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When an open system is contacted with several thermal baths, the entropy produced by the irreversible pro-
cesses (dSi = dS — ), dQa/Tx) keeps increasing, and this entropy production rate is always non-negative.
But when the system is contacted with some non-thermal baths containing quantum coherence or squeezing,
this entropy production formula does not apply. In this paper, we study the increasing rate of the mutual infor-
mation between the open system and its environment. When the baths are canonical thermal ones, we prove
that this mutual information production rate could exactly return to the previous entropy production rate. Fur-
ther, we study an example of a single boson mode contacted with multiple squeezed thermal baths, where the
conventional entropy production rate does not apply, and we find that this mutual information production rate
still keeps non-negative, which means the monotonic increasing of the correlation between the system and its

environment.

PACS numbers: 03.67.-a, 05.30.-d

I. INTRODUCTION

The entropy change of a system can be considered to come
from two origins, i.e., dS = dS. + dS; [1-4], where dS,
comes from the exchange with external sources, and it could
be either positive or negative; d.5; is the entropy change due to
the irreversible processes. Then the 2nd law is simply stated
as dS;/dt > 0, which means the entropy produced by the
irreversible processes always increases, and R.p, := dS;/dt is
called the entropy production rate (EPr).

When the system is contacted with a thermal bath with tem-
perature T, we have dS, = dQ/T (hereafter we refer it as
the thermal entropy), where d() is the heat flowing into the
system. If we have multiple independent thermal baths with
different temperatures 7T, (Fig. 1), the EPr becomes

ds;  ds 1 dQu.
dt — dt ZTT, dt

«

= Repa (l)

where d(@),, is the heat coming from bath-« [1, 4].

Further, when an open quantum system is weakly coupled
with the multiple thermal baths, usually its dynamics can be
described by the following Lindblad (GKSL) equation [5, 6],

p=ilp, Hs]+ Y Lalp]. 2)

where L, [p] describes the dissipation due to bath-«. Utilizing
S[p] = —tr[pIn p] and Qo = tr[Hs - La[p]], the EPr (1) can
be rewritten as the following Spohn formula (denoted as Rgy,
hereafter) [7-12]

Rep = > tr[(Inp{?) —Inp)- Lalpl] == Rsp.  (3)

Here we call p§§"> = Z;'exp|—Hg/T,)| the partial steady

state associated with bath-c, satisfying £, [pgg)] = 0. Itcan
be proved that Rg;, > 0, which means the irreversible entropy

production keeps increasing (see the proof in Appendix A or
Ref. [7, 8]).
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Figure 1. (Color online) Demonstration for an open quantum sys-
tem () interacting with its environment composed of multiple baths
(Ba). The baths are independent from each other, and do not have to
be canonical thermal states.

However, in the above discussion, the thermal entropy
dS. = dQ/T only applies for canonical thermal baths. If
the bath is some non-canonical state containing quantum co-
herence or squeezing [13—15], the temperature is not well de-
fined, thus it is no more proper to use dQ)/7" for d.S, [16], and
the relations Re, = Rgp, or Rep, > 0 no longer hold either.

Therefore, for such non-thermal baths, the conventional
thermodynamic description of the EPr does not apply. And
it is believed that corrections of some work [17-19], or excess
heat [16] should be considered in these baths.

Here we replace the thermal entropy term —(@), /T, by the
von Neumann entropy of bath-c, Spa = —tr[pBa Inppal.
Further, we assume the multiple baths are independent from
each other, thus it leads to > Spo = Sp. Then this general-
ization becomes

dSs dSp d

RI: —+ =

d
T Tar %(SS + S — SSB) = —Zsp. 4)

dt
Here Ssp = 0 since the total system S + B evolves unitarily
[20], and Zgp := Ss + Sp — Ssp is just the mutual informa-
tion between the system and its environment, which measures
their correlation [21-26]. Therefore, we call Rz the mutual
information production rate (MIPr).

Rz has a clear physical meaning: a positive Rz indicates
the correlation between the system and its environment is in-
creasing. In the following, we are going to show that, indeed



this MIPr (4) has a quite close connection with the previous
EPr (1). When the bath of the open system are thermal ones,
we can prove that this MIPr could exactly return to the con-
ventional thermodynamic description of the EPr in the weak
coupling limit, namely, Rz = R.,. That means, for thermal
bath, the conventional entropy production can be equivalently
interpreted as the mutual information production, and the 2nd
law statement (Rz =)R., > 0 can be also understood as the
system-bath correlation always keeps increasing.

Further, we will study an example of a single boson con-
tacted with multiple squeezed thermal baths. In this case, the
conventional EPr does not apply. We calculate the MIPr un-
der the weak coupling limit and Markovian approximation,
and we find that it exactly equals to the Spohn formula for
non-thermal baths, thus we can prove Rz > 0, which means
the monotonic increasing of the system-bath correlation also
holds in this squeezed bath example.

II. MUTUAL INFORMATION PRODUCTION IN
THERMAL BATHS

Now we first consider the system is coupled with sev-
eral thermal baths. In this case, the initial state of bath-
a is pBoz(O) = Z 1exp[ HBa/T ] Assumlng pBoz( )
does not change too much during evolution [27-29], we have

Inppa(t) = In[ppa(0) + pi] ~ Infppa(0)] + o(dp:), thus
the entropy change of bath-« is
I:IBO
. . . e Ta
SBa = —tr[ppa(t) In ppa(t)] =~ —tr[ppa(t) - In Z ]
1d,, Qa
= Tfa%U{Ba) =T )

Here *%(ﬁBOJ is the energy loss of bath-c, while Q. is
the energy gain of the system from bath-«, and they equal to
each other in weak coupling limit. Assuming the baths are
independent from each other, pp(t) ~ [],, pBa(t), the MIPr
becomes

Rz=Ss+ZSBa=Ss—Z%:Rep. 6)

Therefore, for thermal baths, the MIPr (4) equals to the con-
ventional thermodynamic description of the EPr (1).

Thus, the 2nd law statement R., > 0 is equivalent as
Rz > 0, which means the mutual information between the
system and its environment keeps increasing monotonically.
This can be understood as an equivalent statement for the en-
tropy production when the baths are canonical thermal ones.
We notice that this equivalence was also shown in the “corre-
lation entropy” approach [22, 23, 26].

III. MUTUAL INFORMATION PRODUCTION IN
SQUEEZED BATHS

Now we study an example of a single boson mode inter-
acting with multiple squeezed thermal baths [11, 14, 15]. In

this case, the thermal entropy dS, = dQ/T cannot be used,
and neither does the EPr (1). Here we calculate the MIPr (4),
and we will prove it just equals to the Spohn formula for non-
thermal baths, and thus could still keep non-negative, Rz > 0.

A. Master equation and Spohn formula

The Hamiltonian of the single boson mode and the
bosonic bath are ﬁg = Qata, Hp = Y Hpa and
HB(JZ = Zk Wak b bak, and they interact through VSB =
> a'B, + aBJ. Here By = 3 gakbak is the operator of
bath-c, and the 1n1t1a1 states of the baths are squeezed ther-
mal ones (hereafter all the density matrices are written in the
interaction picture),

1 2 1
— SoHpBaS,
e ﬂa allBa o, ﬁ

0 —1
= N =T, 7
PBa = Z o (7
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1. -
Sy = HeXP[§)‘Zkbik —h.c], Ak =rare
k

Here S, is the squeezing operator for the boson modes in
bath-a. With Born-Markovian approximation, we obtain a
master equation p = ) L[p] for the open system alone
[27, 30], where

La[p]
~ (207 pa" — {(a")2, p}) — s (20 — {2, p})] .

The coupling spectrums of the squeezed bath-« are J, (w) :=
27> |9ak]?0(w — wak) and Ky (w) = 27, ¢2,.0(w —
wWak). Without loss of generality, we omit the phase of g,k
and thus K,(w) = Kf(w) = J,(w). Here we denote
Yo = Jo(Q) = K,(Q), and the parameters o, := f,(£2),
Uiy 1= 04(£2) are calculated from A, (wy) := tr[p%alslki)ak],
lo(wy) == —tr[p%, b2, ] (see Appendix B). The master equa-
tion gives

Z 7@ 7 Z'Ya a
- me — o). ®)

Here we denote 7, := a'a, and (6(t)) :=
variables in the rotating frame [31].

tr[po(t)] gives

The partial steady states pé? ), which satisfies Ly, [p£§‘>] =0,
are now squeezed thermal states,

1 .
pi) = = expl-Baf2- SaalasS)), ©)

1 ,
Sq = eXp[—(§§Zd2 - iba,

C.)], Ca = )\O‘k‘wk:Q = Tat

Here S,, is a squeezing operator for the system. Although the
baths are not thermal ones, we can still write down the Spohn

= %" [ﬁa (Q&Tp& — {d&ﬂp}) + (No + 1)(2&pdT _ {de,p})



formula Rgp, = 3~ Rsp,where

Ry = tr[(Inpl) —Inp) - La[p]
]

= Xa —tr[lnp'ﬁa[ﬁ’} (10)
and we can prove R(S(;) > 0 and Rgp, > 0 hold also in this
non-thermal case (Appendix A).

However, since the above Spohn formula Rg, for non-
thermal baths no more comes from the thermodynamic
EPr (1), thus its physical meaning is unclear now. In the ther-

mal case, the 1st term in Réz), Xa = tr[In A0, [p]]. gives

_Qa/Ta)~

the changing rate of the thermal entropy (x, =
But for the squeezed case, it becomes

Xo = T% »fya(cosh 2 - [(fa(t)) — fia]
- %sinh 2rale” % ((i(1)) — i) +he]). (D)

It is difficult to tell the physical meaning of this quantity. In
the following, we will show that indeed Eq. (11) is just the
changing rate of the von Neumann entropy of bath-, i.e.,
Xa = SBa, and then Eq. (10) directly leads to

Rsp =Y RY) =

Ss+) Spa=Rz. (12

B. Bath entropy dynamics

~ Now we are going to calculate the entropy changing rate
SBa of bath-a directly. To do this, we adopt the same trick as
the thermal case. Assuming the squeezed baths do not change
too much (interaction picture), the entropy of the bath evolves
as

Xp[—Ba aA WSt
C(;tS[PBa(t)] Z—tr[pBa(t).lne P[—Ba SaHpaSl]

jt Z Wak (cosh 2o (B ()b (1))

]

% sinh2roi (B2, (1) +hel).  (13)

Thus, the calculation of the bath entropy is now reduced as
calculating the time derivative of the expectations of the bath
operators like (bak (t)bak (1)) and (b2, (1)).

This can be done with the help of the Heisenberg equations,
(;ak: = —iwaki)ak — ig;kd, and fl = —iQda — iza gaki)a}c,
which lead to the quantum Langevin equation [30, 32, 33]

a=—iQa— %ra —&(1). (14)

=

Here I := ) 7, is the total decay rate, and 7, are the same
as those in the master equation; £(t) := ) £ (t) is the ran-

dom force, and £, (t) := i 3"}, gakbak(0)e™“*" is the con-
tribution from bath-c. Thus @(t) and b,y () evolve as

t
a(t):a(())e—iﬂt—%t—/ ds e =5 E(s), (15)
0

(=
Q
o
—~
~+
~
I
S

t
() gy [ st ags),
0

To further calculate the bath entropy change, now we are
going to show the following two relations hold in the weak
coupling limit and Markovian approximation:

S felBlabar) ~ ) allie) e, (16)
k

&S el +he = —5(Q) (@) ] + hee.
k

where f; and hy, are arbitrary coefficients depending on k.

If we set fj, = “2& cosh 2rax, by = §2 sinh e Oar
and sum up the above two equations, then the left side sim-
ply gives Spo [Eq.(13)]; At the same time, the right side is
just equal to x, [Eq.(11)]. Thus we can prove xo, = SBa,
namely, the term y, = tr[In pgg) - Lo[p]] in the Spohn for-
mula is just the changing rate of the von Neumann entropy of
bath-o.

Bes1des if we set f, = wqi and by, = 0, the above relations
lead to £ (Hpa) = Q- Ya[(fia) — fla] = —Qa, which means
the energy loss of bath-« is equal to the energy gain of the
system from bath-a [as we utilized in the discussion below

Eq. (5)].
The calculation of Eq. (16) goes as follows

%sz<ézkéak>
—ka [lgak (t)ba

+|gak|2/ dse*iwak@*s)mwt)a(s)ﬂ +he  (17)
0

= ka “1Gak <&Ti)ak> + h.c.

(et

The 1st term in the bracket can be further calculated by sub-
stituting a(t) [Eq. (15)],

> i - igar (@l (D)bar(0))e 7" + hee. (18)

k

:_Z]Ck‘gakF/ dse[zQ wi)—5](t— s)<bT (O)Bak

- AW i)~ B)(t—s) i
/0 ds[/o o Jo(W)f(w)ha(w)] + h.c.

(0)) + h.c.

Assuming the frequency integral in the bracket gives a fast-
decaying function of (¢ — s), we extend the time integral to



t — oo (Markovian approximation), and that gives

- / Ty / " s 1O () (@) a(w) + hic.
0 0

2T

° dw A L
=), BN

~ —§(Q) : Yala- (19)

The last line holds in the weak coupling limit I' < ) because
the Lorentzian function in the integral approaches 27 (w—Q).

To calculate the 2nd term of Eq.(17), we should notice
(@t®a(s)) = (@f(s)a(s))el®=2)=) holds for t > s
(quantum regression theorem [27, 32]). Here (0;(t)d2(s))
is a correlation function in the rotating frame, defined by
(01(t)02(8)) = tr[o1 E4—s02 Esp(0)] for t > s [27], where
01,2 are operators in Schrodinger picture, and &; is the evolu-
tion operator solved from the above master equation in inter-
action picture, and p(t) = &_sp(s). Similarly, (61 (t)d2(s))
are correlation functions in the non-rotating frame. Thus the
2nd term of Eq. (17) gives

> ke ganl? / ds e @ert=3) (5T (1)a(s)) + h.c.
k

:/O e §w) o

:(ﬁa(t)>./0 f( )Ja(w )'m
e - F(Q) (R (t)). 20

Again we adopted the Markovian approximations as before,
and (n,(s)) is taken out of the integral directly.

Therefore, summing up Egs. (19, 20), we obtain the 1st re-
lation in Eq. (16). The 2nd relation can be obtained through
the similar way (see Appendix B). Then, by setting proper co-
efficients f; and by, in Eq. (16), we can prove x4 = SBa, and
further Rz = Rgp. Since we can prove the Spohn formula
Rsp > 0, the MIPr Rz also keeps positive, which means the
the system-bath mutual information, or their correlation, still
keeps increasing monotonically in this non-thermal case.

/ dse'@=9)s=55 4 he.

IV. SUMMARY

In this paper, we study the production of the mutual in-
formation between the system and its environment. We find
that this MIPr (4) has a close connection with the conventional
thermodynamic description of the EPr (1): when the baths of
the open system are canonical thermal ones, this MIPr could
exactly return to the previous EPr. Therefore, the 2nd law
statement R, > 0 can be equivalently understood as saying
the system-bath correlation always keeps increasing.

Besides, we also study an example of a single boson mode
contacted with multiple squeezed thermal baths. In this case,
the temperatures of the baths are not well defined and the pre-
vious EPr does not apply. We proved that the MIPr is still pos-
itive, which means the monotonic increasing of the system-
bath correlation also exists in this case. Definitely it is worth-
ful to study the MIPr in more non-thermal systems.

We remark that the proof for the positivity of the MIPr
and the Spohn formula relies on the fact the dynamics of the
system can be well described by a Markovian master equa-
tion with the Lindblad (GKSL) form. If this is not fulfilled
[23, 29, 34, 35], the positivity cannot be guaranteed.

Our study indicates it is the system-bath correlation that
keeps increasing monotonically although the total S + B sys-
tem evolves unitarily. This idea is also consistent with some
other fundamental studies on thermodynamics, such as the lo-
cal relaxation hypothesis [36], the entanglement based ther-
modynamics [37], and the mutual information understanding
of the Blackhole radiation [38].
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Appendix A: Proof for the positivity of Spohn formula

Now we prove, the Spohn formula gy, is positive also for non-thermal baths. Namely, for a Lindblad (GKSL) master equation

like [5, 6]

p=ilp, Hs]+ Y _ Lalp]

= Z VanpVa n
n

we have

R(a) =tr [/J [p] - (In p{&) —1In p)} >0,

= ip, Hs] + L[p),

1
= 5 WVdaVan o}, (AD

Rsp = R >0, (A2)



where pgg” is the partial steady state satisfying £, [pgg”] = 0. The operator L,[p] describes the dissipation to bath-«;, which

does not have to be a thermal bath, and p§§> is not necessarily a thermal state.
Our proof follows from Ref. [7], where a single bath was concerned and the EPr was defined by the relative entropy [15, 39],

o =~ 2Slp(t) | pu] = tr [£]5] - (1 pus 0 ). (A3)
Here pss is the steady state of the system satisfying L[pss] = 0. This is equivalent with Eq. (A2) when only one single bath
is concerned. This EPr based on relative entropy always gives o = 0 at the steady state, even for the non-equilibrium steady
state when there are multiple baths and usually a steady non-equilibrium flux exists. But the EPr we used [Eq. (A2)] will remain
non-zero in this case, which means the irreversible entropy is still being produced in the non-equilibrium steady state.
The proof for the positivity of Eq. (A2) goes as follows.
Proof: Since the master equation has the Lindblad (GKSL) form, we obtain

tr [Lo[p]In p] = Z tr VanpVanInp — VinVampln p] . (A4)
Now we need the Lieb theorem [40], namely, the functional fév) [p] = —tr [p9Vp' =9V ] is convex for V0 < ¢ < 1, i.e,,
FEOap1 + dapa] < Mf (1) + Ao f§pal- (AS)
Atq =0, f,—o[p] = —tr[VpVT] is an linear map satisfying fo[\1p1 + Aapa] = A1 fo[p1] + Aafo[pz2], therefore, the derivative
8qf¢§v) =Y 54‘2 éV)} is also convex around ¢ = 0, which reads,
g f{"[p] ’q:o = tr [p?Vp' "I pVT — p?n pV p' V7] ‘q:O
=tr[VIVplnp — VpVilnp] := —tr [Ly[p] - Inp] . (A6)

Here we denoted Ly [p] := VpVT — 1{V1V, p}. Thus, we obtain the following relation (A > 0),

0af$ Pp+ (1= N)p&] = —tr [Ev Do + (1= M)p&] - InAp + (1= A)ple]]

<A OV pl (1= X) - 0y [P = At [Ly[p] - np| = (1= Nr [Ey[ol)] I p@] . A7)
Since the Lindblad operator can be written as L, [p] = >, IA;VWl [p], from the above relation we obtain,
= tr [ Lalho (1= X)) o+ (1= Np2)] < <Ar [Lalp] - Inpl = (1= Ntr [Lao] - p@] . (A8)

Here L., is a linear operator, thus, Lo [Ap + (1 — A)p{&] = Aa[p] + (1 = A) La[p'S’]. And remember we require Lq[p'e)] = 0,
thus, the above inequality becomes

= Xtr [£alo] - Inrp + (1= 2)p)]] < =Atr [Lalo] - Inp]. (A9)
In the limit A — 0%, we obtain
tr [ﬂ [p] - (In p(‘:) In p)} = Rég) > 0. (A10)

Therefore, we have Rg, = > R(O‘) >0. W

Appendix B: Properties of a squeezed bath and the master equation

1. Squeezed bath properties - Here we show some basic properties of a squeezed thermal bath. The Hamiltonian of the bath
isHg =5 K wkb};bk, and the squeezed thermal state is

1 R
pp =8 pm- ST, Prh = EGXP[—ﬁ Hp]. (BD)



Here S is the squeezing operator for the boson bath,

1 . .
Si=]]sx),  se() = exp[iAZb% —hel,  Api= e (> 0), (B2)
k

and sy, is the squeezing operator for mode by, in the bath. They satisfy

A A IPOTUIPERE TS I vigy 1o cion
5;2()\k)bk5k()\k) =by + [5 ()\k(bL)2 - )\ka), bi] + 5[5 ()\k(bzf — )\kbi), [5 ()\k(bL)2 — )\kbi), be]l + ...
’ N I | N TR . o
= b — Mib! + 5|Ak|2bk - §Ak|>\k|2b2 - E|/\k|4bk + - =bpcoshry, — ble sinhry,  (B3)

5k.()\k)l;k52()\k) = by cosh 7y + IA)Lei‘g’c sinh 7.

Thus we have

iy : = —tr[pp - i)i] = —tr[psn '5Li7k5k -523k5k] = —tr[ptn - (ék coshry — Eleiek sinhry) - (I;k coshry, — ZA)Leig’“ sinh )]
= cosh ry, sinh 7' (21, 4 1) = €% sinh 2ry, (T + %), (B4)

A : = —tr[pp - Z)Li)k] = tr[ptn -525};% -S,Tcl;ksk} = tr[ptn - (Z;L cosh g, — bre " sinh T) - (Bk coshry — Blteie’“ sinh ry,)]
= cosh? 7y, - i, + sinh? ry, - (g + 1) = cosh 2ry (7, + %) — %, (B5)

where i, := [exp(Swy) — 1]~ is the Planck distribution.

2. Master equation derivation - Now we derive the master equation for a single boson mode (Hg = Qata) interacting with
a squeezed boson bath. The interaction Hamiltonian is Vsp = aBT + af B, where B = Y « 9xbr, and the master equation is
derived by

p=—trp /OOO ds [Vsp(t — s), [Vsp(t), p(t) ® pp]]
=trp /000 ds [VSB(L‘ — s)p(t)pBVSB(t) — VSB(t — S)VSB(t)p(t)pB] +h.c. (B6)

Here we use o() to denote the operators in the interaction picture, and @(t) = ae ™%, by, (t) = bre ***. We adopted the Born
approximation pgp(t) ~ p(t) ® pp, and

1

pp(t) ~ p% = Z exp[-B SHpS'). (B7)

We define the coupling spectrum as

J(w) ::Z\gk|2-5(w—wk), K(w) ::Zg,%~5(w—wk). (BY)
i i
We omiit the phase of g, thus we have K (w) = J(w) = K*(w). Here is the calculation for some terms:
/ ds trp [a*(t —§)B(t—s)- p(t)ps - a(t)B*(t)} - / dsa'pae= - trplpp BH OBt — )]
0 0

oo d oo . . 1 _
=a'pa / ad / dse ™% . e™% J(w)i(w) = =i - al pa, (B9)
o 2mJo 2

/ " dstrp |t = 5)B(t = ) p(t)ps -3 () B(1)] = / " dsatpal e . e trp[pp BU)B(t — s)]
0 0

; Cdw [ . ; ; 1 .
=— dTp&Te2mt/ & / ds e . etws o720 B(G)i(w) = — =it - afpal, (B10)
0 2w 0 2



where v = J(Q2) = K(2) and

N 1,1 _ 1
i = cosh2rq (Mo + 5) - 5, u:ewﬂsthm(ﬁQ+§). (B11)

We omitted all the Principal integral in the above calculation. Thus the master equation is (interaction picture)

p=ri(atpi— L {aat,p}) + (5 +1)(apal — L {a'a, p})
il pal — (@1, p}) 75 (api — L {(a)20}): B12)

From the above master equation, we obtain

Llamy =T, lalw =l —d, @) = @) -l ®13)

In the steady state we have (@)s = 0, (af@)ss = 0 and (a2)ss = 1i. Thus we can verify the steady state is

SCE L@ =N B14)

1
— - atast = -
pss = exp[—£QSa’aST], S = exp| 5

wE=0"
Here S is a squeezing operator for the system, and we remark that the above pgs is in the interaction picture. When the single
boson is coupled with multiple squeezed baths, the generalization is straightforward, as shown in the main text.

3. Time correlation functions - From the above equations of (a(t)), we obtain (a(t)) = (a(s))e~2(#=%) (¢t > s). According
to the quantum regression theorem, we know the time correlation functions satisfy the following equations (t > s) [27, 32]

S mats) = - Lawa),  Slawats) = -2 @nals)), (B15)

Here (01(t)02(s)) are correlation functions in the rotating frame, defined by (61 (¢)02(s)) = tr[61 Er—s02 Esp(0)] for ¢t > s
[27], where 01 2 are operators in Schrédinger picture, and &; is the evolution operator solved from the above master equation
in interaction picture [Eq. (B12)], and p(t) = &;_sp(s). Similarly, (61(t)02(s)) are correlation functions without adopting the
rotating frame, and we have

(@ ()a(s)) = (@ (a(s))e" ™'~ = (@l (s)a(s))e =) - o730,
(a(t)a(s)) = (@(t)a(s)e ) = (@ (s)e > - e 7379, (B16)
This can be also calculated using the Langevin equation a = —iQa — %7& — f (t) (here we only consider one single bath),
e.g.,

(@ t)a(s) = ([a! (90290 = [ay 00000 ¢)) - as)

S

— at(s)a (19— ) (t—s) _ td 1 i0=3)E=1) [ £ (47 L 1a(0)e(— 2= B)s _ Sdsle(fiﬁfg)(sfs')A o
(@ (s)a(s)e [ e (&) - a(o) / £))
= (@t (s)a()eli® D / [ 0B D )i,

Under the Markovian approximation we have (£(#/)(s')) ~ 0(t' — ') [28, 32]. And notice that in the above double integral
we have 0 < s’ < s <t/ < t, thus the above integral gives zero.

4. Bath entropy change - Now we show the calculation for the 2nd relation of Eq. (16) in the main text. Using the Heisenberg
equation we obtain

t

dchk (B24 (1)) + hc. = > —i2gl, by [< (O)bar(0))eert —igs, [ dse™=xt+9) (a(t)a(s))| + h.c. (B17)

k 0



The 1st term in the bracket is further calculated by substituting a(t) [Eq. (15)], and it gives

t
= Z?Igak\zbk / ds e l{(@=war)+51(=5) (52 (0)) + h.c.

22/ / ds Jo(
0

_ h(w)ta(w)
_2/0 o Ja(w)[ii i -

(w)e *i(Q*“’)S*%FSGa(w) + h.c.

+h.c] ~7,[h(Q)i, + h.c]. (B13)

Here we applied the Markovian approximation and the weak coupling limit I' < 2. The 2nd term of Eq. (B17) can be calculated

with the help of the relation (quantum regression theorem)

(a(t)a(s)) = (@(s))e 2% - e

and it leads to

t
= 295 Pt / ds e~ ==} (a(t)a(s)) + h.c.
k 0

dw

~—2 —Ka(w)h(w)BQZ(‘” 0

l\D

(w)h(w)e%(w )t

—2a@)- [ 5

Thus, summing up Eqgs. (B18, B20), we finish our calculation

))+h.c =

dtzhk (Wi

Lti(w—0)

—iQt=) =5 (=) for¢ > g (B19)
/ ds eli@=w)=5ls L ¢

+h.c]~ . [h(Q)(@3(t)) + h.c.]. (B20)

—H(Q) - va[(@*(t)) — 1ia] + h.c. (B21)
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