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Phase oscillator lattices subject to noise are one of the most fundamental systems in nonequi-
librium physics. We have discovered a dynamical transition which has a significant impact on the
synchronization dynamics in such lattices, as it leads to an explosive increase of the phase diffusion
rate by orders of magnitude. Our analysis is based on the widely applicable Kuramoto-Sakaguchi
model, with local couplings between oscillators. For 1D lattices, we observe the universal evolution
of the phase spread that is suggested by a connection to the theory of surface growth, as described
by the Kardar-Parisi-Zhang (KPZ) model. Moreover, we are able to explain the dynamical tran-
sition both in 1D and 2D by connecting it to an apparent finite-time singularity in a related KPZ
lattice model. Our findings have direct consequences for the frequency stability of coupled oscillator
lattices.

I. INTRODUCTION

Networks and lattices of coupled limit-cycle oscillators
do not only represent a paradigmatic system in nonlin-
ear dynamics, but are also highly relevant for potential
applications. The reason is that the coupling can serve
to counteract the effects of the noise that is unavoid-
able in real physical systems. Synchronization between
oscillators can drastically suppress the diffusion of the
oscillation phases and can therefore improve the over-
all frequency stability. Experimental implementations of
coupled oscillators include laser arrays [1], coupled elec-
tromagnetic circuits, e.g. [2, 3], and the modern recent
example of coupled electromechanical and optomechani-
cal oscillators [4–8]. In this work, we will deal with the
experimentally most relevant case of 1D and 2D lattices.

Naive arguments indicate that the diffusion rate of
the collective phase of N synchronized oscillators is sup-
pressed as 1/N , which leads to the improvement of fre-
quency stability mentioned above. However, it is far from
guaranteed that this ideal limit is reached in practice
[9, 10]. The nonequilibrium nonlinear stochastic dynam-
ics of the underlying lattice field theory is sufficiently
complex that a more detailed analysis is called for. In
this context, it has been conjectured earlier that there
is a fruitful connection [11] between the synchronization
dynamics of a noisy oscillator lattice and the Kardar-
Parisi-Zhang (KPZ) theory of surface growth [12, 13].

We have been able to confirm that this is indeed true,
particularly for 1D lattices. However, the most important
prediction of our analysis is that a certain dynamical in-
stability can take the lattice system away from KPZ-like
behavior during the time evolution. As we will show, this
instability is related to an apparent finite-time singular-
ity in the related KPZ lattice model. It has a significant
impact on the phase dynamics because the phase spread
is increased by several orders of magnitude. As such, this
phenomenon represents an important general feature of
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Figure 1. (a) Scheme of an oscillator array. We consider one-
and two-dimensional lattices of limit-cycle oscillators, which
are described individually by their phases ϕj(t). These phases
are influenced by noise ξj(t) and by the coupling to their near-
est neighbors, see Eq. (1). (b) Stochastic time evolution of the
phase field in a 2D array of coupled oscillators (smoothed for
clarity). The field is flat initially and roughens with time.

the dynamics of oscillator lattices.

II. EFFECTIVE PHASE MODEL

We will describe the time evolution of the coupled
limit-cycle oscillators by the Kuramoto-Sakaguchi model
[14, 15]. This is an effective model for the slow phase
dynamics in the system (see Fig. 1), which describes the
physics well if the amplitude fluctuations are small. The
model can actually be derived by integrating out those
fluctuations in the microscopic equations, which has re-
cently been done for electromechanical [16] and optome-
chanical [17–19] oscillators. Effective phase models are
studied widely in the context of synchronization and pat-
tern formation, see [11, 14, 15, 20–24].

Here, we focus on the ideal case of a non-disordered
lattice, with uniform natural frequencies and local cou-
pling. Thus, our system is described by the follow-
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ing noisy Kuramoto-Sakaguchi model for the oscillator
phases ϕj(t):

ϕ̇j =S
∑
〈k,j〉

sin(ϕk − ϕj) + C
∑
〈k,j〉

cos(ϕk − ϕj) + ξj ,

(1)

where ξj(t) is a Gaussian white noise term with correlator
〈ξj(t)ξk(0)〉 = 2Dϕδ(t)δjk, and S and C are the coupling
parameters. The sums run over nearest neighbors. We
will often call this model the “phase model”. In this arti-
cle, we focus on the time evolution from a homogeneous
initial state (ϕj(0) = 0), to track the roughening of the
phase field.

How does the interplay of noise and coupling affect
the frequency stability of the oscillators? This is a
central question for synchronization and metrology. It
can be discussed in terms of the average frequencies
Ωj(t) = t−1

´ t
0

dt′ϕ̇j(t′) = ϕj(t)/t. Here the ϕj(t) are the
phases accumulated during the full time evolution (see
also [15, 25]). They have an important physical meaning
in the present setting, essentially indicating the number
of cycles that have elapsed. Important insights can be
obtained from studying the evolving spread of the aver-
age frequencies, wΩ(t) =

〈
N−1

∑N
j=1

[
Ωj(t)− Ω̄(t)

]2〉1/2,
where Ω̄(t) = N−1

∑N
j=1 Ωj(t) is the mean average fre-

quency of a lattice with N sites. This spread turns out to
be directly related to the spread of the phase field, wϕ(t),
with

w2
ϕ(t) =

〈 1

N

N∑
j=1

[
ϕj(t)− ϕ̄(t)

]2〉
= t2w2

Ω(t), (2)

where ϕ̄(t) = Ω̄(t) t is the mean (spatially averaged)
phase. The angular brackets denote an ensemble aver-
age over different realizations of the noise.

For the simple case of uncoupled identical oscillators
subject to noise, one finds wϕ(t) =

√
2Dϕt and hence

wΩ(t) ∼ t−1/2. This indicates a strong tendency towards
synchronization because there is no disorder. We will
see that the coupling between the oscillators can lead to
different exponents, depending on the parameter regime,
and that it can either enhance or hinder the synchroniza-
tion process. We expect that this finding translates also
to systems with small disorder in the natural frequencies.

III. RELATION TO THE
KARDAR-PARISI-ZHANG MODEL

Much of our discussion of the initial stages of evolution
will rely on small phase differences between neighboring
sites. Then the phase model, Eq. (1), is well approxi-
mated by a second-order expansion (see also [11]), which
can be recast in dimensionless form using a single param-
eter g1D,2D = 4DϕC

2/S3. In a one-dimensional array,
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Figure 2. Dynamics in the one-dimensional Kuramoto-
Sakaguchi model, Eq. (1). (a) Typical time evolution of the
phase field from homogeneous initial conditions. We sub-
tracted a trivial global drift of the phases. (b) Time evo-
lution of the phase spread wϕ(t). The magenta curves (two
lowest solid lines) show the results for g1D = 8 (upper curve)
and g1D = 1 (lower curve). After initial transients, they ap-
proach an asymptotic KPZ scaling of wϕ(t) ∝ t1/3 (dashed
black lines). For g1D = 50, we plot examples of the phase
spread from single simulations as thin gray lines. The red
curve (thick dark gray line) shows a small-ensemble average.
After a rapid increase, it eventually approaches diffusive be-
havior, wϕ(t) ∝ t1/2 (dotted black line; S/C = 0.001 in all
simulations). For comparison, we show the green curve (thick
light gray line), where S/C = 0.1 and g1D = 25. Note the log-
arithmic scale of the axes. (See Appendix D for more details.)

the resulting model reads

∂hj
∂τ

= (hj+1 + hj−1 − 2hj) (3)

+
1

4
[(hj+1 − hj)2 + (hj−1 − hj)2] +

√
g1Dηj ,

where we have rescaled both the time, τ = St, and the
phase field, hj = −(2C/S)(ϕj − 2Ct). The noise correla-
tor is 〈ηj(τ)ηk(0)〉 = 2δjkδ(τ).

Eq. (3) can be readily identified as a lattice version
of the Kardar-Parisi-Zhang (KPZ) model [12, 13, 26], a
universal model for surface growth and other phenom-
ena. This nonlinear stochastic continuum field theory
describes the evolution of a height field h(~r, t),

ḣ = ν∆h+
λ

2
(∇h)2 + η, (4)

with white noise η(~r, t), where 〈η(~r1, t)η(~r2, 0)〉 =
2Dδd(~r2 − ~r1)δ(t). The diffusive term smoothes the sur-
face, while both the noise and the nonlinear gradient term
tend to induce a roughening. Surface growth dynamics
has been found to obey universal scaling laws [12, 27].

The continuum KPZ model in one dimension can be
rescaled to become parameter-free. Its lattice version,
however, depends on one dimensionless coupling constant
g1D = aDλ2/ν3 [13, 28, 29], where a is the lattice spacing
(see also Appendix A).

The relation of the KPZ model to coupled oscillator
lattices has been pointed out before [11]. However, up
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to now it has remained unclear how far this formal con-
nection is really able to predict universal features of the
synchronization dynamics. We will tackle this question
in the following, focussing on the regime S/C � 1, which
is the regime where KPZ dynamics turns out to be most
fruitful for understanding the behavior of the full phase
model (see Appendix A).

IV. DYNAMICS IN ONE-DIMENSIONAL
SYSTEMS

First insights can be gained by numerical simulations
of the phase model. The outcome of a single simulation of
a one-dimensional array is displayed in Fig. 2a. The typ-
ical time evolution of the phase spread wϕ(t) is shown
in Fig. 2b. We can distinguish two parameter regimes
from the long-time evolution. In one regime, we find
wϕ(t) ∼ t1/3 after initial transients (see magenta curves
(two lowest solid lines)). This power-law growth can be
identified as universal KPZ behavior: In the continuum
KPZ model, the scaling exponent can be calculated an-
alytically in 1D and turns out to be 1/3 [12]. Hence, we
conclude that 1D arrays of limit-cycle oscillators, as de-
scribed by the noisy Kuramoto-Sakaguchi phase model,
indeed show KPZ scaling in certain parameter regimes.

Far more surprising is the other regime (red and green
curves (thick gray lines)), where one observes diffusive
growth, wϕ(t) ∼ t1/2, for long times. This clearly devi-
ates from any KPZ predictions. Additionally, the short-
time behavior is remarkable: In the trajectories of single
simulations, we see an explosive growth of wϕ(t) at some
random intermediate time (thin gray lines). At this time,
the variance of the phase field suddenly grows by several
orders of magnitude. This corresponds to an explosive
desynchronization of the oscillators.

To understand this important dynamical feature bet-
ter, we now briefly turn away from the full phase model
and study the evolution of the related lattice KPZ model,
Eq. (3). The result of a single simulation is shown in
Fig. 3a. We see that an instability develops, which now
leads to an apparent (numerical) finite-time singularity.

The occurrence of such an instability is a random
event. In Fig. 3b, we plot the probability of an insta-
bility during the evolution, as a function of the time τ
and the coupling g1D. In principle, instabilities can occur
at all coupling strengths, but we find that for the lattice
size employed here (1000 sites) they become much less
likely (happen much later) for g1D < 40. To extrapo-
late to larger lattices, we may assume that the stochastic
seeds for the instabilities are planted independently in
different parts of the system. Hence, one could calculate
the probabilities for any N from our results.

It is worthwhile to note that divergences had been iden-
tified before in numerical attempts to solve the KPZ dy-
namics on a lattice [30–32] (see also [33, 34]). In those
simulations, this behavior was considered to be a numeri-
cal artefact depending on the details of the discretization
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Figure 3. Instabilities in the one-dimensional lattice KPZ
model as given by Eq. (3). (a) Typical time evolution of the
height field hj(τ) for large coupling parameter g1D = 50, on a
lattice with 1000 sites. We plot the height field for increasing
times from bottom to top. The curves are vertically offset for
clarity. The numerical divergence occurs at the point marked
with a red star. The selected time points approach the diver-
gence time logarithmically, as indicated in the inset. There,
we also show the evolution of the maximum nearest neighbor
difference, δhmax

NN , just before the divergence. (b) The proba-
bility of encountering an instability up to time τ , as a function
of the coupling g1D. We see that an instability is more likely
to occur earlier for increasing values of g1D. Note that the
probability of instabilities depends on the lattice size.

because it does not show up in the continuum model, at
least in one dimension [31]. On the contrary, our phase
model, describing synchronization in discrete oscillator
lattices, is a genuine lattice model from the start. Hence,
the onset of instabilities has to be taken seriously (see
also [35]). In the full phase model, Eq. (1), the incipient
divergences are eventually cured because the trigonomet-
ric functions in Eq. (1) are bounded. Instead of resulting
in a finite-time singularity, they will lead the system away
from KPZ-like behavior and make it enter a new dynam-
ical regime.

To find out for which parameters this happens, we have
determined numerically the probability of encountering
large growth of nearest-neighbor phase differences. We
find that we can distinguish between a “stable” regime,
where no large phase differences (> π) show up in most
simulations, and an “unstable” regime, where large differ-
ences occur with a high probability. We indeed get quan-
titative agreement with the results discussed above for
the lattice KPZ model, Fig. 3b, for small S/C (< 0.001).

In a single simulation in the unstable parameter regime
of the stochastic phase model (from homogeneous ini-
tial conditions), we typically observe that the phase field
develops as in the corresponding KPZ lattice model ini-
tially. Then, a KPZ-like instability induces large nearest-
neighbor phase differences within a certain region. There,
turbulent dynamics takes over, which is a feature already
present in the purely deterministic phase model. More-
over, in this region the average phase velocity is very
large. The turbulent region then expands over the whole
lattice quickly. Eventually, we observe turbulence every-
where, which leads to a rapid phase diffusion (see Ap-
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Figure 4. Dynamics in two-dimensional models. (a) The
phase model, Eq. (1), displays a slow logarithmic growth
of the phase spread for g2D = 1 (red curve (solid line);
S/C = 0.001). The linear theory would lead to a slightly dif-
ferent behavior, see the dashed black lines in (a) and (b). (b)
Same quantity for a slightly larger coupling, g2D = 1.5 (red
curve (thick dark gray line); S/C = 0.001). Due to explo-
sive instabilities (single trajectories shown as thin gray lines),
there is a rapid increase to much larger values. (c) Lattice
KPZ: Probability of instability in the lattice KPZ model, the
2D version of Eq. (3). The inset shows that the power-law
2D KPZ scaling (hatched region) would be expected at much
later times than the instabilities (note the logarithmic scaling
of the time axis). This makes the scaling unobservable also
in the phase model, where the instabilities induce a different
dynamical regime.

pendix C for more details). This time evolution is re-
flected in the phase spread, see the thin gray lines in
Fig. 2b: The expansion of the turbulent region leads to
an explosive growth, whereas the subsequent diffusion
leads to the asymptotic scaling wϕ ∼ t1/2.

We emphasize that the phenomenon of explosive
desynchronization is not rooted in simple stochastic
phase slips (where the phase difference between two
neighboring sites increases by roughly 2π). Rather, the
instabilities we find consist in rapidly growing phase dif-
ferences that occur already when the phase differences
themselves are still much smaller than π. Thus, phase
slips are not yet relevant during this stage of the dynam-
ics. Eventually, at a later stage, the instabilities lead
to phase differences comparable to π, and then also to
phase slips. In other words, the instabilities responsible
for explosive desynchronization precede phase slips, not
the other way around.

To make this point even clearer, note that the relevant
parameter for distinguishing the stable regime from the
unstable regime in the phase model is g1D = 4DϕC

2/S3.
In particular, this means that one can get large phase dif-
ferences also for small noise strength Dϕ, if g1D is chosen
to be large. If the KPZ-like dynamics were not present,
one would only get occasional phase slips in this case,
and the time scale for such slips would be very long.

Hence, we conclude that in the unstable regime of the
one-dimensional phase model, the onset of KPZ-like in-
stabilities triggers deterministic turbulence and thus in-
duces an explosive desynchronization of the oscillators.
This is followed by diffusive growth of wϕ(t) with a large
diffusion coefficient.

V. DYNAMICS IN TWO-DIMENSIONAL
SYSTEMS

We now consider 2D lattices. This promises to be in-
teresting because the related physics of surface growth
depends crucially on the dimensionality. This can be seen
in the continuum KPZ model: An appropriately rescaled
form contains a single dimensionless parameter (in con-
trast to 1D), which is g2D = Dλ2/ν3. As a consequence,
there are different time regimes in the growth of the sur-
face width [36]. In particular, KPZ power-law scaling
w ∼ tβ sets in beyond a time scale t∗ that becomes ex-
ponentially large at small couplings, t∗ ∼ exp(16π/g2D).
This is important in numerical attempts to observe this
scaling, as in [37].

The lattice version of the 2D KPZ model, as obtained
by extending Eq. (3) to two dimensions, also contains the
single coupling parameter g2D. We study the probability
of encountering instabilities, see Fig. 4c, and find that it
increases rapidly with larger coupling. This is qualita-
tively the same as in the 1D situation. However, there
are additional, crucial consequences: the instabilities oc-
cur much earlier than the exponentially late onset of KPZ
power-law scaling. We note that there are discretizations
of the KPZ model which show different behavior, allow-
ing the observation of KPZ scaling [37, 38], but these do
not correspond to physical models of coupled phase oscil-
lators. The early onset of instabilities in our model is il-
lustrated in the inset of Fig. 4c, where the hatched region
is the KPZ scaling regime from the continuum theory for
infinite systems. Moreover, in finite systems, the surface
width saturates eventually, for times (λ2/ν)t� (λL/ν)z.
This implies that for small g2D, saturation sets in long
before the projected onset of KPZ scaling for any reason-
able lattice size. As an example, the dotted line shows the
saturation time for N = 106. Overall, we predict that in
2D the power-law KPZ scaling regime will be irrelevant
for the synchronization dynamics of oscillator lattices.

This is confirmed in simulations of the full phase
model, Eq. (1), in 2D (Fig. 4a and b). Like in 1D, we
focus on small values of S/C. As long as the phase dif-
ferences remain small and no instabilities occur, which
is the case for small g2D = 4DϕC

2/S3, the behavior is
analogous to the lattice KPZ model, see Fig. 4a. How-
ever, as suggested above, the KPZ scaling regime can-
not be reached. Instead, we observe slow, logarithmic
growth of the phase field spread, similar to the expecta-
tion from the linearized KPZ equation (dashed line; this
is called Edwards-Wilkinson scaling, see also [36, 39] and
Appendix D). According to Eq. (2), the slow growth of
wϕ implies quick synchronization, wΩ ∼

√
ln(t)/t.

As long as phase slips do not come into play, the
Edwards-Wilkinson scaling of the phase field spread also
shows up in simulations of the phase model with param-
eter C = 0, where there is no term corresponding to the
KPZ nonlinearity in the equation of motion. This spe-
cial limiting case of our model is just the XY model [40],
which has been studied thoroughly.
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At larger couplings g2D, we observe explosive desyn-
chronization (see Fig. 4b, red curve (thick dark gray
line)), like in 1D, and the diffusive growth for long times
(not shown here). This behavior is also displayed in the
extreme case S = 0, which corresponds to g2D → ∞.
The deterministic model with S = 0 has been studied in
detail in [35].

VI. CONCLUSION

In conclusion, we have studied the phase dynamics of
1D and 2D lattices of identical limit-cycle oscillators, de-
scribed by the noisy Kuramoto-Sakaguchi model. We
have shown that, depending on parameters, the coupling
can either enhance or hinder the synchronization. In 1D,
for sufficiently small noise and at short times, one can
observe roughening of the phase field as in the Kardar-
Parisi-Zhang model, with the corresponding universal
power-law scaling. At larger noise, or for larger times,
explosive desynchronization sets in, triggering a transi-
tion into a different dynamical regime. We have traced
back this behavior to an apparent finite-time singular-
ity of the approximate (KPZ-like) lattice model. This is
especially relevant for two dimensions, where it will oc-
cur before the long-term KPZ scaling sets in, although
the initial slow logarithmic growth still makes 2D arrays
favorable for synchronization.

Our predictions will be significant for all studies of syn-
chronization in locally coupled oscillator arrays, when
the phase-only description is applicable. This can be
the case in optomechanical arrays (e.g. in extensions of
the work presented in [5]). Our results may also be-
come important for the study of nonequilibrium driven-
dissipative condensates, described by the stochastic com-
plex Ginzburg-Landau equation or Gross-Pitaevskii-type
equations, where a connection to the KPZ model has
been explored recently [41–47] for the continuum case.
Once these studies are extended to lattice implementa-
tions of such models (e.g. in optical lattices), one may
encounter the physics predicted here. Indeed, for one-
dimensional systems, dynamical instabilities similar to
the ones discussed in our work have been identified to
play an important role recently (see [48]).
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Appendix A: Rescaling the models

In the main text, we used rescaled versions of the var-
ious models. Here, we will explain how to arrive at these

rescaled equations.
In the continuum KPZ model, Eq. (4), in one dimen-

sion, we can construct the length scale x0 = ν3/Dλ2, the
time scale t0 = l20/ν, and a scale for the height, h0 = ν/λ.
Using this, we get the dimensionless quantities x̃ = x/x0,
t̃ = t/t0 and h̃ = h/h0. In terms of those variables, the
one-dimensional KPZ equation becomes parameter-free
and reads

∂h̃

∂t̃
=
∂2h̃

∂x̃2
+

1

2

(∂h̃
∂x̃

)2

+ η̃, (A1)

with the rescaled noise term η̃(x̃, t̃) with correlator
〈η̃(x̃, t̃)η̃(0, 0)〉 = 2δ(x̃)δ(t̃). In the KPZ model in two
dimensions, we cannot construct independent scales for
the height and the space variables. Hence, after rescaling,
we are left with one parameter g2D = Dλ2/ν3.

In contrast to the continuum model, discretized ver-
sions of the KPZ equation in one dimension will contain
one dimensionless parameter. To arrive at our particu-
lar lattice model, Eq. (3), we define a lattice constant
a and rescale time, τ = (ν/a2)t, and height, hj(τ) =
(λ/ν)h(x, t), in Eq. (4). Additionally, we discretize the
derivatives according to ∆h → hj+1 + hj−1 − 2hj and
(∇h)2 → (hj+1 − hj)

2 + (hj−1 − hj)
2. The resulting

model contains the coupling constant g1D = aDλ2/ν3.
A similar procedure was also performed in [28]. Note,

however, that in this article (and for other numerical
studies) the derivatives were discretized in a different
way, which also leads to drastically different stability
properties. In our study, we want to compare the be-
havior of the phase model to the one of the lattice KPZ
model. Because Eq. (3) was derived as an approximation
of the phase model, this dictates the way of discretizing
the KPZ model.

In the derivation of Eq. (3) from the phase model,
Eq. (1), we rescaled the time, τ = St, and the phase
field, hj = −(2C/S)(ϕj − 2Ct). If this rescaling is done
in the full phase model in one dimension, we arrive at

∂hj
∂τ

= 2
C

S

∑
〈k,j〉

sin
[ S

2C
(hk − hj)

]
(A2)

− 2
C2

S2

∑
〈k,j〉

{
cos
[ S

2C
(hk − hj)

]
− 1
}

+
√
g1Dξ̃j ,

with the rescaled noise term ξ̃j(τ) with correlator
〈ξ̃j(τ)ξ̃k(0)〉 = 2δ(τ)δjk. We see that this equation con-
tains two parameters, g1D = 4DϕC

2/S3 and S/C.
In our studies, the nearest-neighbor differences hk −

hj are initially small and evolve according to Eq. (3).
With time, those differences increase (in general). The
equation displayed here, Eq. (A2), shows that Eq. (3)
is a particularly good approximation to the phase model
(i.e. it is viable up to longer times) for small values of the
parameter S/C. This is because (for given differences
hk − hj), the arguments of the trigonometric functions
will be small. Hence, we choose to focus our analysis on
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the regime S/C � 1. For example, this enables us to
observe KPZ scaling wϕ(t) ∼ t1/3 in simulations of the
one-dimensional phase model (see Fig. 2b). We note that
this is not possible for arbitrary values of S/C because
the KPZ scaling might not set in before phase differences
become large and the resemblance to KPZ dynamics in
general is therefore lost.

Appendix B: Scaling behavior of the KPZ surface
width

In the theory of surface growth, the surface width
w(L, t) is defined as

w2(L, t) =〈 1

Ld

ˆ
ddr

[
h(~r, t)− h̄(t)

]2〉, (B1)

with the average surface height h̄(t) = L−d
´

ddr h(~r, t)
in a system of linear size L. The surface width has been
found to obey a scaling law w2(L, t) ∼ L2ζF (t/Lz) [27].
In particular, for times (λ2/ν)t � (λL/ν)z, we have
w2(L, t) ∼ t2β with β = ζ/z. In one dimension, the
scaling exponent β can be calculated analytically and is
β = 1/3 [12].

Appendix C: Details on the development and
consequences of instabilities

We discussed the development and consequences of in-
stabilities both in the lattice KPZ model and in the phase
model in the main text. Here, we will give some more de-
tails.

For the KPZ model, we displayed the time evolution in
a single simulation with large parameter g1D in Fig. 3a.
In addition to the normal roughening process, which
we expect from the continuum theory, we see the rapid
growth of single peaks. Those can send out shocks of
large height differences, which then propagate through
the system, as can be seen in the center of Fig. 3a. The
collision of such shocks can produce larger peaks. We
commonly observe that eventually very large shocks grow
during propagation, which leads to the singularity in the
numerical evolution (marked with a red star in the fig-
ure). The details of the instability development depend
on the lattice size and the coupling parameter. For exam-
ple, for very small lattices with periodic boundary condi-
tions, the shocks which were sent out from a single peak
might collide after crossing the boundaries. This can pro-
duce a divergence easily. We note that for larger lattices,
this somewhat trivial self-amplification is typically not
the process which leads to the divergences.

We now turn to the one-dimensional phase model with
large parameter g1D. Fig. 5 shows snapshots of the phase
field from a simulation with g1D = 50 for different points
in time. As explained in the main text, the onset of KPZ-
like instabilities induces large phase differences locally.
Because of the deterministic dynamics, this part of the
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Figure 5. Phase field time evolution in the one-dimensional
phase model, Eq. (1), in a simulation where instabilities occur.
We show snapshots of the phase field for increasing times.
After a KPZ-like time evolution with small phase differences
in the beginning, we see the onset of instabilities. This leads
to the rapid development of a triangular structure, which gets
diffused on very long time scales. This phenomenon can be
explained by turbulent deterministic dynamics (in the gray
regions). Note the very different scale of the vertical axes in
the subsequent panels. Parameters: S/C = 0.001, Dϕ/S =
1.25× 10−5 (resulting in g1D = 50), S∆t = 10−4.

phase field becomes turbulent. As a consequence of the
large phase differences, the turbulent region will have a
very different phase velocity from the KPZ-like region
(on average). At the same time, the turbulent part of the
lattice (shaded areas in the plots of Fig. 5) grows in space,
roughly linearly with time. These two processes lead to
a triangular phase field shape covering the whole lattice.
Additionally, the turbulent dynamics keeps increasing the
phase differences, including wrap-arounds by 2π.

The consequences of this time evolution are evident
in the evolution of the average phase field spread, see
the red curve (and also the individual gray curves) in
Fig. 2b: The formation of the triangle is responsible for
a rapid increase. Afterwards, the ubiquitous turbulence
leads to phase diffusion. To be more precise, the behavior
of wϕ (red curve) after the rapid increase can be fitted
very well with wϕ(t) =

√
A+Bt, with fit parameters

A and B. The diffusion coefficient B turns out to be
much larger than the noise strength Dϕ. We found the
same value of the diffusion coefficient in simulations of the
deterministic Kuramoto-Sakaguchi model with random
initial conditions (and the same parameter value S/C),
which shows turbulent behavior. This indicates that the
diffusive behavior of wϕ(t) for long times in the stochastic
simulations is indeed due to deterministic turbulence.

Appendix D: Methods

The numerical time integration of the coupled
Langevin equations on the lattice was performed with
the algorithm presented in [49]. In the following, we pro-
vide further details on the parameters employed for the
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simulations whose results are shown in the figures.
For the simulations of the full phase model in one di-

mension in Fig. 2, we employed the following parame-
ters. Fig. 2a: S/C = 0.001, Dϕ/S = 2 × 10−6, (re-
sulting in g1D = 8), S∆t = 0.01, N = 5 × 103. We
only show a part of the phase field. Fig. 2b: Parameters
for the upper magenta curve: S/C = 0.001, Dϕ/S =
2× 10−6, S∆t = 0.01, N = 104. Lower magenta curve:
S/C = 0.001, Dϕ/S = 2.5×10−7, S∆t = 0.1, N = 104.
For both magenta curves, the average was taken over 300
simulations. For the red curve: S/C = 0.001, Dϕ/S =
1.25×10−5, S∆t = 0.001, N = 103. For the green curve:
S/C = 0.1, Dϕ/S = 0.0625, S∆t = 0.001, N = 103.
For those two curves, the average was taken over 120
simulations.

We now turn to the simulations of the KPZ model. In
general, direct numerical simulations of this model where
the scaling properties are extracted are always performed
for stable evolution. Hence, they are done in the small-
coupling regime, also for slightly different lattice real-
izations with quantitatively different stability properties,
see [28]. There, it is also found that the parameter g1D

has an influence on the transient dynamics in one dimen-
sion (see also [29]) which explains the transients that we
observed in the phase model, in Fig. 2b (magenta curves).

In Fig. 3b, we plot the probability of encountering
instabilities in the 1D KPZ lattice model as given by
Eq. (3), for a wide range of the coupling parameter g1D.
The data is extracted from 300 simulations for each value
of g1D = 1, 2, ..., 50, running up to time τ = 100, with a
time step ∆τ = 10−4. The probability of instability is
just the ratio of unstable simulations. We checked that
the results for this quantity do not change at g1D = 50
if we go to a smaller time step of ∆τ = 10−5. A simu-
lation was considered unstable when one of the nearest-
neighbor height differences at one lattice site exceeded a
large value, which was chosen to be 105. We used a lat-

tice size of N = 1000. The probability of an instability
generally increases for larger lattices. An exception are
very small lattices, where boundary effects can become
important (see the example above).

Fig. 4c shows the results for the probability to find an
unstable simulation in the 2D KPZ lattice model. The
data for the plot is from 300 simulations for each value of
g2D = 0.1, 0.2, ..., 4, on a lattice of size N = 642 with time
step ∆τ = 0.01. A simulation was considered unstable
when one of the nearest neighbor height differences at one
lattice site exceeded a large value, which was chosen to
be 108. As in 1D, the probability of instability depends
on the lattice size.

Regarding the results for the two-dimensional phase
model, the red curve in Fig. 4a shows the phase field
spread from an average over 300 simulations with the
following parameters: S/C = 0.001, Dϕ/S = 2.5 ×
10−7, N = 2562, S∆t = 0.1. For the 300 simulations
for the red curve in Fig. 4b, we used the parameters
S/C = 0.001, Dϕ/S = 3.75×10−7, N = 642, S∆t = 0.1.

We commented in the main text on the relation of the
results for the phase model, which are shown in Fig. 4a,
to predictions from the linearized KPZ equation. This
linear model is the Edwards-Wilkinson model [39], which
produces a slow logarithmic growth of the surface width
in a continuum system [36]. Because the model is linear,
we can also straightforwardly take into account the ef-
fects of the lattice discretization and the finite size of the
lattice. The resulting analytical prediction is shown as
the dashed line in Fig. 4a. The red curve shows a good
initial fit and some deviations only at later times. Fur-
ther investigation reveals that the two-dimensional lattice
version of the KPZ model (in analogy to Eq. (3)) shows
the same deviations. We checked that another lattice
version of KPZ (as in [28]) does indeed agree with the
result from the linear equation. The reason for the dis-
crepancy in different lattice models might be more subtle
influences of the nonlinearity, as also reported in [50].
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