state space corresponds to each node
being located in a copy of the physical space. From a
mathematical viewpoint, our approach is reminiscent of
some models of social networks [34, 35], for which the
state space corresponds to a latent social space described
by some internal parameters; however, these models have
no time dependence. See also the recent paper [36] on
macroscopic descriptions for particle interactions medi-
ated by time-dependent networks.

The remainder of our paper is organized as follows. In
Section II, we define the concept of a “local state degree
distribution” (LSDD), which encapsulates the degree dis-
tribution of a network local to a point in state space. In
Section III, we give a description of our model of evolving
spatial networks. In Section IV, we derive an equation
for the LSDD when edges are created but cannot be de-
stroyed. In Section V, we incorporate edge destruction
into our model. Our derivations require the use of ap-
proximations, so we use numerical simulations to explore
agreement and discrepancies between theory and our de-
rived equations in Section VI. In Section VII, we use our
model for evolving spatial networks to formulate a model
for osteocyte network formation. We conclude and dis-
cuss future directions in Section VIII. In appendices, we
give additional details on derivations and numerical im-
plementations.

II. A LOCAL STATE DEGREE DISTRIBUTION

We consider networks in which each node (i.e., parti-
cle) has some number of associated properties in addi-
tion to those, such as degree distribution, that arise from
network structure. For example, each node may have
a spatial location and a velocity, or it may have some
more abstract internal (“latent”) property describing, for
example, some social trait. We collect these properties
together into a state vector s, which belongs to a state
space S.

The density f(t, s) of particles in the state space gives
the expected number of particles with state s [37]. How-
ever, a common way to study the properties of models
of network formation is to examine the degree distribu-
tion [1]. In this paper, we combine these ideas to con-
sider what we call a local state degree distribution (LSDD)
uk(t, s), which gives the expected number of particles of
degree k at time t with state vector s. One can write the
LSDD as

uk(t, s) = pk(t | s)f(t, s) ,

where pk(t | s) is the conditional probability that a node
at time t has degree k, given that its state is s. We can
recover both f and pk from uk via

f(t, s) =

∞∑

k=0

uk(t, s) , pk(t | s) =
uk(t, s)∑∞
k=0 uk(t, s)

. (1)

The degree distribution of the whole network is given by

Pk(t) =

∫
S
uk(t, s)ds∑∞

k=0

∫
S
uk(t, s)ds

. (2)

III. MODEL OF EVOLVING SPATIAL
NETWORKS

We now present a model for evolving spatial networks.
Our model has three tunable features. First, edges can be
created and deleted. Second, new nodes can be created
(but we do not allow node deletion). Finally, we specify
a model (possibly depending on network structure) for
the evolution of the state s of each node.

Suppose at time t that there are N(t) nodes with state
vectors si and degrees ki (with i ∈ {1, . . . , N}). We
also suppose that new edges are created between each
pair of nodes as independent Poisson processes, where
C(si, ki, sj , kj) is the rate of edge creation between node
i and node j, so that the probability of an edge being
created between node i and node j in time t to t+ dt is
C(si, ki, sj , kj)dt. We also suppose that C depends on the
states and degrees of the two nodes i and j, but that it
does not depend on other properties of the network (such
as, for example, whether an edge between node i and
node j already exists). Thus, our model allows multiedges
(i.e., multiple edges between two distinct nodes).
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Similarly, we suppose that existing nodes are deleted
as independent Poisson processes, where D(si, ki, sj , kj)
is the rate of edge deletion (per edge) between node i
and node j. We suppose also that new particles, which
have degree 0, arrive randomly as a Poisson process with
constant rate J , and we assign to them a state drawn at
random from the probability distribution P.

The final component of our model is the equation of
motion of the particles in the state space. Many possible
models are available (both deterministic and stochastic),
and we want to keep our presentation as general as pos-
sible. Nevertheless, it is useful to have a model in mind
to fix ideas, and we thus present several examples.

The simplest case is for each node to have a constant
state vector. Our first nontrivial example consists of
identical particles of mass m > 0 that follow Newton’s
equations of motion with a smooth pairwise potential Φ.
In that case, si(t) = (xi(t),vi(t)) ∈ S ⊆ R2d and

ẋi = vi , mv̇i = −
n∑

j=1
j 6=i

∇xiΦ(xi − xj) . (3)

Variations of these equations have been used to consider
collective motion such as swarming [38–40]. Our second
example consists of the stochastic position jump process
in which si(t) = Xi(t) ∈ S ⊂ Rd and [41]

dXi = µ(Xi)dt+ σ dW t , (4)

where W t is standard Brownian motion (i.e., a Wiener
process) [42]. Other stochastic examples include velocity-
jump processes [43] and fractional diffusion processes
[44].

In each of the above examples, the motion in state
space is independent of network structure. Of course, it
is also possible to imagine scenarios in which the motion
depends on node degree or other structural features.

We summarize the model events and state update in
Table I, and we illustrate them in Fig. 1.

Our model treats all nodes identically, although our
methodology can be extended to heterogeneous classes of
nodes or heterogeneous classes of edges. (Both of these
generalizations are examples of multilayer networks [45].)
To consider such cases, one can modify kinetic method-
ology from [46, 47].

IV. MODEL ANALYSIS: NO EDGE DELETION

We begin by considering the case in which there is
no edge deletion. That is D(si, ki, sj , kj) = 0 for all
si, ki, sj , kj . In the next subsection, we give a set of hi-
erarchical master Fokker–Planck (FP) equations for the
probability distribution of the state of the system. Be-
cause it is not pragmatic to work in this high-dimensional

space, in Section IVB, we reduce the dimension using
mean-field arguments from kinetic theory.

Table I. Model description: (a) edge creation; (b) edge deletion;
(c) node creation; and (d) evolution of node state.

(a) The rate of edge creation between nodes i and j is
C(si, ki, sj , kj).

(b) The rate of edge deletion per edge between nodes i and
j is D(si, ki, sj , kj).

(c) Nodes of degree 0 enter the system at rate J . We assign
the new node a state s∗ ∈ S, where we draw s∗ from
the distribution P.

(d) Nodes move in the state space S according to some
(possibly stochastic) differential equation. We specify a
single differential equation for each node, and all nodes
must follow the same differential equation.

A. Fokker–Planck Equation

We define F ~kn
n (t, ~sn) to be the probability that a net-

work has n nodes with degree sequence ~kn = {k1, . . . , kn}
and state vectors ~sn = {s1, . . . , sn}. Note the normaliza-
tion

∞∑

n=0




∑

K1,n

[∫

Sn
F~knn (t, ~sn) d~sn

]
 = 1 , (5)

where Ka,b is shorthand for summing over all possible
degrees for nodes i ∈ {a, a+ 1, . . . , b}. That is,

∑

Ka,b

≡
∞∑

ka=0

∞∑

ka+1=0

· · ·
∞∑

kb=0

. (6)

We are not considering edge deletion and we have as-
sumed that edge creation and state-space motion depend
only on node state and degree, so it is possible to write
down a closed equation for F ~kn

n (t, ~sn). In contrast, when
we do consider edge deletion in Section V, it will not be
enough simply to keep track of node degrees. We will
need the full adjacency matrix.

Because the probability density function F ~kn
n (t, ~sn) de-

pends on the number of particles in the system (which
changes when new nodes are created), we obtain a hierar-
chy of Fokker–Planck equations as in [48]. By considering
a small time step from t to t + dt and partitioning over
the events that can occur, we obtain
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(a)
Time: t Time: t + ∆t

Rate: C(si, ki, sj , kj)

(si, ki)

(sj , kj)

(si, ki + 1)

(sj , kj + 1)

S S

(b) Rate: D(si, ki, sj , kj)

(si, ki)

(sj , kj)

(si, ki − 1)

(sj , kj − 1)

S S

(c) Rate: J

(s∗, k∗ = 0)

S S

(d) State change: si(t)→ s̃i = si(t + ∆t)

(si, ki) (s̃i, ki)

S S

Figure 1. Diagrammatic illustration of our model of evolving
spatial networks. In each panel, the square box represents the
state space S. In each time step of size ∆t (where 0 < ∆t � 1),
the following events can occur: (a) edge creation; (b) edge deletion;
(c) node creation; and (d) evolution of node state.

(
∂

∂t
+ L(n)

)
F ~kn
n (t, ~sn) =

n∑

i=1

n∑

j=i+1

(
C(si, ki − 1, sj , kj − 1)F

~ki,jn,−
n (t, ~sn)− C(si, ki, sj , kj)F ~kn

n (t, ~sn)

)

+

n∑

i=1

1

n
δki,0 J P(si)F

~ki−n
n−1(t, ~si−n )− JF ~kn

n (t, ~sn) . (7)

The operator on the left-hand side describes the evo- lution of particles in state space, and it depends on the
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particular model that one chooses for this evolution. For
example, if nodes move according to equation (3), one
has the Liouville flux term

L(n)F ~kn
n =

n∑

i=1

(
vi · ∇xi

+
F (~xn)

m
· ∇vi

)
F ~kn
n , (8)

where ~xn = (x1, . . . ,xn) and

F (~xn) = −
n∑

j=1
j 6=i

∇xi
Φ(xi − xj) .

Alternatively, if si(t) evolves according to the stochastic
differential equation (SDE) (4), one has the Kolmogorov
forward operator

L(n)F ~kn
n =

n∑

i=1

∇xi ·
(
µ(xi)−

σ2

2
∇xi

)
F ~kn
n . (9)

If the states of nodes are time-independent, then L(n) ≡
0.

The first term in parentheses on the right-hand side
of equation (7) corresponds to edge-creation events be-
tween each pair, i and j, of nodes. The positive term
corresponds to gaining a network with degree sequence
~kn = {k1, . . . , kn} from a network with degree sequence
~ki,jn,− = {k1, . . . , ki − 1, . . . , kj − 1, . . . , kn} by adding
an edge between nodes i and j. The negative term
corresponds to losing a network of degree sequence ~kn
(as it changes to a network of degree sequence ~ki,jn,+ =
{k1, . . . , ki + 1, . . . , kj + 1, . . . , kn}) by adding an edge
between nodes i and j.

The second term on the right-hand side of equation
(7) corresponds gaining a network with degree sequence
{k1, . . . , ki−1, 0, ki+1, . . . , kn} from a network with degree
sequence ~ki−n = {k1, . . . , ki−1, ki+1, . . . , kn−1} by adding
a new node (of degree 0) to the system. The Kronecker
delta δki,0 ensures that this term is present only when
ki = 0, corresponding to the new node having degree
0. One draws the new state si from the probability dis-
tribution with density function P. (The state vector of

the existing nodes is ~si−n = (s1, . . . , si−1, si+1, . . . , sn).)
We assign the label of the new node uniformly at random
from the set {1, . . . , n} (rather than assigning it to be the
last node n) to ensure that particles are indistinguishable.

The final term on the right-hand side of equation
(7) describes the loss of a network with degree se-
quence ~kn because of the addition of a new node.
(One thereby obtains a network with degree sequence
{k1, . . . , ki−1, 0, ki, . . . , kn} for some i.)

To save us from writing down separate equations for
each case in which ki = 0 for some i (because it is impos-
sible to arrive at a state in which a node has degree 0 by
adding an edge to a state in which it has degree −1), we
use the convention that F~knn (t, ~sn) = 0 if n < 0 or ki < 0
for all i ∈ {0, 1, . . . , n}. We also suppose that parti-
cles are indistinguishable initially, so the initial condition
F ~kn
n (0, ~sn) is invariant to index permutation. Equation

(7) then ensures that this is true for all t.
It is not feasible to solve equation (7) analytically (ex-

cept perhaps when the node state vectors are uncorre-
lated), and it is not practical to solve it numerically due
to the high dimension of the domain. In Section IVB, we
reduce the dimension of the equation (7) using mean-field
approaches from kinetic theory.

B. Low-Dimensional Approximation

To derive our low-dimensional approximation, we
adapt methods from kinetic theory [38, 49]. We keep
the presentation brief in this subsection; we give more
details in Appendix B.

A common approach in kinetic theory is to average over
the states of particles 2 to n to find an equation for the
marginal distribution function of the first particle [50, 51]
(the so-called “1-particle distribution function”). Because
particles are indistinguishable, multiplying by n gives the
probability of finding any particle in a given state. Here
we adopt the same approach, and we average over the
states and degrees of particles 2 to n. Because the num-
ber of particles itself can vary, we also need to average
over this quantity. The resulting 1-particle distribution
function is exactly the previously-defined LSDD uk(t, s).
Specifically,

uk1(t, s1) =

∞∑

n=0

n
∑

K2,n

∫

Sn−1

F~knn (t, ~sn) d~s (2)
n =

∞∑

n=0

n

∞∑

k2=0

· · ·
∞∑

kn=0

∫

Sn−1

F~knn (t, s1, . . . , sn)ds2 . . . dsn, (10)

where we introduce the shorthand notation d~s (µ)
n =

dsµ . . . dsn for µ ∈ {1, . . . , n}.

To find the equation satisfied by uk(t, s1), we apply the
same summation and integration to the Fokker–Planck

equation (7).

Because the summation and integration commutes
with the time derivative, it follows for the first term on
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the left-hand side (LHS) of equation (7) that

∞∑

n=0

n
∑

K2,n

∫

Sn−1

∂F~knn (t, ~sn)

∂t
d~s (2)
n =

∂uk1(t, s1)

∂t
. (11)

For the next term on the LHS, we need to evaluate

∞∑

n=0

n
∑

K2,n

∫

Sn−1

L(n)F~knn d~s (2)
n . (12)

If there are no interactions between particles in the state
space, this term evaluates to L(1)uk1 . Thus, for example,
if L(n) is given by (9), then this term is

L(1)uk1 = ∇x1
·
(
µ(x1)− σ2

2
∇x1

)
uk1 . (13)

When there are pairwise interactions between parti-
cles in the state space, for each interacting pair, one can
perform the integration over all other particles. Conse-
quently, after relabelling, one can write (12) in terms of
the 2-particle LSDD

u
(2)
k1,k2

(t, s1, s2) =

∞∑

n=0

n(n−1)
∑

K3,n

∫

Sn−2

F~knn (t, ~sn)d~s (3)
n .

(14)

We do not have a closed equation for uk1 , but the first in
a series of equations (the BBGKY hierarchy) for the 1-
particle, 2-particle, 3-particle, etc. LSDDs. In this case,
we make the common mean-field closure assumption that

u
(2)
k1,k2

(t, s1, s2) ≈ uk1(t, s1)uk2(t, s2) . (15)

For example, if L(n) is given by equation (8), then equa-
tion (12) becomes

L̄(1)uk1 = v1 · ∇x1
uk1 − B(f, uk1) , (16)

where B(f, uk1) is the mean-field approximation

B(f, uk1) =

(
∇x1

Φ ∗
∫

Rd

f dv1

)
· (∇v1

uk1) , (17)

where ∗ represents the convolution operator and the func-
tion f is given in equation (1).

We now apply the same integration and summation to
the right-hand side (RHS) of equation (7). We give a
detailed derivation in Appendix B. Here we simply note
that by relabelling particles and again using the fact that
F~knn (t, ~sn) is invariant with respect to index permutation,
we find that

RHS =

∫

S

∞∑

k2=0

(
C(s1, k1 − 1, s2, k2 − 1)u

(2)
k1−1,k2−1(t, s1, s2)− C(s1, k1, s2, k2)u

(2)
k1,k2

(t, s1, s2)
)
ds2 + JP(s1)δk1,0 .

(18)

We again need to use the mean-field closure assump-
tion (15) to write the 2-particle LSDD in terms of the

1-particle LSDD. This gives the final closed mean-field
equation for the 1-particle LSDD in the absence of edge
deletion:

[
∂

∂t
+ L(1)

]
uk1(t, s1) =

(∫

S

∞∑

k2=0

C(s1, k1 − 1, s2, k2 − 1)uk2−1(t, s2) ds2

)
uk1−1(t, s1)

−
(∫

S

∞∑

k2=0

C(s1, k1, s2, k2)uk2(t, s2) ds2

)
uk1(t, s1) + JP(s1)δk1,0 , (19)

where uk1 ≡ 0 if k1 < 0 by convention. When C is a
constant and S is a point, equation (19) reduces to the
master equations given in Ref. [32]. The quadratic terms
in equation (19) are analogous to the mean-field term in
the Vlaslov equation, where a test particle feels the effect

of a “cloud” of points [39, 50, 51].
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V. DERIVATION OF THE MODEL: EDGE
DELETION

The state space {(~sn,~kn) : n > 0} that we used in
Section IV is not sufficient when we allow edge deletion.
With edge deletion, it is crucial to know whether an edge
exists between each pair of nodes, so we must consider
the underlying adjacency matrix. For undirected net-
works with multiedges, the adjacency matrix An = ATn
has entries (An)i,j for i 6= j and i, j ∈ {1, . . . , n}, where
(An)i,j ∈ N0 gives the number of edges between nodes i
and j.

Because we consider probability distributions over An,
the most efficient representation is to restrict attention
to the independent entries of An. We thus change con-
vention slightly and set (An)i,j = 0 for i ≥ j, and we
will retain the term “adjacency matrix” to indicate the
resulting matrix.

Let FAn
n (t, ~sn) denote the probability that a network

has adjacency matrix An and n nodes with state vectors
~sn = {s1, . . . , sn}. The normalization condition is

∞∑
n=1

{ ∑
An∈Sn

[∫
Sn

FAn
n (t, ~sn)d~sn

]}
= 1 , (20)

where

Sn =

{
An :

(An)ij ∈ N0 , 1 ≤ i < j ≤ n
(An)ij = 0 , otherwise

}
, (21)

so that

∑

An∈Sn

≡
∞∑

(An)12=0

· · ·
∞∑

(An)1n=0

∞∑

(An)23=0

· · ·
∞∑

(An)n−1,n=0

.

For fixed n, one can calculate the degree ki of node i from
the adjacency matrix using

ki =

n∑

j=i+1

(An)ij +

i−1∑

j=1

(An)ji .

Therefore, we can relate the distributions F and F via

F~knn (t, ~sn) =
∑

An∈Sn




n∏

i=1

δ


ki,

n∑

j=i+1

(An)ij +

i−1∑

j=1

(An)ji




FAn

n (t, ~sn) , (22)

where δ(a, b) is the Kronecker delta (which is usually written as δab). When we include edge deletion, the hi-
erarchical Fokker–Planck equation (7) becomes

(
∂

∂t
+ L(n)

)
FAn
n (t, ~sn) =

n∑

i=1

n∑

j=i+1

C(si, ki − 1, sj , kj − 1)F
Aij

n,−
n (t, ~sn)− C(si, ki, sj , kj)FAn

n (t, ~sn)

+

n∑

i=1

n∑

j=i+1

[(An)ij + 1]D(si, ki + 1, sj , kj + 1)F
Aij

n,+
n (t, ~sn)− (An)ijD(si, ki, sj , kj)F

An
n (t, ~sn)

+
1

n

n∑

i=1



i−1∏

j=1

δ(0, (An)ji)






n∏

j=i+1

δ(0, (An)ij)


 JP(si)F

Ai−
n

n−1 (t, ~s i−n )− JFAn
n (t, ~sn) , (23)

where

(Aijn,±)lm =

{
(An)lm ± 1 , if (i, j) = (l,m) ,
(An)lm , otherwise . (24)

The first term on the RHS of equation (23) corresponds to
edge-creation events between nodes i and j as before (see
Section IV). The first part of the second term corresponds
to gaining a network with adjacency matrix An from a

network with adjacency matrix Aijn,+ by deleting an edge
between i and j. Note that D is the rate of deletion
per edge, so we multiply by the number of edges (which
is equal to (An)ij + 1) between i and j. The second
part of this term corresponds to losing a network with
adjacency matrix An by deleting an edge between i and
j (to produce a network with adjacency matrix Aijn,−).

The third term on the RHS of equation (23) corre-
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sponds to gaining a network with adjacency matrix




0 A12 . . . A1,i−1 0 A1,i+1 A1,i+2 . . . A1n

0 0 . . . A2,i−1 0 A2,i+1 A2,i+2 . . . A2n

...
...

...
0 0 0 . . . 0 Ai−1,i+1 Ai−1,i+2 . . . Ai−1,n

0 0 0 . . . 0 0 0 . . . 0
0 0 0 . . . 0 0 Ai+1,i+2 . . . Ai+1,n

0 0 0 . . . 0 0 . . . 0 An−1,n

0 0 0 . . . 0 0 . . . 0 0




from an adjacency matrix

Ai−n =




0 A12 . . . A1,i−1 A1,i+1 A1,i+2 . . . A1n

0 0 . . . A2,i−1 A2,i+1 A2,i+2 . . . A2n

...
...

0 0 0 . . . Ai−1,i+1 Ai−1,i+2 . . . Ai−1,n

0 0 0 . . . 0 Ai+1,i+2 . . . Ai+1,n

0 0 0 . . . 0 . . . 0 An−1,n

0 0 0 . . . 0 . . . 0 0




by relabeling nodes j → j + 1 for j ≥ i and adding
a new unconnected node with label i (which we choose
uniformly at random from the set {1, . . . , n}). The Kro-
necker δ ensures that this term is present only when
(An)ij = (An)ji = 0. As in Section IV, the uniformly
random choice of the label for the new node ensures that
FAn
n (t, ~sn) is invariant with respect to index permuta-

tions.
We give the derivation of a reduced equation for

uk1(t, s1) in Appendix C. When we include edge deletion,
we find that we need an additional closure assumption in
addition to the mean-field approximation (15); see Ap-
pendix C for details. Our low-dimensional approximation
to (23) is

[
∂

∂t
+ L(1)

]
uk1(t, s1) = uk1−1(t, s1)

(∫

S

∞∑

k2=0

C(s1, k1 − 1, s2, k2 − 1)uk2−1(t, s2)ds2

)

− uk1(t, s1)

(∫

S

∞∑

k2=0

C(s1, k1, s2, k2)uk2(t, s2)ds2

)

+
(k1 + 1)uk1+1(t, s1)∫

S

∑∞
k1=0 k1uk1(t, s1) ds1

(∫

S

∞∑

k2=0

D(s1, k1 + 1, s2, k2 + 1)(k2 + 1)uk2+1(t, s2) ds2

)
(25)

− k1uk1(t, s1)∫
S

∑∞
k1=0 k1uk1(t, s1)ds1

(∫

S

∞∑

k2=0

D(s1, k1, s2, k2)k2uk2(t, s2) ds2

)
+ JP(s1)δk1,0 .

VI. NUMERICAL EXAMPLES

We now carry out Monte-Carlo simulations of our
stochastic network evolution process to illustrate the va-
lidity of equations (19) and (25) for sufficiently large net-
works.

First, in Section VIA, we investigate numerically the
validity of the mean-field assumption for our model when
the state space is a point. Second, in Section VIB, we
use an example scenario to demonstrate that a numeri-
cal solution of equations (19) and (25) matches well with
a full Monte-Carlo simulation of the underlying process.
Third, in Section VIC, we adapt the example scenario to
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consider the convergence of a network’s degree distribu-
tion in the limit of large networks. Fourth, Section VID,
we show that one can use our kinetic approximation as
an alternative to some one-step network creation models
proposed by Boguñá et al. [34]. Finally, in Section VIE,
we briefly consider some further approximations that one
can make to equations (19) and (25).

A. Accuracy of Our Mean-Field Assumption

In the absence of a network structure, the validity of
the mean-field approximation depends on the choice of
L(n), and it has been studied widely [38, 39, 50–52]. In
the present paper, we focus on evolving network struc-
ture. In our exploration of the validity of the mean-field
approximation in the network evolution model, we sup-
pose that there is no state dependence in either the node
creation rate C or the node deletion rate D.

The 2-particle degree distribution P (2)
k1,k2

is the proba-
bility that two nodes selected uniformly at random with-
out replacement have degrees k1 and k2. In our mean-
field closure, we approximate this quantity by the prod-
uct Pk1Pk2 , where Pk1 is the probability that a single
node selected uniformly at random has degree k1 (and
Pk2 is defined analogously). In Fig. 2, we compare the
empirical distributions P (2)

k1,k2
(t) and Pk1(t)Pk2(t) gener-

ated from 100 realizations of Algorithm 1 using 125 par-
ticles (and no node creation).

We see that our mean-field approximation does well on
this example, and the main error occurs when k1 = k2,
for which the product Pk1(t)Pk2(t) of 1-particle distri-
butions is slightly larger than the 2-particle distribution
P

(2)
k1,k2

(t). This discrepancy arises because one cannot se-
lect the same node twice when evaluating the correlation
function P (2)

k1,k2
(t), so the probability of finding two nodes

with the same degree is lower than that estimated by
Pk1(t)Pk2(t) (which corresponds to choosing two nodes
uniformly randomly with replacement). The difference
should therefore tend to 0 as 1/n as the number n of
nodes becomes infinite.

One way to evaluate the difference between two proba-
bility distributions is the Kolmogorov–Smirnov (KS) test
[53], which gives the probability ρKS that one rejects
the hypothesis that the two distributions are equal. For
P

(2)
k1,k2

(t) and Pk1(t)Pk2(t), we find that ρKS ≈ 2.0×10−3.

B. Example Scenario: Local State Degree
Distribution

The example in Section VIA was particularly simple,
as it focused only on the network aspect of the model.
We now want to compare Monte-Carlo simulations of a
much more complicated evolving spatial network with
a numerical solution of the reduced equation (25). We
select our new example to illustrate and evaluate all of
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Figure 2. Numerical illustration of the validity of the mean-field
assumption (15). We average over 100 realizations of Algorithm
1 using n = 125 particles and a time step of ∆t = 10−3. No
new particles enter the system (J = 0), the edge-creation rate is
C(ki, kj) = 2, and the edge-deletion rate is D(ki, kj) = ki + kj .
We show (a) the 2-particle distribution P (2)

k1,k2
(t), (b) the product

Pk1
(t)Pk2

(t) of the 1-particle distributions, and (c) the difference
P

(2)
k1,k2

(t)− Pk1
(t)Pk2

(t) at time t = 1/10.

the model components described in Table I. It does not
represent any particular physical or biological process.

Let’s consider noninteracting point particles contained
in the unit square, so one can describe the state of each
particle by its position vector si = (xi, yi) ∈ [0, 1]2.
We suppose that these positions evolve according to the
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Figure 3. Illustration of the example scenario in Section VIB.
Nodes enter the system in a strip on the left-hand side of the unit
square and then diffuse and drift to the right through equation
(26). There are reflective boundary conditions at x = 0 and x = 1
and periodic boundary conditions at y = 0 and y = 1. We create
edges between nearby nodes according to equation (27). Edges are
deleted at the rate given by equation (28).

SDEs [42]

dXi = µ dt+ σ dWt , dYi = σ dWt, (26)

where as before we use capital letters Si = (Xi, Yi) to

distinguish random variables from the values that they
take. We assume that the drift coefficient µ > 0 and
volatility coefficient σ > 0 are constant (corresponding
to a constant diffusion coefficient σ2/2). To initialise, we
place 1000 particles with degree 0 uniformly at random
in the rectangle (Xi, Yi) ∈ [0, 1/10] × [0, 1]. We impose
reflective boundary conditions at x = 0 and x = 1, and
we impose periodic boundary conditions at y = 0 and y =
1. To generate some spatial heterogeneity, we suppose
that the rate of edge creation between nodes depends
both on the distance between nodes and on the spatial
coordinates of each node. We take

C(Si, ki,Sj , kj) =

{
Xi +Xj , if ||Si − Sj || ≤ ε ,

0 , otherwise

}
.

(27)
In contrast, we suppose that the rate of edge deletion
per edge between nodes i and j depends on the degrees of
nodes i and j but is independent of position. Specifically,
we take

D(Si, ki,Sj , kj) =
ki + kj

10
. (28)

We introduce new nodes of degree 0 at a rate J uniformly
at random in the rectangle (x, y) ∈ [0, 1/10] × [0, 1].
Therefore,

P(x, y) =

{
10 , if x < 1/10 ,
0 , otherwise . (29)

We give a schematic illustration of these processes in
Fig. 3. We simulate the system using Algorithm 1 until
final time Tend = 1/2.

Having defined the stochastic process that we are simu-
lating, we now turn to the reduced model (25). Because
C(s1, k1, s2, k2) and D(s1, k1, s2, k2) are independent of
y1 and y2, and P(x1, y1) is independent of y1, we ex-
pect a solution in which uk1(t, s1) is independent of y1.
Integrating over y2 gives

∂uk1
∂t

(t, x1) + µ
∂uk1
∂x1

(t, x1)− σ2

2

∂2uk1
∂x2

1

(t, x1) =

( ∞∑

k2=0

∫ 1

0

Ĉ(x1, x2)uk2(t, x2) dx2

)
(uk1−1(t, x1)− uk1(t, x1))

+
(k1 + 1)2

10
uk1+1(t, x1)− k2

1

10
uk1(t, x1) +

∫
S

∑∞
k2=1 k

2
2uk2(t, s2) ds2∫

S

∑∞
k2=1 k2uk2(t, s2) ds2

(
k1 + 1

10
uk1+1(t, x1)− k1

10
uk1(t, x1)

)

+ JP(x1)δk1,0, (30)

where

Ĉ(x1, x2) =

{
2(x1 + x2)

√
ε2 − |x1 − x2|2 , if |x1 − x2| ≤ ε ,
0 , otherwise

}
. (31)

We solve (30) with no-flux conditions at x = 0 and x = 1 and initial condition

uk1(t = 0, x1) =

{
104δk,0 , x1 ∈ [0, 1/10] ,
0 otherwise , (32)
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because initially there are 103 particles placed uniformly
at random in [0, 1/10]× [0, 1].

In Fig. 4, we show a comparison between a Monte-
Carlo simulation of uk(t, x) using Algorithm 1 and a nu-
merical solution of equation (30) using a second-order
central difference finite-volume method (FVM) in space
and a fourth-order Runge–Kutta scheme in time. We use
the parameter values µ = 3/4, σ = 1/4, J = 500, and
ε = 0.1.

We observe that the distribution function uk(t, x1) is
nontrivial, and that the reduced model does a good job
of capturing the empirical distribution that we obtain
from Monte-Carlo simulations. The KS probability for
the distributions in Fig. 4 is ρKS ≈ 3.2× 10−2.
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Figure 4. Comparison of (a) the mean of 200 Monte-Carlo simu-
lations using Algorithm 1 binned into compartments of size 1/100
along the x-axis and (b) uk1

(1/2, x1) obtained from the numeri-
cal solution of equation (30). The parameter values are J = 500,
µ = 3/4, σ = 1/4, and ε = 0.1; and the time step in the stochas-
tic (i.e., Monte-Carlo) simulations is ∆t = 10−4. We initialize
the simulations with 103 particles placed uniformly randomly in
the domain [0, 1/10] × [0, 1]. We show results at the final time
Tend = 1/2.

C. Limit of Large Networks

We expect our mean-field assumption to be more accu-
rate for larger networks. We now briefly investigate this
hypothesis in the context of degree distributions. (Nat-
urally, it is also relevant to consider this hypothesis for
other quantities.)

For a network with n nodes, uk = O(n), so we see
that equation (25) converges to a sensible limit as n →
∞ if C = O(1/n) and D = O(1). To investigate the
convergence for large n, we consider networks in which
the number of nodes is constant in time (i.e., J ≡ 0). We
first consider networks in which there is no edge deletion
(i.e., D ≡ 0). We take the edge-creation rate to be 500/n
times that given in equation (27). We choose all other
parameters as in Section VIB.

In the top panel of Fig. 5, we show the mean degree
distribution sampled over 106/n realizations of Algorithm
1 for n = 125, n = 500, n = 2000, and n = 8000. We
also show the degree distribution calculated by solving
the IPDE (30). Qualitatively, this figure supports the
hypothesis that, at least in terms of degree distribution,
the mean-field approximation is more accurate for larger
networks.

We now introduce edge deletion and choose D to be
given by equation (28). We increase the rate of edge
creation slightly by taking the edge-creation rate to be
750/n times that given in equation (27). We show the
resulting mean degree distribution sampled over 106/n
realizations of Algorithm 1 for n = 125, n = 500, n =
2000, and n = 8000 in the bottom panel of Fig. 5(bottom)
along with the degree distribution that we calculated by
solving the IPDE (30).

D. One-Step Network Creation Versus Kinetic
Approximations

Dynamic models of network creation can provide an al-
ternative to one-step network creation. For example, in
the standard G(n, p) Erdős–Rényi (ER) model [1], one
specifies that a network has n nodes and that each pair
of nodes is connected with independent, constant proba-
bility p ∈ (0, 1). This leads to a binomial degree distribu-
tion Bin(n−1, p), which becomes the Poisson distribution
Pois(np) in the limit n→∞ with fixed np. Reference [32]
discussed an alternative, dynamic approach to the ER
model in which an initially unconnected network has n
nodes and each node connects to other nodes uniformly at
random at a specified rate. In the n→∞ limit, one can
solve a master equation to obtain a Poisson degree dis-
tribution, which coincides with the standard model when
halted at a specific time (depending on the edge-creation
rate). We note also the work by Krioukov and Ostilli
[54], who showed that certain equilibrium ensembles cre-
ate the same distribution of graphs as nonequilibrium
ensembles.

References [34, 55] discussed a one-step network-
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Figure 5. Comparison of degree distribution at time Tend = 1/2
determined from equation (30) (red) and from a mean over multiple
Monte-Carlo simulations using Algorithm 1 with a time step of
∆t = 10−3 (blue). With n nodes (constant in time; J ≡ 0), we
average the simulations are over 106/n realizations, where n = 125
(dotted curve), n = 500 (dash-dotted curve), n = 2000 (dash-
dotted curve), and n = 8000 (solid curve). (a) No edge deletion
(i.e., D ≡ 0), and the edge-creation rate is 500/n times that given
in equation (27). (b) The edge deletion is given by equation (28),
and the edge-creation rate 750/n times that given in equation (27).
The other parameter values are as in Section VIB.

creation model that allows nodes to have an associated
state. Nodes i and j have randomly distributed latent so-
cial variables si and sj , and these nodes are adjacent to
each other with probability r(si, sj). References [34, 55]
then used a mean-field approximation to derive a formula
for the degree distribution (depending on the probability
distribution of the social variables and on the function r)
of the network as the number of nodes tends to infinity.

One can use our kinetic approach as an alternative
to one-step creation to examine such a scenario. To
demonstrate this, we consider the case investigated in
[34], where the latent social variable is a positive scalar

s = h ∈ [0, hmax] and

r(hi, hj) =
1

1 + (b−1|hi − hj |)α
(33)

for constants b and α. We solve equation (19) with an
initial condition corresponding to n unconnected nodes
that are distributed uniformly at random in a state space
[0, hmax]. No new nodes enter the system (i.e., J ≡ 0),
there is no edge deletion (i.e., D ≡ 0), and the edge-
creation rate is C = r(hi, hj). Thus, at time Tend = 1, the
expected number of edges between node i and node j is
r(hi, hj). In Fig. 6, we see for parameter values n = 1000,
α = 3, and b = 1/2 that the degree distribution given by
our mean-field model at t = Tend matches very closely
with the analytical formula of [34]. We solved the IPDE
using a method of lines with a spatial discretization of
∆h = 1/4 and a fourth-order Runge–Kutta scheme in
time.
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Figure 6. Analytical approximation to the degree distribution
(solid blue curve) of the latent social-space model given in Ref. [34]
versus the result from a kinetic formulation (red dash-dotted curve)
using equation (19). We uniformly distribute nodes with a social
parameter h ∈ [0, 125]. We use the parameter values n = 1000,
α = 3, and b = 1/2. The probability of connection and choice of C
is given by equation (33). There is no edge deletion (i.e., D ≡ 0),
and the system is of constant size (i.e., J ≡ 0). We solve the kinetic
equation until final time Tend = 1.

E. Final Remarks: Moment Closure

Despite the fact that equations (19) and (25) are of
much lower dimension than equations (7) and (23), each
of the former equations is still an infinite system of
IPDEs, and they may still be too expensive to solve nu-
merically. One can make further approximations by con-
sidering moments of the density uk(t, s) with respect to
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the degree k:

M(r)(t, s) =

∞∑

k=0

kruk(t, s) . (34)

In particular,M(0) gives the number density of nodes (for
which we obtain a closed equation if J ≡ 0 and L(1) does
not depend on the network structure), andM(1) gives the
number density multiplied by the mean degree of a node
with state vector s. It is only possible to obtain a closed
system of equations for particular choices of C and D. In
general, one needs to truncate the hierarchy of moment
equations and then apply another closure assumption by
positing an expression for a high-order moment in terms
of lower-order moments [56–58].

VII. A MODEL FOR OSTEOCYTE NETWORK
FORMATION

A. Osteocytes

An osteocyte [59] is a dendritic cell in both cortical
bone (dense, weight-bearing bone) and trabecular bone
(flexible, highly vascular bone). The protrusions (i.e.,
dendrites) of the cell are known as processes, and they
form a communication network between the osteocytes
and cells on the bone surface. To avoid confusion with
the word “processes”, which is common jargon in physics,
we henceforth refer to processes as “dendrites”. Osteo-
cytes are densely packed in bone. They occupy spher-
ical spaces called lacunae, and their dendrites occupy
tunnels called canaliculi [60, 61]. The dendrites enable
communication via gap junctions, across which signaling
molecules can diffuse. The precise purpose of this com-
munication network is not known, but there are many
conjectures. It has been suggested that the exchange of
signaling molecules relates to skeletal unloading, fatigue
damage, and estrogen deficiency [62]. The range of sig-
naling molecules that have been detected is vast, and
many also arise in the regulation of other organs. These
include Receptor Activator of Nuclear Factor Kappa-B
Ligand (RANKL) [62], Vascular Endothelial Growth Fac-
tor (VEGF) [62], Parathyroid Hormone (PTH) [63], cal-
cium ions (Ca2+) [22], and Sclerostin [64]. Additionally,
there is a thin layer of fluid around the osteocyte network.
Perturbations to osteocyte-network organization can im-
pact both fluid flow and diffusion, and they thereby allow
mechanosensation and signaling [65].

Because of the location of osteocyte networks in bone,
it is difficult to examine them experimentally. In Fig. 7,
we show the outcome of applying an obtrusive experimen-
tal technique to view osteocytes after nearby mineral has
been dissolved. Three-dimensional imaging data is now
available by using confocal microscopy [66–68], and such
work has led to the identification of some structural fea-
tures of osteocyte networks. Identified features include
the mean number of dendrites that protrude from each

osteocyte [68] and mean lengths of a canicular network
[69]. Other work has reported that high-density networks
correlate positively with high bone quality. Note that the
mineral matrix has an orientation (from dendrites and
collagen), and bone quality is associated with the level of
organization of this mineral matrix [65].

Figure 7. Scanning electron micrograph of osteocytes in bone. The
sample was prepared by embedding the bone in resin, which was
subsequently etched with perchloric acid. The image was created
by removing the entire mineral in the sample, leaving a replica of
the cells. Therefore, what is observed is the resin that filled the
spaces in the bone and the spaces inside the cells. (This picture is
copyrighted work and is available via Creative Commons [70] from
Kevin Mackenzie, University of Aberdeen, Wellcome Images [71].)

B. Formation Process

On the bone-tissue interface, two cell types are actively
involved in the bone-formation process: osteoblasts and
osteoclasts. Osteoblasts form a layer on the bone sur-
face and secrete the osteoid bone matrix. The larger
multi-nucleated osteoclasts subsequently resorb the bone
matrix [72]. Osteoblasts also express RANKL and osteo-
protegerin (OPG), which promote and inhibit the bone
resorption by osteoclasts, respectively. This is one exam-
ple for how osteoblasts tightly regulate bone formation
and destruction. As the osteoblasts produce the calcium
matrix, occasionally they become embedded within the
bone. These osteoblasts then change morphology to be-
come star-shaped osteocytes.

Osteoblasts originate from mesenchymal cells and have
one of four possible fates: undergo apoptosis (approxi-
mately 65%), become embedded in bone as osteocytes
(approximately 30%), transform into inactive osteoblasts
and become bone-lining cells, or transdifferentiate into
cells that deposit chondroid bone [21]. Upon some sig-
naling event, osteoclasts arrive at a bone and the os-
teoblasts move aside. The osteoclasts then burrow into
the bone; as they do so, they resorb some of the osteo-
cyte matrix. It has been suggested that after an osteocyte
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undergoes apoptosis, pro-osteoclastogenic signals are re-
leased by the osteocyte’s neighbors in the network [73].
A trail of osteoblasts then follows the osteoclasts and se-
cretes new bone matrix [74], although some of these get
left behind to become osteocytes. Kamioka et al. sug-
gested that osteoblasts are incorporated into a network
by osteocytes extending their dendrites towards the os-
teoblast layer [66].

Thus far, we have discussed three types of bone cells:
osteoblasts, osteoclasts, and osteocytes. For at least
the osteoblast-to-osteocyte cell transition, biologists have
subdivided the process of cell differentiation to include
eight phenotypes: (i) preosteoblast; (ii) preosteoblastic
osteoblast; (iii) osteoblast; (iv) osteoblastic osteocyte;
(v) osteoid-osteocyte (i.e., Type-II preosteocyte); (vi)
Type-III preosteocyte; (vii) young osteocyte; and (viii)
old osteocyte [21]. Additionally, the secretion of bone
occurs as two steps: first osteoid is deposited as a scaf-
fold, and then mineralization occurs to confer strength.
Stages (iv)–(vi) are cells after the deposition front but
before the mineralization front; they are surrounded by a
non-mineralized osteoid matrix. (In other words, there is
scaffold around them.) Stages (vii)–(viii) are cells whose
volume has depleted (by reduction in the endoplasmic
reticulum and Golgi apparatus) and are in mineralized
bone. The diagram in Fig. 8 shows the bone-formation
step. Although it is potentially useful to consider all of
the above phases (defined from osteogenic markers), we
are interested only in the structure of a mature osteo-
cyte network [stages (vi)–(viii)], so we will make drastic
simplifications.

1. Bone Metastasis

Advanced prostate, breast, and lung cancer can metas-
tasize to bone [75, 76]. In pathological bone, the
highly regulated bone-remodeling signaling pathway is
disrupted. A particularly painful symptom is net bone
formation in some regions and simultaneous weakening
in other areas [77]. Small bone lesions can also develop.

In a cancerous microenvironment, transforming growth
factor beta (TGFβ) expressed by tumor cells promotes
excessive osteoblast growth [78]. The overexpression of
TGFβ is only one of the many ways in which tumors
can interfere with bone formation; TGFβ targeted cancer
therapy has only been marginally successful [79].

Ordinary differential equation (ODE), and hence non-
spatial, models for cell populations in healthy bone that
incorporate osteoblast, osteoclast, and osteocyte popula-
tions were developed in [80–82]. Partial differential equa-
tion (PDE) models of healthy bone remodeling include
[83, 84], and these models were adapted subsequently
for cancerous bone in [85]. Mechanically-focused mod-
els that capture stresses and strains in bone have also
been explored [77, 86, 87]. A few of these models con-
sider osteocyte density, but none of them explore network
structure.

(a) A

A

B

B

B

B

(b) A

A

C

B

B

B

B

Figure 8. Diagrammatic illustration of the bone-formation pro-
cess. Lighter shades of blue indicate more differentiated cells. The
lighter shade of pink indicates the deposition front, and the darker
shade of pink indicates the mineralization front. Panel (a) occurs
earlier than panel (b). Dendritic osteocytes (light blue) have den-
drites that extend towards the osteoblast layer (dark blue). The os-
teoblasts secrete bone matrix. Osteoblast cells marked with “A” are
signaled by the osteocyte network to differentiate into osteocytes.
Osteoblast cells marked with “B” do not differentiate and stay on
the outer bone surface. Osteoblast cells marked with “C” arrive
at the bone front after differentiating from precursor osteoblasts
(pre-osteoblasts). [This figure is inspired by a similar illustration
in Ref. [21].]
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A seemingly unexplored area is the investigation of
osteocyte network morphology in the presence of can-
cer. There is evidence in [88, 89] that for myeloma and
(benign) osteoma, osteocytes are exceptionally spherical
and have shorter, distorted dendrites that are reduced
in number. A contrasting osteocyte network with un-
regulated excessive dendritic growth (and hence larger
numbers of dendrites) was observed in the presence of
osteogenic sarcoma [88].

In Section VIIC, we develop a simple model that in-
corporates network properties into the bone-formation
process. For some cancer types, it is known in part how
bone formation is affected (e.g., there is increased os-
teoblast proliferation). Using such a model, it may be
possible to connect a change in the bone-formation pro-
cess to the properties of the resulting osteocyte network.
Qualitatively, one would then be able to suggest which
osteocyte network phenotype is promoted by a particu-
lar cancer (e.g., stunted dendrite growth, excessive den-
drite growth, etc.). Conversely it may be possible to infer
changes in the bone-formation process from observations
of osteocyte network structure.

C. Model of Osteocyte Network Growth

The model that we develop in this section builds on
the work of Buenzli [19]. We avoid modeling the full
complications of the biology (e.g., cell sub-classifications,
proteins, etc.) and consider only osteoblasts and osteo-
cytes. By examining a simple model, we hope to gain in-
sight into how osteocyte network structure may depend
on measurable quantities, while preserving a minimalist
approach.

The osteocyte network occupies an expanding domain
Ω(t) ⊂ Rd with a boundary ∂Ω(t) that moves with nor-
mal velocity v(t). The nodes in the network are os-
teocytes, which each have an associated position in Rd.
The undirected edges are the dendrites between them.
We allow multiedges, which correspond to multiple den-
dritic connections between the same pair of osteocytes,
and they are observed in practice [65]. We suppose that
the positions of the osteocytes are time-independent, so
L(1) ≡ 0.

Motivated by the observation that osteoblasts differ-
entiate to osteocytes near the mineral front [21] — where

there is less mineralization — we suppose that the rate at
which an osteocyte creates connections to others is gov-
erned by the local bone mineral density m(t,x) ∈ R+.

Our model consists of two processes: (1) domain ex-
pansion and (2) edge creation within semi-mineralized
bone. Buenzli’s model [19] consists entirely of domain
expansion, whereas we also incorporate a network struc-
ture.

1. Domain Expansion

We suppose that osteoblasts are encased within the
mineral matrix and become osteocytes with degree k = 0
at a rate of Dburial(t,x)ρOb(t,x) for x ∈ ∂Ω(t), where
Dburial(t,x) is the probability per unit time of an os-
teoblast joining the matrix and ρOb(t,x) is the surface
density of osteoblasts. (We take ρOb(t,x) to be given.)
Equation (19) is then

JP(t,x) = Dburial(t,x)ρOb(t,x)δ∂Ω(t)(x) , (35)

where

δ∂Ω(t)(x) =

∫

∂Ω(t)

δ(x− x′) dS′ .

Following [19], we suppose that the (outward) normal
velocity of the interface is

v(t,x) = κform(t,x)ρOb(t,x) , x ∈ ∂Ω(t) , (36)

where κform(t,x) is the volumetric rate at which os-
teoblasts form the mineral matrix.

2. Edge Creation in Semi-Mineralized Bone

We suppose that the mineral density m(t,x) of the
matrix can vary in both space and time, as mineral is
produced by both osteoblasts on the deposition front and
osteocytes behind it. We suppose that there is a maxi-
mum mineral density Cm that corresponds to fully min-
eralized bone, that osteocytes produce mineral at a rate
of r(Cy)

exc (1−m/Cm) per cell, and that osteoblasts produce
mineral at a rate of r(Ob)

exc per cell, where r(Cy)
exc and r(Ob)

exc
are constants. Therefore,

∂

∂t
m(t,x) = r(Cy)

exc f(t,x)

[
1− m(t,x)

Cm

]
+ r(Ob)

exc ρOb(t,x)δ∂Ω(t)(x) , (37)

where f(t,x) [given by equation (1)] is the density of
osteocytes. Note that κform is the volume of matrix pro-
duced per osteoblast per unit time, whereas r(Ob)

exc is the
mass of matrix produced per osteoblast per unit time,

so the density of matrix formed by the osteoblasts is
r

(Ob)
exc /κform, which should be no larger than the max-
imum mineral density Cm. Note additionally that be-
cause Dburial is the rate at which osteoblasts join the
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matrix and κform is the rate at which matrix volume is
produced, the ratio Dburial/κform is the density of newly
formed osteocytes.

We now model how edges (i.e., dendrites) form. We
suppose that the rate of edge creation depends on the
mineral density m. In [66], it was suggested that osteo-
cytes grow dendrites towards the osteoblast layer. This
suggests that dendrites grow in the part of the domain
that is not fully mineralized. To construct a simple model
in which edges are less likely to form as mineral density
becomes larger, we let the rate of edge creation between
nodes at positions x and y be

C(t,x,y) = (Cm −m(t,x))(Cm −m(t,y))g(||x− y||) ,
(38)

where g is monotonically decreasing and vanishes at in-
finity, encoding the fact that short edges are much more
likely to form than long edges. Equation (38) takes into
account the mineral density only at the two endpoints x
and y. One can formulate more complicated models in
which C depends on (for example) a line integral of m
between x and y. However, given the simplifications and
modeling assumptions that we have already made, we do
not consider such complicated edge-creation models.

With our model assumptions, equation (19) becomes

∂

∂t
uk(t,x) =

(∫

Ω(t)

C(t,x,y)f(t,y)dy

)
[uk−1(t,x)− uk(t,x)] +Dburial(t,x)ρOb(t,x)δ∂Ω(t)(x)δk,0 . (39)

Equation (39) is coupled through C to equation (37) for
the mineral density, and the domain Ω(t) evolves accord-
ing to equation (36).

Summing (39) over k yields

∂f(t,x)

∂t
= Dburial(t,x)ρOb(t,x)δB(t)(x) , (40)

which is identical to equation (8) in [19]. Note also that
equation (39) does not include feedback between network
structure and the burial rate Dburial, though one can ex-
tend the model to incorporate such coupling.

D. Traveling-Wave Solution

If Dburial, κform, and ρOb are constant, then equations
(36), (37), and (39) admit a traveling-wave solution that
corresponds to the sustained creation of new bone. Such
a solution may give an indication of the local behavior
near growing bone, and we can use it to determine how
the properties of the bone depend on the parameters in
the model.

For a one-dimensional traveling wave that moves with
a constant speed of v = κformρOb, we can (without loss
of generality) take the domain to be Ω(t) = (−∞, vt).
We transform to coordinates that move with the wave by
writing z = x − vt, and we seek a solution in which uk
and m depend only on z. Equation (39) becomes

−v d
dz
uk(z) = DburialρObδ(z)δk,0 (41)

+

(∫ 0

−∞
C(z, z′)f(z′)dz′

)
(uk−1(z)− uk(z)) .

Summing over k gives

−v d
dz
f(z) = DburialρObδ(z) ,

so

f(z) =
Dburial

κform
[1−H(z)] , (42)

where H(x) is the Heaviside function. Equation (42) is
identical to equation (13) in [19] when Dburial and κform
are constant. Using (42) in equation (41) gives

d
dz
uk(z) = −bδ(z)δk,0 − a(z) (uk−1(z)− uk(z)) , (43)

where

b =
Dburial

κform
, a(z) =

Dburial

κ2
formρOb

∫ 0

−∞
C(z, z′)dz′ .

Equivalently, one can write equation (43) as

d
dz
uk(z) = −a(z)(uk−1(z)− uk(z)) , uk(0) = b δk,0 ,

(44)
whose solution is

uk(z) =
bλke−λ

k!
, λ =

∫ 0

z

a(z′)dz′ . (45)

The density of newly-formed osteocytes b sets the scale
for uk.

Before we can solve for λ, we first need to solve for
m(z). Solving equation (37) yields

m(z) = Cm +

(
r

(Ob)
exc

κform
− Cm

)
exp

(
r

(Cy)
exc Dburialz

κ2
formρObCm

)
.

(46)
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We see that the mineral density varies from that pro-
duced by osteoblasts r(Ob)

exc /κform to the maximum min-
eralization Cm over a length scale of

L =
κ2

formρObCm

r
(Cy)
exc Dburial

.

We illustrate this behavior in Fig. 9(top).
Before we can evaluate λ, we need to choose a form

for g. Suppose first that g is a constant, and let’s write
g ≡ β. In principle, this may allow long edges to form —
recall (see equation (38)) that we argued that g should
decay at infinity to ensure a low probability for long edges
to form — but we see from equation (46) that even with g
identically constant, C(z, z′) approaches 0 exponentially
fast over the length scale L, which therefore sets the scale
for the maximum edge length.

Inserting equation (46) in equation (45) gives λ =
λ∞

(
1− ez/L

)
, where

λ∞ =
βρObC

2
mκ

2
form

Dburial(r
(Cy)
exc )2

(
Cm −

r
(Ob)
exc

κform

)2

, (47)

which indicates that the mean degree varies over the same
length scale from a value of 0 for newly-formed osteocytes
to a value of λ∞ deep within a bone.

In the bottom panel of Fig. 9, we illustrate the
traveling-wave profile of the degree distribution by plot-
ting (1/b)

∑K
k=0 uk(z) for several values of K. The dif-

ferences between these curves indicate the proportion of
osteocytes of each degree. As expected, there is a re-
gion at the front of the wave in which the mean degree
of the osteocytes is lower, while the LSDD approaches a
stationary distribution far behind the front.

If, instead of taking g to be constant, we instead choose
g(z, z′) = βe−|z−z

′|/l or g(z, z′) = βe−|z−z
′|2/l2 , we ob-

tain qualitatively similar results, provided l > L. For
example, in the first case,

λ = λ∞
l(l − lez/L+z/l − L+ Le2z/L)

l2 − L2
.

For l � L, we see that λ → λ∞
(
1− ez/L

)
. For l � L,

we see that λ→ λ∞(l/L)
(
1− e2z/L

)
, so the length scale

over which degree varies is halved and the mean degree
smaller by the factor l/L.

E. Parametrization and Interpretation

One can infer representative values of some of the pa-
rameters and variables in our model from existing exper-
imental data. For example, in the review paper [69], the
authors calculated the number of osteocytes per mm3 to
lie in the range 19000–28500mm−3; the surface density
ρOb of osteoblasts per mm2 was calculated in [90] (using
data from Ref. [91]) to be in the range 2000–10000mm−2;
and values of Dburial and κform were given in [19] (using

(a)
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Figure 9. (a) Traveling-wave profile of mineral density m normal-
ized by Cm. At the front of the wave, m = r

(Ob)
exc /κform (dotted

line), which we choose to be 0.5Cm in the figure. Behind the front,
m approaches Cm. (b) The solid curve is a traveling-wave profile of
osteocyte density f =

∑∞
k=0 uk, normalized by b = Dburial/κform.

We illustrate the degree distribution of osteocytes as a function of
position by showing

∑K
k=0 uk (dashed curves) for the case λ∞ = 5.

The lower (K = 0) curve illustrates the proportion of osteocytes
with degree 0, and the difference between the K = i and K = i− 1
curves illustrates the proportion of osteocytes with degree i.

data from Refs. [91, 92]) for bone near a Haversian canal
(which occurs only in cortical bone). The number of den-
drites that protrude from an osteocyte yielded a mean
degree of 〈k〉 ≈ 52.7 in [68]. As suggested in [65–67], we
expect the number of unique neighbors of an osteocyte
to be smaller by an order of magnitude. Measurements
of the speed of the mineralization front of bone creation
were given in [93]. Numerous other parameters (e.g., the
rate r(Cy)

exc at which osteocytes produce mineral and the
maximum mineral density Cm) are unknown, and the
values above were reported in only a few papers, so it
is not yet possible to make quantitative predictions with
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our model.
Despite the dearth of knowledge about parameter val-

ues, we can use our model to make qualitative predic-
tions of the effect of varying each parameter. The review
[94] summarized how different cancer types interfere with
healthy bone remodeling. In particular, the review de-
tails how factors produced by prostate cancer cells lead
to net bone formation due to increased levels of prolifer-
ation and differentiation of osteoblasts. In our model,
an increased level of differentiation corresponds to an
increased burial rate Dburial. Increasing Dburial in the
model increases the number density of osteocytes f , but
it decreases the mean degree λ. In other words, it de-
creases the mean number of dendrites that leave a cell
body. In the model, this occurs because an increase in
osteocyte density leads to an increase in mineralization,
which makes dendrite formation less likely.

It was shown in [88, 89] that for myeloma and benign
osteoma—two other cancers that can cause net bone for-
mation [95]—osteocytes are rather spherical with shorter,
distorted dendrites that are fewer in number in compari-
son to those in healthy tissue. Although these articles do
not comment on osteocytes density or on mineralization,
and it is crucial to be careful to avoid over-interpreting
such limited data, our model does suggest one possible
mechanism for this change in morphology.

VIII. CONCLUSIONS

We introduced a model for evolving spatial networks,
and we used a mean-field approximation to reduce the di-
mension of its governing hierarchal Fokker–Planck equa-
tions. Specifically, by defining a local state degree dis-
tribution, we derived IPDEs (19) and (25) to describe
an evolving spatial network that includes evolution of
the position of nodes (or some more general state vec-
tor), edge creation, edge deletion, and new node creation
that occur at prescribed rates. Our approach general-
izes commonly-studied master-equation approaches by
including a state space so that we can examine spatial
networks.

To illustrate the potential utility of our IPDEs in ap-
plications, we examined growing osteocyte networks in

bone. Although we employed a very simplistic model,
we were able to use it predict relationships between bio-
logical parameters and network structure. Our approach
provides a starting point for examining spatial networks
in biology and other fields. In the future, we hope to
compare predictions to experimental data after making
a model more faithful to the biology.

There are also various ways to generalize our approach,
and we briefly indicate two of them. First, in all of our
examples, the motion in state space is independent of
network structure. There are many scenarios in which
the motion depends on the network, and one can readily
extend our mean-field approach to situations in which
the motion of a node depends on its degree (and even on
the degrees of its neighbors). For example, for pairwise
interactions, it is straightforward to extend our model to
the case in which the interaction depends on the degrees
of the two nodes as well on as their positions. However,
network information (e.g., a local clustering coefficient)
that is not expressible in terms of the degrees of nodes
would require extra closure assumptions to incorporate.
Second, in our model of network evolution, nodes are
created or removed according to Poisson processes, so
our model can generate multiedges. One can extend our
approach to simple graphs, in which multiedges are not
allowed, with an additional closure assumption. In the
edge-creation term, the creation of an edge should be
abandoned if an edge already exists between a pair of
nodes. One then multiplies the term C(si, ki, sj , kj) by
the probability that there is no existing edge between
nodes i and j. This probability is approximately 1 −
kikj/(2m), where ki and kj are the node degrees and m
is the total number of edges.
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Appendix A: Candidate Algorithm for the Kinetic
Network Model

In Algorithm 1, we give pseudocode for our simula-
tions of evolving spatial networks. In the main text, we
summarized our model in Table I.

When simulating Algorithm 1, we use a small time step
∆t, so 0 < ∆t� 1. We also specify the following order-
ing of events: edge creation; edge deletion; state update;
and then new particles are allowed to enter the system.
This specification is arbitrary, and obviously it is desir-
able that any reordering of these events becomes inconse-
quential as ∆t → 0. For our numerical experimentation
using the examples in Section VI, this indeed appears to
be the case. For the simulations that we reported in Sec-
tion VI, we chose a time step ∆t to be sufficiently small
that a reordering of events has no discernible impact.

The update rule for event (d) in Table I—namely, the
evolution of the states of the individual nodes—depends
on the particular process that we consider. We write
si(t+ ∆t) = D(s1(t), . . . , sN(t)(t),∆t), where D arises
from the time-discretization of the underlying process.
For example, one can use an Euler–Maruyama method
or the Milstein method for the SDE (4) [96]; and one use
Störmer–Verlet schemes for the ODEs in equation (3).
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Algorithm 1: Algorithm to generate an evolving spatial network. The notation randperm(X) signifies a permutation, selected
uniformly at random, of the discrete set X.

Data: Choose an end time Tend = M∆t for large M ∈ N and small ∆t > 0.
Set the number of particles N ← N0.
Initialize the starting state at si ← s

(i)
0 and starting degree at ki ← k

(i)
0 for each i ∈ {1, . . . , N0}.

Set time counter m← 0.
while m ≤M do

%Edge-creation update.
for i← randperm({1, 2, . . . , N}) do

for j ← randperm({i + 1, . . . , N}) do
Draw a uniform random number r1 from the distribution U(0, 1).
if r1 ≤ C(sj , kj |si, ki)∆t then

Create an edge between node i and node j.

%Edge-deletion update.
for i← randperm({1, 2, . . . , N}) do

for j ← randperm(Ei) do %Ei is the set nodes joined by an edge to i, counted according to multiplicity.
Draw a uniform random number r2 from the distribution U(0, 1).
if r2 ≤ D(sj , kj |si, ki)∆t then

Delete an edge between node i and node j.

%State update.
for i← 1 to N do

Update particle state: si ← D(s1, . . . , sN ,∆t). %D arises from the time-discretization of the state dynamics

%Node creation.
Draw a uniform random number r3 from the distribution U(0, 1).
if r3 ≤ J∆t then

Create node with state sN+1 ← s∗, where s∗ ∼ P.
Initialize the degree kN+1 ← 0
Update the number of particles: N ← N + 1.

Update time: m← m + 1.

One can devise a efficient simulation algorithm for sit-
uations in which edge creation or deletion do not depend
on the state of nodes. In that case, one can use an event-
driven algorithm, such as a Gillespie algorithm [97], for
creation and deletion events.

Appendix B: Additional Details of the Model
Derivation: No Edge Deletion

In this appendix, we fill in the details of the derivation
in Section IVB. When we sum over the degrees and inte-
grate over the states of particles 2 through n, multiply by
n, and sum over n, the first term on the RHS of equation
(7) gives

∞∑

n=0

n
∑

~kn∈K2,n

∫

Sn−1

n∑

i=1

n∑

j=i+1

C(si, ki − 1, sj , kj − 1)F
~kijn,−
n (t, ~sn) d~s (2)

n

−
∞∑

n=0

n
∑

~kn∈K2,n

∫

Sn−1

n∑

i=1

n∑

j=i+1

C(si, ki, sj , kj)F ~kn
n (t, ~sn) d~s (2)

n . (B1)
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For i > 1, each individual term appears once in the positive sum and once in the negative sum; they thus cancel each
other out. The remaining terms are

∞∑

n=0

n
∑

~kn∈K2,n

∫

Sn−1

n∑

j=2

C(s1, k1 − 1, sj , kj − 1)F
~kijn,−
n (t, ~sn) d~s (2)

n

−
∞∑

n=0

n
∑

~kn∈K2,n

∫

Sn−1

n∑

j=2

C(s1, k1, sj , kj)F ~kn
n (t, ~sn)d~s (2)

n . (B2)

Because F ~kn
n (t, ~sn) is invariant with respect to particle relabeling, we can relabel (sj , kj) ↔ (s2, k2) in each term in

the sum over j to obtain
∞∑

n=0

n
∑

~kn∈K2,n

∫

Sn−1

n∑

j=2

C(s1, k1, sj , kj)F ~kn
n (t, ~sn) d~s (2)

n =

∞∑

n=0

n
∑

~kn∈K2,n

∫

Sn−1

n∑

j=2

C(s1, k1, s2, k2)F ~kn
n (t, ~sn) d~s (2)

n

=

∞∑

n=0

n(n− 1)

∞∑

k2=0

∫

S

C(s1, k1, s2, k2)
∑

~kn∈K3,n

∫

Sn−2

F ~kn
n (t, ~sn) d~s (3)

n ds2

=

∞∑

k2=0

∫

S

C(s1, k1, s2, k2)u
(2)
k1,k2

(t, s1, s2) ds2

where the last line follows from equation (14). Consequently, we can write equation (B1) as
∫

S

∞∑

k2=0

C(s1, k1 − 1, s2, k2 − 1)u
(2)
k1−1,k2−1(t, s1, s2) ds2 −

∫

S

∞∑

k2=0

C(s1, k1, s2, k2)u
(2)
k1,k2

(t, s1, s2) ds2 . (B3)

For the remaining terms on the RHS of equation (7), we sum over the degrees and integrate over the states of particles
2 through n, multiply by n, and sum over n to obtain

∞∑

n=1

n
∑

~kn∈K2,n

∫

Sn−1

(
n∑

i=1

1

n
δki,0 J P(si)F

~ki−n
n−1(t, ~si−n )− JF ~kn

n (t, ~sn)

)
d~s (2)
n . (B4)

For the term i = 1, we are summing and integrating over all arguments of F ~ki−n
n−1(t, ~si−n ), so

∞∑

n=1

n
∑

~kn∈K2,n

∫

Sn−1

1

n
δk1,0 J P(s1)F ~k1−n

n−1 (t, ~s1−
n ) d~s (2)

n = δk1,0 J P(s1)

∞∑

n=1

∑

~kn∈K2,n

∫

Sn−1

F ~k1−n
n−1 (t, ~s1−

n ) d~s (2)
n

= δk1,0 J P(s1)

∞∑

n=1

∑

~kn−1∈K1,n−1

∫

Sn−1

F ~kn−1

n−1 (t, ~sn−1) d~sn−1

= δk1,0 J P(s1) ,

where the last line follows from equation (5). For each term i > 1, we use the invariance of F ~kn
n (t, ~sn) with respect

to particle relabeling to swap particle i with particle n to give
∞∑

n=1

n
∑

~kn∈K2,n

∫

Sn−1

n∑

i=2

1

n
δki,0 J P(si)F

~ki−n
n−1(t, ~si−n )d~s (2)

n =

∞∑

n=1

n
∑

~kn∈K2,n

∫

Sn−1

n∑

i=2

1

n
δkn,0 J P(sn)F ~kn−n

n−1 (t, ~sn−n ) d~s (2)
n

= J
∞∑

n=1

(n− 1)

∫

S

P(sn) dsn
∑

~kn−1∈K1,n−1

∫

Sn−2

F ~kn−1

n−1 (t, ~sn−1) d~s (2)
n−1

= J
∞∑

n=0

n
∑

~kn∈K1,n

∫

Sn−1

F ~kn
n (t, ~sn) d~s (2)

n ,

which cancels with the remaining term in equation (B4). Appendix C: Additional Details of the Model
Derivation: Edge Deletion

In kinetic theory, the first question to address when
deriving a reduced model is which variables to retain in
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the model and which to integrate over. In Section IV,
each variable was associated with a node in a network,
and it was natural to integrate over all nodes but the
first. We thus retained the state and degree of node 1 as
independent variables. We could have reduced the model
further by subsequently integrating over either the state
or degree of node 1.

When considering edge deletion, it is much more dif-
ficult to associate the independent variables with indi-
vidual nodes, and each entry of an adjacency matrix is
associated with a pair of nodes. Consequently, it is not
obvious which variables are natural to retain in a reduced
model and which variables should be integrated out. To
facilitate a direct comparison of the reduced model in-
cluding edge deletion with the reduced model of Section

IV, we again retain the state and degree of node 1 as in-
dependent variables. We thus sum over all entries of the
adjacency matrix for which node 1 has degree k1. Addi-
tionally, as before, we integrate over s(2)

n , multiply by n,
and sum over n.

Because the operators L(n) that we are considering do
not depend on network structure, the approximation of
the LHS of equation (23) proceeds as in Section IVB. For
the edge-creation term on the RHS of equation (23) we
find, as in Section B, that for i > 1, each term appears
once in the positive sum and once in the negative sum;
these terms thus cancel. For the remaining terms (for
which i = 1), we exploit the invariance of F An

n (t, ~sn)
with respect to particle relabeling. Specifically, we rela-
bel j ↔ 2 in each term in the sum over j (i.e., swapping
rows and columns of An) to obtain

∞∑

n=0

n
∑

An∈Sn

∫

Sn−1

δ


k1,

n∑

j=2

(An)1j


 (n− 1)C(s1, k1 − 1, s2, k2 − 1)F

A12
n,−

n (t, ~sn) d~s (2)
n

−
∞∑

n=0

n
∑

An∈Sn

∫

Sn−1

δ


k1,

n∑

j=2

(An)1j


 (n− 1)C(s1, k1, s2, k2)FAn

n (t, ~sn)d~s (2)
n , (C1)

where the Kronecker δ enforces the degree condition. The 2-particle LSDD is

u
(2)
k1,k2

(t, s1, s2) =

∞∑

n=0

n(n− 1)
∑

An∈Sn

δ


k1,

n∑

j=2

(An)1j


 δ


k2, (An)12 +

n∑

j=3

(An)2j



∫

Sn−2

FAn
n (t, ~sn) d~s (3)

n , (C2)

so one can write equation (C1) as equation (B3), and the analysis proceeds as in Section B.
Let’s now consider the edge-deletion terms. As with the edge-creation terms, for i > 1, each term appears once

in the positive sum and once in the negative sum; these terms thus cancel each other. For the remaining terms (for
which i = 1), relabeling j ↔ 2 in each term in the sum over j yields

∞∑

n=0

n(n− 1)
∑

An∈Sn

δ


k1,

n∑

j=2

(An)1j



∫

Sn−1

[(An)12 + 1]D(s1, k1 + 1, s2, k2 + 1)F
A12

n,+
n (t, ~sn) d~s (2)

n

−
∞∑

n=0

n(n− 1)
∑

An∈Sn

δ


k1,

n∑

j=2

(An)1j



∫

Sn−1

(An)12D(s1, k1, s2, k2)FAn
n (t, ~sn)d~s (2)

n

=

∞∑

k2=0

∫

S

D(s1, k1 + 1, s2, k2 + 1)U
(2)
k1+1,k2+1(t, s1, s2) dss −

∞∑

k2=0

∫

S

D(s1, k1, s2, k2)U
(2)
k1,k2

(t, s1, s2) dss ,

(C3)

where

U
(2)
k1,k2

(t, s1, s2) =

∞∑

n=0

n(n− 1)
∑

An∈Sn

δ


k1,

n∑

j=2

(An)1j


 δ


k2, (An)12 +

n∑

j=3

(An)2j



∫

Sn−2

(An)12F
An
n (t, ~sn) d~s (3)

n .

(C4)

There is now a new closure problem, as we need to relate U
(2)
k1,k2

(t, s1, s2) to known variables. We write

U
(2)
k1,k2

(t, s1, s2) = αu
(2)
k1,k2

(t, s1, s2) ,
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where α is the expected number of edges between nodes
1 and 2, given that these nodes have degrees k1 and k2,
respectively. If there are m edges in total, there are 2m
stubs, of which k1 are at node 1 and k2 at node 2. One can
approximate the probability that a given edge connects
nodes 1 and 2 as

2× k1

2m
× k2

2m
,

so a reasonable closure assumption (reminiscent of a con-
figuration model and hence with similar associated as-
sumptions [98]) for the expected number of edges between

nodes 1 and 2 is

α ≈ k1k2

2m
=

k1k2

E[N ]〈k〉 =
k1k2∫

S

∑∞
k1=0 k1uk1(t, s1) ds1

,

where E[N ] is the expected number of nodes and 〈k〉 is
the mean degree. Using a mean-field approximation for
u

(2)
k1,k2

(t, s1, s2), we can then close the edge deletion term
by writing

U
(2)
k1,k2

(t, s1, s2) =
k1k2uk1(t, s1)uk2(t, s2)∫
S

∑∞
k1=0 k1uk1(t, s1)ds1

.

Finally, we consider the node-creation term. The term
i = 1 gives

∞∑

n=0

n
∑

An∈Sn

∫

Sn−1

δ


k1,

n∑

j=2

(An)1j


 1

n




n∏

j=2

δ(0, (An)1j)


 JP(s1)F

A1−
n

n−1 (t, ~s 1−
n ) d~s (2)

n

= δk1,0 J P(s1)

∞∑

n=1

∑

A1−
n ∈Sn−1

∫

Sn−1

F
A1−

n
n−1 (t, ~sn−1)d~sn−1 = δk1,0 J P(s1) ,

where the last equality follows by equation (20). For each
term with i > 1, we can use the invariance of F ~kn

n (t, ~sn)
with respect to particle relabeling to swap particle i with

particle n. As in our prior calculations, we then find that
all of these terms cancel each other out.
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