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Data-based and model-free accurate identification of intrinsic time delays and directional interac-
tions is an extremely challenging problem in complex dynamical systems and their networks recon-
struction. A model-free method with new scores is proposed to be generally capable of detecting
single, multiple, and distributed time delays. The method is applicable not only to mutually in-
teracting dynamical variables but also to self-interacting variables in a time delayed feedback loop.
Validation of the method is carried out using physical, biological and ecological models and real
data sets. Especially, applying the method to air pollution data and hospital admission records of
cardiovascular diseases in Hong Kong reveals the major air pollutants as a cause of the diseases and,
more importantly, it uncovers a hidden time delay (about 30-40 days) in the causal influence that
previous studies failed to detect. The proposed method is expected to be universally applicable to
ascertaining and quantifying subtle interactions (e.g., causation) in complex systems arising from a
broad range of disciplines.

Introduction. In the physical world, time delays are in-
timately related to causation, as signals travel at a fi-
nite speed. Successful identification of time delays and
causal interactions in complex systems is relevant to sig-
nificant problems of current interest such as precision
medicine [1], effective policy and management recommen-
dations on climate and ecosystems [2, 3], energy opti-
mization in urban systems [4], epidemiology [5], control
strategy for gene regulation [6], financial regulations [7],
human brain functions [8], and human behaviors in on-
line social systems [9]. Traditional methods based on
the Granger causality [10, 11] and transfer entropy [12]
have issues such as difficulty with nonlinearity and strin-
gent data requirement. Recently a method based on non-
linear dynamical analysis, the convergent cross mapping
(CCM) method, was developed [13, 14] to overcome these
difficulties, making it possible to infer causality from rel-
atively short time series. In general, accurate detection
of time delays to enable inference of causation is an ex-
tremely challenging problem. Quite recently, there was
an effort in incorporating a single time delay into the
CCM scheme [15]. (A detailed discussion of the related
works on ascertaining causation can be found in Ap-
pendix A.) The purpose of this work is to propose new
scores substituting for the old score in the CCM scheme,
which then becomes a general, completely data based
framework for accurately identifying time delays, regard-
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less of their forms (e.g., single, multiple, or distributed).

In physical systems, time delays and causation are two
manifestations of the same principle: the influence of one
event (or subsystem) on another one cannot be instan-
taneous [16–24]. In the real world, time delays may re-
sult from the transmission time, switching speed, mem-
ory effect, or other physical effects. A real world example
is protein expression regulated by transcription factors,
where the regulation process goes through a cascade of
transcriptions and translations that take from minutes
to hours to exert their influences. For a complex system,
there are typically multiple or even distributed time de-
lays. While knowledge about the time delays can be used
to infer causation, causal analysis can be useful for iden-
tifying time delays as well. For example, if one finds that
two subsystems of interest are causally linked with spe-
cific time delays, then they are nothing but the intrinsic
time delays within the whole system and, the “strength”
of causation provides a qualitative assessment of the pos-
sible time delays.

There are existing methods for identifying time de-
lays [25–31], but they are mostly based on traditional
parameter estimation and synchronization, which indeed
require a priori knowledge about the complex interac-
tions, the exact forms of vector fields, and even the
noise types in the system [25–27, 31]. Other methods
include invasive external perturbations [28, 29], self feed-
back [30], or phase-synchronization-based and model-
fitting approaches [31]. Clearly, these methods will be
ineffective or even of no help for dealing with the real-
world data that are experimentally recorded from sys-
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tems whose structures are unclear or completely un-
known. From the standpoint of dynamics, when time de-
lays are present, a great difficulty arises. Take the CCM
method [13] as an example. The present framework as-
sumes that the time series y(t) and x(t) from subsystems
Y and X, respectively, are on the same footing through
the implicit assumption that the directed influence oc-
curs instantaneously. However, since Y receives inputs
from X but with time delays, application of the original
CCM method may lead to erroneous results, especially
when there are measurement errors or even exponential
divergence between the dynamical trajectories in Y and
X. All these call for the development of a data-based
and model-free framework to accurately determine time
delays of arbitrary form.

In this work, based on first-principle considerations, we
propose a model-free method involving a class of mea-
sures (or scores) with the following general trait: when
it is plotted versus an assumed, systematically varying
time delay variable, distinct peaks (or a distribution)
emerge(s), and their locations correspond to the actual
time delays in the system. The score is generally defined
in terms of cross map evaluation (CME - to be detailed
below) between the targeted dynamical variables (time
series). The detailed mathematical quantities used in
constructing the CME score can vary, which can be, e.g.,
covariance, mutual information, or simply phase space
distance. We demonstrate universally accurate detection
of time delays with simulated time series. Applying the
CME score to a specific class of real-world data, e.g., pol-
lution and cardiovascular disease data, reveals a hidden
time delay that has escaped previous detection. Accu-
racy, robustness, and universal applicability are the dis-
tinct virtue of our CME method, making it appealing to
science and engineering applications that demand precise
and reliable assessment of time delays.

Method-CME Score. Given a time series x(t), one forms
a manifold MX ∈ Rn based on delay coordinate embed-
ding [32, 33]: x(t) = [x(t), x(t− δt), . . . , x(t− (n− 1)δt)],
where n is the embedding dimension and δt is a proper
time lag (In our work, we all use the delayed mutual in-
formation (DMI) [33] to determine δt and the false near-
est neighbor criteria [33, 34] to determine n). The clas-
sic embedding theorems [32, 35] guarantee that, for a
smooth dynamical system, if n > 2d, where d is the frac-
tal dimension of the attractor, the reconstructed MX is
topologically conjugated to the original attractor. For
two time series x(t) and y(t) from coupled systems, X
and Y , respectively, the corresponding manifolds MX

and MY can be reconstructed accordingly, and the cross
map Φ : x(t)→ y(t) between MX and MY is one-to-one
along the time indices. When X drives/causes Y , infor-
mation of X is infused into MY , so neighboring points
on MY are generally mapped to neighboring points on
MX by Φ−1 at the same time indices. However, if X has
no influence on Y , MY contains no information about
X, so neighboring points on MY do not necessarily cor-
respond to neighboring points on MX . A quantitative

measure to characterize capacity for Φ−1 to map neigh-
bors on MY to neighbors on MX determines the driving
“force” from X to Y . This idea of cross map [36, 37] was
used to determine the prediction directions [13, 38] and
recently generalized from local neighborhood to global
prediction [39]. Evaluating the neighborhood mapping
capacity of Φ−1 is thus key to detecting possible driving
from X to Y . In the presence of a time delay τ , the
driving is supposed to be from x(t − τ) to y(t) with a
cross map Ψ : x(t− τ)→ y(t). In this case, we consider
z(t) ≡ x(t−τ) and determine the neighborhood mapping
capacity of Ψ−1 from y(t) to z(t). These considerations
lead to our proposed CME method to detect time delays.

Say we are given time series x(t) and y(t) as well as
a set of possible time delays: Γ = {τ1, τ2, . . . , τm}. For
each candidate time delay τi, we let z(t) = x(t − τi)
and form the manifolds MY and MZ with ny and nz
being the respective embedding dimensions. For each
point y(t̃) ∈MY , we find K nearest neighbors y(tj) (j =
1, 2, . . . ,K), which are mapped to the mutual neighbors
z(tj) ∈ MZ (j = 1, 2, . . . ,K) by the cross map. We
then estimate z(t̃) by averaging these mutual neighbors

through ẑ(t̃)|MY = (1/K)
∑K
j=1 z(tj). Finally, we define

the CME score as

s(τ) = (nz)
−1trace

{
Σ
− 1

2

ẑ cov(ẑ, z)Σ
− 1

2
z

}
, (1)

where τ is a trial (or candidate) time delay, the
function trace{·} represents the summation of all the
diagonal elements of the underlying matrix, the di-
agonal matrix Σp contains the diagonal elements of
cov(p,p) for p = ẑ, z, with the covariance matrix being
cov(p, q) = E

[
(p− E[p])>(q − E[q])

]
, and E[·] stands

for component-wise average in time. It is straightfor-
ward to show 0 ≤ s ≤ 1. The larger the value of s, the
stronger the driving force from x(t − τi) to y(t). In a
plot of s(τ), if there is a peak at τk ∈ Γ, the time delay
from X to Y can be identified as τk. Since s is designed
to measure whether the mutual neighbors z(tj) are in
the neighborhood of z(t̃) in the Rnz space, criteria other
than that based on the covariance matrix can be used.
Results. To validate our CME method, we begin with a
discrete-time logistic model of two non-identical species:

Xt+1 = Xt(γx − γxXt −K1Yt−τ1),
Yt+1 = Yt(γy − γyYt −K2Xt−τ2),

where γx = 3.78, γy = 3.77, K1 and K2 are the coupling
parameters, and τ1 and τ2 are the intrinsic time delays
that we aim to determine from time series. Figure 1
shows the detection results for different combinations of
K1, K2, τ1, and τ2, which indicates that the method
can accurately detect single or double delays for unidirec-
tional (i.e., K1 = 0 or K2 = 0) or bidirectional coupling
(i.e., K1 6= 0 and K2 6= 0). In order to gain more the-
oretical insight of our CME method, we give a heuristic
illustration on the validity of our method. For simplicity,
we set τ1 = 0 and τ2 = v in the above logistic model of
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FIG. 1. (Color-online) Accurate detection of time delays and
directional interactions in a logistic model of two species. For
n = 2 and δt = 1, (a)-(c) single delay under unidirectional
coupling. (d) Multiple delays where the coupling term in the
population of the second species is K2(Xt−τ21 +Xt−τ22). (e)-
(f) Multiple delays under bidirectional coupling.

two species. Then, mathematical transformations on the
model yield:

Xt+1 = 1
K2

(
γy − γyYt+v − Yt+1+v

Yt+v

)
×[

γx − γx
K2

(
γy − γyYt+v − Yt+1+v

Yt+v

)
−K1Yt

]
,

Yt+1 = 1
K1

(
γx − γxXt − Xt+1

Xt

)
×[

γy − γy
K1

(
γx − γxXt − Xt+1

Xt

)
−K2Xt−v

]
.

(2)

If K1 = 0 and K2 6= 0, the causal interaction is unidirec-
tional from X to Y with the time delay v. In this case,
the second equation in Eq. (2) becomes ill-conditioned
because K1 appears in a denominator. However, the
first equation in Eq. (2) implies that using information
about both Yt+1+v and Yt+v gives a more accurate pre-
diction of Xt+1. In fact, the chaotic attractors of the
logistic model have a dimension larger than unity. As a
result, our CME score, which takes into account full in-
formation about the reconstructed two-dimensional vec-
tor, leads to an accurate identification of the delay. If
both K1 and K2 are nonzero, the dynamics of X and
Y are chaotic and unsynchronized, and the causal in-
teractions between them are bidirectional. In this case,
although the term K1Yt appears in the first equation of
Eq. (2), it is relatively small by comparing with the terms
γxγy
K2

Yt+v and γx
K2

Yt+1+v

Yt+v
in this equation, as intuitionally

shown in Figs. 2(a)-2(d). Thus, K1Yt can be neglected
when predicting Xt+1, which suggests that it is sufficient
to use the information about Yt+1+v and Yt+v to predict
Xt+1. Thus, the proposed CME score enables us not only
to ascertain the casual interaction but, more strikingly,
to obtain the accurate value of time delay. Analogously
as shown in Figs. 2(e)-2(h), the influence of K2Xt−v in
the second equation of Eq. (2) for predicting Yt+1 is rel-
atively weak as compared with the terms

γyγx
K1

Xt and
γy
K1

Xt+1

Xt
. These observations suggest that it is sufficient

to use the information about Yt+1+v and Yt+v to predict
Xt+1. Since information about Xt+1 and Xt is sufficient
for predicting Yt+1, the CME score indicates instanta-
neous casual interaction from Y to X.

To further test our method for continuous-time sys-
tems, a coupled chaotic Lorenz-Rössler (LR) system is
considered, which is given by

ẋ1 = 10(−x1 + y1), ẏ1 = 28x1 − y1 − x1z1 + L(y2),
ż1 = x1y1 − (8/3)z1,
ẋ2 = −α(y2 + z2), ẏ2 = α(x2 + 0.2y2) +K(x1),
ż2 = α[0.2 + z2(x2 − 5.7)],

where K(x1) and L(y2) designate bidirectional couplings
between a Lorenz oscillator in the variable x1 and a
Rössler system in y2, and α is a scaling factor [40, 41].
For discrete delays, we set K(x1) = Cx1(t − τ1) and
L(y2) = Dy2(t− τ2) with parameters C and D, the cou-
pling strengths, and τ1 = 3 and τ2 = 4, the delays. Let
x1(t) and y2(t) be the available time series. Figures 3(a)-
3(b) show that for most parameter sets, the plots of s(τ)
in both directions exhibit peaks at the true values of the
time delays. However, for very weak strengths but larger
α, as shown in Fig. 3(b), the true delay cannot be de-
tected in the direction from the Rössler oscillator to the
Lorenz one. This reveals that our method might not be
directly applicable to the case where the coupling signal
is very weak. Additionally, as shown in Fig. 3(c), for
different distributed time delay as represented by

K(x1) = C

∫ −2
−4

k(−ξ)x1(t+ ξ)dξ, L(y2) = 0,

the plotted curve of s(τ) shows different type of plateau
on the correct distribution range of the time delay. Here,
k is the kennel function which determines the specific
distributed type of time delay. Specifically, in Fig. 3(c),
the curve s(τ) shows a horizontal plateau on the interval
[2, 4] of the time delay when the kernel function k is set
as a uniform distribution; however, the plateau becomes
slant when k takes a function of exponential decay. This
reveals that our method is practically effective in identi-
fying not only the range of distributed time delays but
also their specific distributed types.

There are dynamical systems in which time delays oc-
cur through not only mutual couplings but also self feed-
back. To demonstrate the working of our method for such
a challenging situation, we consider the Mackey-Glass
(MG) system [42] describing the dynamics of blood cell
regeneration:

ẋ = 2x(t− τ0)/
{

1 + [x(t− τ0)]10 − x
}
,

where τ0 6= 0 is the time delay, and the time rate of
change of x(t) depends on both x(t) and x(t − τ0). To
apply our method, we select x(t) and x(t− τ) as the two
required time series. Figure 3(d) shows that the plot of
s(τ) exhibits two peaks at τ = 0 and τ = τ0, respectively,
for larger τ0 = 3 or 5 which induces chaotic dynamics in
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FIG. 2. (Color-online) Distributions of terms in the first equation (a)-(d) and the second equation (e)-(h) of Eq. (2). The
horizontal intervals represents the domains of the relevant quantities and the vertical axis represents the frequencies of the
values. The parameters are taken as v = 3, K1 = 0.05 and K2 = 0.08, and the length of the time series is 103.
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FIG. 3. (Color-online) Identification of diverse types of time delays. For n = 6 and δt = 0.12, identification of discrete time
delays in two directions for different parameter sets (a)-(b) and distributed time delay for different kernel function k (c) in
different coupled LR systems. (d) For n = 4, δt = 0.2, and different τ0 inducing different dynamics, successful and failed
detections of delays associated with self feedback in the MG system.

the MG system. However, for small τ0 which only in-
duces periodic dynamics, our method, showing no peak,
becomes noneffective because the information in the peri-
odic signal is too few for embedding and delay detection.

More significantly, we apply our method to cope with
a dataset of real-world, e.g., air pollution data and hospi-
tal admission records of cardiovascular diseases in Hong

Kong [43]. The information for the dataset we use here is
introduced in Appendix B. Figures 4(a)-4(b) show that
there are two pronounced peaks in the CME score from
both NO2 and Rspar to Cardio: one at zero while the
other at about 30-40 days, where the former reflects
the instantaneous effect of air pollution on acute car-
diac disease such as heart attack or stroke, which has
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FIG. 4. (Color-online) Identification of time delayed causal
influence of air pollutants on cardiac disease from environ-
mental and medical data collected in Hong Kong. The CME
scores for disease occurrence against concentrations of pol-
lutants NO2 (a), Rspar (b), and SO2 (c), respectively, are
depicted in both directional interactions [i.e., the interaction
from disease occurrence to specific pollutant concentration
(square lines) and the interaction from pollutant concentra-
tion to disease occurrence (dot lines)]. The embedding pa-
rameters are n = 14 for cardiac disease data, n = 7 for the
pollutant data, and δt = 1 day.

been widely reported previously [43] and confirmed by
statistical analysis [46]. The more pronounced peak at
about 30-40 days reflects a delayed effect of causation
which, to our knowledge, has not been reported in the
literature. (In fact, only the effect of a short term delay
within one week was reported [47, 48].) A plausible expla-
nation for the relatively long delay, as uncovered through
our method, is that patients with certain chronic diseases
such as high blood pressure do not tend to go to hospital
until they feel sick, causing the long delay in the disease
course from the day they were exposed to air pollution.
In addition, sulphur dioxide is also believed to be a causal
factor for cardiac disease [46]. However, we find that sul-
phur dioxide has no significant effect on cardiac disease,
as suggested by Fig. 4(c), which is consistent with the
result from a recent work [44].

Remarks. 1. Alternative ways to define the CME score.
Our definition of CME score is not limited to the covari-
ance matrix as in Eq. (1). In fact, any appropriately nor-
malized measure of the distance between the predicted
and the original points in the n-dimensional space would
suit. For example, two additional CME scores: one based
on normalized mutual information (NMI) [49] and the
other exploiting the normalized phase space distance [50],
can be used. As shown in Fig. 5 for our example of lo-
gistic model of two species, results of time delay identi-
fication for these alternatively defined CME scores agree
with these based on Eq. (1). Here, the NMI-based score
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FIG. 5. (Color-online) Performance of alternative CME
scores. For the logistic system of two species in Fig. 1 for
K1 = 0, K2 = 0.08, τ1 = 0, and τ2 = 3, alternative defini-
tions of the CME scores yield the same result of time delay
detection as that based on Eq. (1). Shown are the mean value
and the corresponding standard deviation for each candidate
delay for 100 trails from random initial values.

is designed as

s = (nz)
−1

nz∑
i=1

[1−H (zi|ẑi)/H(zi)] ,

where H(p) is the marginal entropy and H(p|q) is the
conditional entropy for two random variables q and p.
The normalized root-mean-squared error (NRMSE) be-
tween vectors p and q is set as

NRMSE(p, q) = ‖p− q‖L− 1
2σ−1q ,

where ‖·‖ represents an appropriate vector norm, e.g., the
Euclidean norm, σq is the standard deviation of q, and L
is the length of vector q. In order to scale such distance
into a index between 0 and 1, we define an NRMSE-based
CME score: s = exp(−ξθ), where ξ is a scaling parameter
that can be empirically selected in computation and

θ = (nz)
−1

nz∑
i=1

NRMSE(zi, ẑi).

We see that s is a normalized score with values in between
0 and 1.
2. Performance comparison between the CME method
and recent methods. It is noted that some geometric in-
formation based methods [15, 52] have also been recently
proposed to measure information flow and its delays. To
demonstrate the advantage of our CME method over ex-
isting methods in a concrete way, we compare its per-
formance with that of a representative method based on
CCM [15], through an examination of the effect of in-
creasing the embedding dimension. For the data from
the unidirectionally coupled logistic model in Fig. 1, as
shown in Fig. 6, our CME method is able to identify
the accurate value of the time delay, while the recent
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data is from the unidirectional coupled logistic model with the
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τ = 3. For each intrinsic time delay, the mean value and the
corresponding standard deviation are computed based on 100
independent trails.

method [15] fails. In fact, as the embedding dimension
n increases (e.g., from 2 to 7), our CME method can
consistently detect the true time delay but the method
in Ref. [15] fails for all n > 2. A plausible explana-
tion is that the method in Ref. [15] is based on CCM
measure [13] that uses geometric information about the
attractor of the system to detect information flow be-
tween variables [38, 39, 51, 52]. As such, the method
can infer the existence of casual influences qualitatively
but in general cannot yield the accurate values of the
time delay. In fact, both the method in Ref. [15] and the
error index proposed in Ref. [52] evaluate neighborhood
points by using only the first component of the embed-
ding vector, while leaving other components unused. As
a result, these methods can only be useful for ascertain-
ing, qualitatively, generalized synchronization and tran-
sitive causal chains: they are incapable of identifying the
actual values of the time delay. For the method devel-
oped in Ref. [52], the estimated time delay lies about the
border of the reconstructible domain that needs to be es-
timated with additional statistical methods, with which
identification of distributed time delays is not possible.
In contrast, our CME method exploits information about
all the components of the reconstructed vector, making it
possible to evaluate, in the n-dimensional space, the dis-
tance between the original point and the predicted point
by mutual neighbors, leading to accurate detection of
multiple or even distributed time delays.

3. The requirement on the length of time series. Since
our CME method is based on an extraction of geomet-
ric information about the attractor, the length of time
series is required to be long enough. Take the time se-
ries produced by the above coupled LR system (α = 30,
C = 1 and D = 0) for example. When its length is
less than 103, the true positive results indicated by the

CME scores become unremarkable [see Fig. 7(a)] while
the false positive results always arise [see Fig. 7(b)]. As
for discrete-time models (or for Poincaré maps induced
by continuous-time systems), the admissible length of
time series also demands an order of O(103) for our CME
method. Although, in real-world systems, it is difficult to
obtain sufficiently long experimental data, the statistical
method of bootstrap [53] can be an option to overcome
this difficulty.
4. The robustness against noise. In real-world systems,
noise is omnipresently observed. Thus, to test the robust-
ness of our CME method against noise, we still use the
time series data produced by the coupled Lorenz-Rössler
system but deteriorate them by additive white noise with
different levels of noise intensity. The levels of noise in-
tensity cover the range of the signal-to-noise ratio (SNR)
from 102 to 100. As shown in Figs. 7(c)-7(d), the CME
method works robustly and is able to identify the true
time delay and directional interaction for the SNR above
5 but the method turns to be failed as the noise intensity
becomes strong enough and the SNR becomes weaker.
5. The influence of coupling strength. Since the
CME method is based on the fact that information
of X is infused into Y ’s dynamics when X(t − τ)
drives/couples with Y (t), the method requires the driving
“force”/coupling strength to be sufficiently strong. To
illustrate this, we consider two unidirectionally-coupled
Lorenz systems:

ẋ1 = 10(x2 − x1), ẋ2 = 28x1 − x2 − x1x3,
ẋ3 = x1x2 − (8/3)x3,
ẏ1 = 10(y2 − y1), ẏ2 = 28y1 − y2 − y1y3 +K(x2, y2),
ẏ3 = y1y2 − (8/3)y3,

where the coupling term K(x2, y2) = C[x2(t−τ)−y2(t)],
C is the coupling strength, and τ = 3. When the coupling
strength C is very small, the driving force from x2(t− τ)
is extremely weak and thus cannot be detected by the
CME method. As C increases, the time delay and inter-
action detection becomes more and more accurate [see
Figs. 7(e)-7(f)]. For C larger than 3, y2(t) synchronizes
with x2(t − τ) [see the inset in Fig. 7(f)] and the CME
method still works efficiently if the anticipation mode is
not taken into consideration.
Conclusion. We have developed a completely data-based
and model-free method to accurately detect the intrinsic
time delays associated with mutual interactions in non-
linear and complex dynamical systems. The main advan-
tage of our method, as compared with previous methods,
lies in its universal applicability to all kinds of time de-
lays: single, multiple, self-loop, or even distributed. We
validate the method using simulated data from classic
nonlinear dynamical systems and real world data. Since
time delay and causation are intimately related, we an-
ticipate general suitability of our method for unraveling
subtle interactions in complex dynamical systems arising
from a broad range of fields in science and engineering.
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J. Bhattacharya, Phys. Rep. 441, 1 (2007).

[52] J. Schumacher, T. Wunderle, P. Fries, F. Jäkel, and
G. Pipa, Neural Comput. 27, 1555 (2015).

[53] B. Efron and R. J. Tibshirani, An Introduction to the
Bootstrap (Chapman & Hall/CRC, London, 1994).

[54] G. Berkeley and C. P. Krauth, A treatise concerning the
principles of human knowledge (Philadelphia: JB Lippin-
cott & Company, 1874).

[55] J. Geweke, Journal of the American Statistical Associa-
tion 77, 304 (1982).

[56] Y. Chen, G. Rangarajan, J. Feng, and M. Ding, Phys.
Lett. A 324, 26 (2004).

[57] N. Ancona, D. Marinazzo, and S. Stramaglia, Phys. Rev.
E 70, 056221 (2004).

[58] Y. Chen, S. L. Bressler, and M. Ding, J. Neurosci. Meth.
150, 228 (2006).

[59] H. Nalatore, M. Ding, and G. Rangarajan, Phys. Rev.
E 75, 031123 (2007).

[60] D. Marinazzo, M. Pellicoro, and S. Stramaglia, Phys.
Rev. Lett. 100, 144103 (2008).



9

[61] L. Barnett, A. B. Barrett, and A. K. Seth, Phys. Rev.
lett. 103, 238701 (2009).

[62] J. Sun, C. Cafaro, and E. M. Bollt, Entropy 16, 3416
(2014).

[63] C. Cafaro, W. M. Lord, J. Sun, and E. M. Bollt, Chaos
25, 043106 (2015).

[64] J. Sun, D. Taylor, and E. M. Bollt, SIAM J. Dyn. Syst.
14, 73 (2015).

[65] E. R. Deyle and G. Sugihara, PLoS One 6, e18295 (2011).
[66] J. C. McBride, Dynamic Complexity and Causality Anal-

ysis of Scalp EEG for Detection of Cognitive Deficits,
Ph.D. thesis, University of Tennessee, Knoxville (2014).

[67] A. Wismüller, X.-X. Wang, A. M. DSouza, and N. B.
Nagarajan, arXiv:1407.3809 (2014).

[68] W. Harford, S. Sagarese, M. Nuttall, M. Karnauskas,
H. Liu, M. Lauretta, M. Schirripa, and J. Walter,
Can climate explain temporal trends in king mackerel
(scomberomorus cavalla) catch-per-unit-effort and land-
ings, Tech. Rep. (Tech. Rep., SEDAR, SEDAR38-AW-04.
SEDAR, North Charleston, SC, 2014).

[69] R. Huffaker and A. Fearne, Proc. Food. Syst, Dyn , 270
(2014).

[70] L. Heskamp, A. S. Meel-van den Abeelen, J. Lagro, and
J. A. Claassen, IJCNMH 1(Suppl. 1), S20 (2014).

Appendix A: Brief history of previous relevant
works on detecting causality

A common misconception about causation is that it
is related to correlation, a simple and symmetric mea-
sure but one that does not offer any information about
the direction of the causal link. (In fact, three hun-
dred years ago Bishop Berkeley already declared that
“correlation does not imply causation” [54].) A classic,
well-accepted method is the Granger causality framework
originally articulated by Wiener [10] and later formal-
ized by Granger [11] in the setting of multivariate auto-
regression. The idea behind Granger causality is quite
intuitive: for a system consisting of two subsystems, X
and Y , if X causes Y , then the prediction of future Y
should be improved by incorporating historical informa-
tion from X. An appealing feature of Granger causal-
ity detection is that it can be solved with the method
of spectrum decomposition [55]. While it was originally
intended for stationary linear systems, the principle of
Granger causality can be extended to nonlinear systems
but only if they are strongly coupled [56–60]. Methods
based on information theory, in particular in terms of mu-
tual information or transfer entropy, were also developed
to deal with nonlinear systems [12]. In the special case
of Gaussian dynamical variables, the Granger causality

and the transfer entropy methods are in fact equivalent to
each other [61]. Quite recently, the concept of causation
entropy was introduced for causality detection [62–64].
A common difficulty associated with the information-
theory based measures lies in the inherently prohibitively
large data requirement. For deterministic dynamical sys-
tems (or such systems under weak noise), there was a re-
cent breakthrough, the convergent cross mapping (CCM)
method [13], as stated in the main text. It is based on
the delay-coordinate embedding method [32], a paradigm
of nonlinear time series analysis [33, 35, 65]. The main
idea is that, a deterministic system, even if it is chaotic,
exhibits regularity and short term predictability, which
can be exploited for causality detection. In particular,
the intrinsic geometrical manifold structure can be recon-
structed using the embedding method to yield a topolog-
ical equivalent of the original system. Suppose we wish
to detect and ascertain the causal relation between, say,
subsystems X and Y . Intuitively, if X causes Y , then all
the information about X is contained in the manifold of
Y . Since the manifold of Y can be reconstructed and its
short term evolution can be assessed independent of X,
the state of X can be deduced from that of Y , but the
converse may not hold. The CCM method can deal with
both linear and nonlinear systems with small data sets,
and it has been applied to data from different contexts,
such as EEG data [66], FMRI [67], fishery data [68], eco-
nomic data [69], and cerebral auto-regulation data [70].

Appendix B: Real data sets from environmental
monitoring and medicine in Hong Kong

It is generally believed that air pollution is one of
the major causes of cardiovascular diseases [43]. To es-
tablish this causal relation, we investigate benchmark
datasets of air pollutants and disease occurrence in
Hong Kong [45, 46]. In particular, daily concentrations
(in µg m−3) of nitrogen dioxide (NO2), sulphur diox-
ide (SO2), and respirable suspended particulate (Rspar)
from air monitoring stations in Hong Kong from 1994
to 1997 were collected. Simultaneously recorded was the
daily number of cardiovascular diseases admissions into
major hospitals in Hong Kong. Figure 8 shows the origi-
nal data of the daily hospital admissions of cardiovascular
disease and the pollutants data in Hong Kong from 1995
to 1997. To avoid the effect of sudden addition of hospi-
tal beds in early 1995 [47], we apply the CME method to
time series of 1000 days.
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FIG. 8. Original data of the daily hospital admissions of cardiovascular disease and the pollutants data in Hong Kong from
1995 to 1997.
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