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A fundamental issue in the theory of continuous stochastic process is the interpretation of multi-
plicative white noise, which is often referred to as the Itô-Stratonovich dilemma. From a physical
perspective this reflects the need to introduce additional constraints in order to specify the nature
of the noise, whereas from a mathematical perspective it reflects an ambiguity in the formulation
of stochastic differential equations (SDEs). Recently, we have identified a mechanism for obtaining
an Itô SDE based on a form of temporal disorder. Motivated by switching processes in molecular
biology, we considered a Brownian particle that randomly switches between two distinct confor-
mational states with different diffusivities. In each state the particle undergoes normal diffusion
(additive noise) so there is no ambiguity in the interpretation of the noise. However, if the switching
rates depend on position, then in the fast switching limit one obtains Brownian motion with a space-
dependent diffusivity of the Itô form. In this paper, we extend our theory to include colored additive
noise. We show that the nature of the effective multiplicative noise process obtained by taking both
the white-noise limit (κ→ 0) and fast switching limit (ε→ 0) depends on the order the two limits
are taken. If the white-noise limit is taken first, then we obtain Itô and if the fast switching limit
is taken first then we obtain Stratonovich. Moreover, the form of the effective diffusion coefficient
differs in the two cases. The latter result holds even in the case of space-independent transition
rates, where one obtains additive noise processes with different diffusion coefficients. Finally, we
show that yet another form of multiplicative noise is obtained in the simultaneous limit ε, κ → 0
with ε/κ2 fixed.

I. INTRODUCTION

A fundamental issue in non-equilibrium statistical
physics is the interpretation of multiplicative white
noise, and the associated distinction between Itô and
Stratonovich versions of stochastic differential equations
(SDEs) [1–3]. Additional physical constraints are usually
required to identify the correct interpretation. For exam-
ple, taking the white noise limit of a particle driven by
colored multiplicative noise generates the Stratonovich
version [4]. On the other hand, consistency of the
stochastic dynamics with equilibrium statistical physics
yields the so-called kinetic interpretation [5–7]. The lat-
ter appears to hold in experiments observing the motion
of a colloidal particle near a wall, where hydrodynamic
interactions lead to spatial variations in the diffusion co-
efficient D of a Brownian particle (heterogeneous diffu-
sion) [8–10].

There has also been a recent resurgence of interest in
heterogeneous diffusion within biological cells, driven by
advances in single-particle tracking (SPT) experiments
[11–14]. These experiments track the trajectories of in-
dividual macromolecules and lipids within the plasma
membrane by attaching an observable tag such as a quan-
tum dot, gold nanoparticle, or a fluorophore. They have
established that, rather than moving freely, molecules
tend to exhibit heterogenous dynamics, including con-
fined and anomalous diffusion. A variety of mechanisms
have been proposed to explain such behavior, including
lipid microdomains [15], compartmentalisation by the cy-
toskeleton (the so-called “picket-fence” model [13]), and
protein-protein interactions [16–18]. The simplest tech-
nique for analyzing SPT data is to detect deviations from

free diffusion based on the mean squared displacement
(MSD). It is well-known that unconfined Brownian mo-
tion has a cumulative MSD that is a linear function of
time, whereas a sublinear temporal variation of MSD is
indicative of movement in a confined environment, and a
supralinear variation suggests directed motion. One can
then compare various physical models by fitting theoreti-
cal MSD curves with the data. One limitation of MSD as
a measure of heterogeneous diffusion is that it is based on
the statistics of multiple trajectories. However, it is also
possible to detect heterogeneity within single trajectories
by utilizing statistics to detect deviations from generic
properties of Brownian motion, including first passage
times and occupation times [19–22]. Yet a more effective
statistical method is to use parametric models of het-
erogeneous diffusion, based on the hidden Markov model
(HMM) framework [23–25]. These latter studies suggest
that particles within the plasma membrane can switch
between different discrete conformational states with dif-
ferent diffusivities. Such switching could be due to inter-
actions between proteins and the actin cytoskeleton [23]
or due to protein-lipid interactions [26].

Motivated by the above experimental studies, we have
recently analyzed a model of a Brownian particle that
randomly switches between two distinct conformational
states with different diffusivities [27]. In each state the
particle undergoes normal diffusion (additive noise) so
there is no ambiguity in the interpretation of the noise.
However, if the switching rates depend on position, then
in the fast switching limit ε→ 0, where ε is some dimen-
sionless scale factor, one obtains Brownian motion with a
space-dependent diffusivity of the Itô form. (The case of
space-independent switching between two diffusive states
has recently been analyzed in Ref. [28].) In this paper,
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we extend our theory to include colored additive noise
with correlation time κ. We show that the nature of the
effective multiplicative noise process obtained by taking
both the white-noise limit (κ → 0) and fast switching
limit (ε → 0) depends on the order the two limits are
taken. If the white-noise limit κ→ 0 is taken first, then
we obtain an Itô SDE, whereas a Stratonovich SDE is
obtained when the fast switching limit ε → 0 is taken
first. Moreover, the form of the effective diffusion coef-
ficient differs in the two cases. The latter result holds
even in the case of space-independent transition rates,
where one obtains additive noise processes with different
diffusion coefficients.

The structure of the paper is as follows. In section II
we formulate our model and sketch the main results of
the paper. We then carry out a more detailed derivation
of our results in section III, where we analyze the adi-
abatic and white-noise limits using projection methods.
We present an alternative approach in section IV based
on regular perturbation theory. This allows us to derive
yet another form of multiplicative noise in the simulta-
neous limit ε, κ→ 0 with ε/κ2 fixed. Finally, we present
some numerical results in section V and conclude with a
brief discussion.

II. A HYBRID COLORED NOISE PROCESS

Let X(t) ∈ R denote the position of a particle at time
t, which is taken to evolve according to the stochastic
differential equation (SDE)

dX(t) =
1

κ
f(X(t))Y (t)dt (2.1a)

where Y (t) is a stochastic external input evolving accord-
ing to the Ornstein-Uhlenbeck process

dY (t) = − γ

κ2
Y (t)dt+

1

κ
W (t). (2.1b)

〈dW (t)〉 = 0, 〈dW (t)dW (t′)〉 = δ(t− t′)dtdt′,

where δ is the Dirac delta function. We take κ to be
dimensionless so that γ is a scaled decay rate. For sim-
plicity, we fix the units of time by setting γ = 1. Heuris-
tically speaking, in the white-noise limit κ → 0 we can
set Y (t)dt = κdW (t) such that we obtain a scalar SDE
of the Stratonovich form:

dX(t) = f(X(t)) ◦ dW (t). (2.2)

One way to establish the correct interpretation of the
multiplicative noise is to start with the full 2D Itô Fokker-
Planck (FP) equation for the probability density function
of sample paths, and to reduce it to a scalar Stratonovich
FP equation in the limit κ→ 0 using an adiabatic reduc-
tion and projection methods [4].

Now consider a hybrid version of the above SDE, in
which the nonlinear function f(X) is replaced by a piece-
wise constant function

√
2DN(t), with N(t) ∈ {0, 1}

evolving according to a two-state Markov chain

0
β/ε


α/ε

1, (2.3)

with ε > 0, a dimensionless parameter. That is,

dX(t) =
1

κ

√
2DN(t)Y (t)dt (2.4a)

dY (t) = − 1

κ2
Y (t)dt+

1

κ
dW (t). (2.4b)

for N(t) ∈ {0, 1} and D0, D1 constants. We can view
this as a three-component stochastic hybrid system,
(X,Y,N) ∈ R×R×{0, 1}. Following Ref. [27], we will as-
sume that the switching rates α, β depend on the current
position of the particle, α = α(X(t)), β = β(X(t)).

Suppose that it is still possible to take the white-noise
limit for the non-autonomous SDE (2.4). For fixed ε > 0,
we would then obtain the following piecewise SDE for the
position X(t):

dX(t) =
√

2DN(t) dW (t), (2.5)

As it stands, the resulting additive SDE represents a
Brownian particle with a switching diffusion coefficient
and space-dependent switching rates. This stochastic hy-
brid system was analyzed in Ref. [27], where we showed
that taking ε→ 0 yields an Itô equation for X(t),

dX(t) =

√
2D(X(t)) dW (t), (2.6)

where

D(x) =
∑

n=0,1

ρn(x)Dn, (2.7)

and

ρ0(x) =
α(x)

α(x) + β(x)
, ρ1(x) = 1− ρ0(x). (2.8)

For fixed x, ρn(x), n = 0, 1 corresponds to the unique sta-
tionary distribution of the two-state Markov chain with
generator ε−1A(x), where

A(x) =

(
−β(x) α(x)
β(x) −α(x)

)
. (2.9)

In particular,
∑
m=0,1Anm(x)ρm(x) = 0 for n = 0, 1.

The basic intuition behind Eq. (2.6) is that in the fast
switching limit ε→ 0, the Markov chain undergoes many
jumps over a small time interval ∆t during which ∆X ≈
0, and thus the relative frequency of the two discrete
states n is approximately ρn(x).
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An alternative limit is obtained if we fix κ > 0 and
perform the adiabatic limit ε → 0. Using similar argu-
ments to Ref. [27], we expect that the system reduces to
an effective SDE for (X(t), Y (t)) of the form

dX(t) =
1

κ

√
2D̂(X(t))Y (t) dt, (2.10a)

dY (t) = − 1

κ2
Y (t)dt+

1

κ
dW (t). (2.10b)

where

D̂(X) =

[ ∑

n=0,1

√
Dnρn(x)

]2
. (2.11)

This would then yield an equation of the form (2.1), so
taking κ → 0 would lead to the following Stratonovich
equation for X:

dX(t) =

√
2D̂(X(t)) ◦ dW (t). (2.12)

The above analysis suggests that the order in which
the adiabatic and white-noise limits are taken has a non-
trivial effect on the nature of the resulting scalar SDE
for the position X(t). Taking the white-noise limit first
generates the Itô SDE (2.6) with the effective diffusion
coefficient D(x), whereas taking the adiabatic limit first
produces a Stratonovich SDE with the effective diffusion

coefficient D̂(x). Interestingly, we find a difference even
when the transition rates are x-independent, in which
case Eqs. (2.6) and (2.12) reduce to additive noise pro-
cesses with different diffusion coefficients, namely, D =∑
nDnρn and D̂n = (

∑
n

√
Dnρn)2. In section III we

establish these results more systematically using projec-
tion and perturbation methods, and then explore a case
where ε and κ are related in section IV.

III. ANALYSIS OF ADIABATIC AND
WHITE-NOISE LIMITS USING PROJECTION

METHODS

The first step is to write down the full Chapman-
Kolmorogov (CK) equation for the stochastic hybrid sys-
tem (X(t), Y (t), N(t)). Let

pn(x, y, t) = P[x < X(t) < x+ dx, y < Y (t) < y + dy,N(t) = n|X0, Y0, n0],

for fixed initial conditions. Then

∂pn(x, y, t)

∂t
=

1

κ2

(
∂

∂y
y +

1

2

∂2

∂y2

)
pn(x, y, t)−

√
2Dny

κ

[
∂

∂x

]
pn(x, y, t) +

1

ε

∑

m=0,1

Anm(x)pm(x, y, t). (3.1)

It is useful to rewrite Eq. (3.1) in the more compact form

∂p(x, y, t)

∂t
=

([
1

κ2
L1I +

1

κ
L2J

]
+

1

ε
A(x)

)
p(x, y, t),

(3.2)
where p = (p0, p1)>, I is the 2 × 2 unit matrix, J =
diag(

√
2D0,

√
2D1), and

L1 =
∂

∂y
y +

1

2

∂2

∂y2
, L2 = −y ∂

∂x
. (3.3)

Introduce the projection operator P acting on a scalar
function p(x, y) according to [4, 29]

(Pp)(x, y) = ps(y)

∫ ∞

−∞
p(x, y′)dy′, (3.4)

where ps(y) is the stationary probability density of the
stochastic process Y (t): L1ps(y) = 0, that is

ps(y) =

√
1

π
e−y

2

. (3.5)

We will assume that P acts on vector fields component-
wise. The projection operator satisfies the following iden-
tities [4]: (i) P2 = P; (ii) PL1 = L1P = 0; (iii)
AP = PA; (iv) PL2P = 0; (v) P = limt→∞ etL1 .
The first three properties are trivial to show, and prop-
erty (v) is simply a statement that eL1tp(x, y) is a (non-
normalized) solution to the FP equation ∂tp = L1p,
which approaches the stationary density in the large-t
limit. Finally, property (iv) is a consequence of the fact
that

(PL2P)p(x, y) = ps(y)

∫ ∞

−∞

[
−y′ ∂

∂x
ps(y

′)dy′
]

×
∫ ∞

−∞
p(x, y′′)dy′′

∼ ps(y)〈y′〉s
∂

∂x

∫ ∞

−∞
p(x, y′′)dy′′ = 0,

since 〈y′〉s = 0.
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The next step is to Laplace transform the CK equation
with respect to time t:

sp̃(s)− p(0) =

([
1

κ2
L1I +

1

κ
L2J

]
+

1

ε
A

)
p̃(s), (3.6)

where we have dropped the explicit dependence on x, y.
We will assume the initial condition

pn(x, y, 0) = ρn(x)ps(y)δ(x− x0).

Applying the projection operator P to Eq. (3.6) and us-
ing properties (ii) and (iii) yields

sV(s) =
1

κ
PL2JW(s) + Pp(0) +

1

ε
AV(s), (3.7)

where

V(s) = Pp̃(s), W(s) = (1− P)p̃(s).

Similarly, applying the projection operator 1− P yields

sW(s) =

(
1

κ2
L1I +

1

κ
(1− P)L2J

)
W(s) +

1

κ
L2JV(s)

+ (1− P)p(0) +
1

ε
AW(s). (3.8)

Note that Pp(0) = p(0) so that (1− P)p(0) = 0.
Eqs. (3.1), (3.7) and (3.8) are the starting point for

analyzing the double limit ε, κ→ 0. We proceed by car-
rying out a double perturbation expansion in ε, κ, under
the simplifying assumptions that either ε/κ2 � 1 (white
noise limit followed by adiabatic limit) or ε/κ2 � 1 (adi-
abatic limit followed by white-noise limit). In the former
case, we invert Eq. (3.8) by carrying out a perturbation
expansion in κ for fixed ε, substitute the resulting expres-
sion of W(s) in terms of V(s) into Eq. (3.7) and then
take the limit κ→ 0. We then solve for V(s) by carrying
out a perturbation expansion in ε. In the latter case, the
roles of ε and κ are reversed. An alternative approach
based on the backward CK equation is presented in sec-
tion IV, which considers a single perturbation expansion
in κ with η = ε/κ2 fixed. The results of this section
are then recovered by taking either η → ∞ or η → 0.
Note, however, that the forward method presented here
provides a basis for a more general double perturbation
expansion.

A. Taking the white-noise limit (κ→ 0) first

First suppose we fix ε > 0 and take the limit κ → 0.
We can formally invert Eq. (3.8) to obtain

W(s) = − 1

κ
Σ(s)L2JV(s), (3.9)

with

Σ(s) =

(
−s+

1

κ2
L1I +

1

κ
(1− P)L2J +

1

ε
A

)−1
.

(3.10)

Substituting into equation (3.7) thus gives

sV(s)− p(0) = − 1

κ2
PL2JΣ(s)L2JV(s) +

1

ε
AV(s).

(3.11)
In the limit κ → 0, we have Σ(s) → κ2L−11 I, so that
Eq. (3.11) becomes

sV(s)− p(0) = −PL2L−11 L2J
2V(s) +

1

ε
AV(s).

(3.12)

Now performing the inverse transform and setting

lim
κ→0

Vn(x, y, t) = ps(y)pn(x, t), (3.13)

we have

ps(y)
∂pn
∂t

= −2Dn

(
PL2L−11 L2

)
ps(y)pn(x, t)

+
ps(y)

ε

∑

m=0,1

Anm(x)pm(x, t).(3.14)

It remains to calculate the second operator term on the
right-hand side. From the definition of L2 we have

PL2L−11 L2ps(y)pn(x, t)

= ps(y)

∫ ∞

−∞

(
− ∂

∂x
y′
)
L−11

(
− ∂

∂x
y′
)
ps(y

′)pn(x, t)dy′

= −Dps(y)
∂2

∂x2
pn(x, t), (3.15)

with

D = −
∫ ∞

−∞
yL−11 yps(y)dy. (3.16)

Formally speaking, we have

∫ ∞

0

eL1tdt = L−11

(
lim
t→∞

eL1t − 1
)

= −L−11 (1− P),

from property (v) of the projection operator. Since

Pyps(y) = ps(y)〈y〉s = 0,

we see that

D =

∫ ∞

0

dt

∫ ∞

−∞
dy y

(
eL1typs(y)

)
.

Using the fact that eL1t is the evolution operator of the
FP equation for y, we have

D =

∫ ∞

0

dt

∫ ∞

−∞
dy

∫ ∞

−∞
dy′ yy′p(y′, t|y, 0)ps(y)

=

∫ ∞

0

〈Y (t)Y (0)〉sdt =
1

2
.
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Finally, setting D = 1/2 in equation (3.14), and canceling
a common factor of ps(y), we arrive at the following CK
equation for the probability density pn(x, t):

∂pn(x, t)

∂t
= Dn

∂2pn(x, t)

∂x2
+

1

ε

∑

m=0,1

Anm(x)pm(x, t),

(3.17)
This is precisely the CK equation that would be written
down for the joint Markov process (N(t), X(t)) evolving
according to the piecewise SDE (2.5).

We can now derive the Itô SDE (2.6) by carrying out
a quasi-steady state (QSS) or adiabatic reduction of the
CK equation (3.17). This reduces the CK equation (3.17)
to a corresponding FP equation for the total probability
density p(x, t) =

∑
n=0,1 pn(x, t) [4, 30, 31]. That is, we

decompose the probability density pn as

pn(x, t) = p(x, t)ρn(x) + εwn(x, t),

where
∑
n wn(x, t) = 0. Substituting this decomposition

into Eq. (3.17), summing both sides with respect to n,
and using

∑
nAnm(x) = 0 yields to leading order the Itô

FP equation

∂p

∂t
=
∂2D(x)p

∂x2
. (3.18)

The higher-order corrections are calculated in [27].

B. Taking the adiabatic limit (ε→ 0) first

Next we fix κ > 0 and take the limit ε→ 0. In this case,
we cannot simply invert Eq. (3.8), since Σ(s)→ εA−1 as
ε → 0, and A−1 does not exist. Instead, we introduce
the decomposition

pn(x, y, t) = ρn(x)p(x, y, t) + εwn(x, y, t; ε), (3.19)

with ρn(x) given by Eq. (2.8), p(x, y, t) =∑
n=0,1 pn(x, y, t) and

∑
n=0,1 wn = 0. Substitut-

ing into Eq. (3.1), summing both sides with respect to n,
and using

∑
nAnm(x) = 0 yields the following equation

for p in the limit ε→ 0

∂p(x, y, t)

∂t
=

1

κ2

(
∂

∂y
y +

1

2

∂2

∂y2

)
p(x, y, t)

−y
κ

[
∂

∂x

]√
2D̂(x)p(x, y, t). (3.20)

This is precisely the two-variable FP equation for the
SDE (2.10). One could now apply the projection method
of section IIIA to derive equations for V (x, y, s) =
P p̃(x, y, s) and W (x, y, s) = (1 − P)p̃(x, y, s). However,
a more direct method is to introduce the decompositions

Vn(x, y, s) = ρn(x)V (x, y, s) + ενn(x, y, s; ε)

(3.21a)

Wn(x, y, s) = ρn(x)W (x, y, s) + εωn(x, y, s; ε),

(3.21b)

with
∑
n ωn = 0 =

∑
n νn. Substituting into Eqs. (3.7)

and (3.8), summing both sides with respect to the vector
components n = 0, 1, and using

∑
nAnm(x) = 0 then

yields the following equations for V,W in the limit ε→ 0:

sV (x, y, s) =
1

κ
PL2

√
2D̂(x)W (x, y, s) + p(x, y, 0)

(3.22)

and

sW (x, y, s) =

(
1

κ2
L1 +

1

κ
(1− P)L2

√
2D̂(x)

)
W (x, y, s)

+
1

κ
L2

√
2D̂(x)V (x, y, s) (3.23)

Inverting Eq. (3.23) and substituting into Eq. (3.22) gives

sV (x, y, s)− p(x, y, 0) = − 1

κ
Λ(s)L2

√
2D̂(x)V (x, y, s)

where

Λ(s) =

[
−s+

1

κ2
L1 +

1

κ
(1− P)L2

√
2D̂(x)

]−1
.

Taking the limit κ → 0 proceeds along similar lines to
the analysis of Eq. (3.11). That is, taking Λ(s)→ κ2L−11

and performing the inverse Laplace transform with

lim
κ→0

V (x, y, t) = ps(y)p(x, t), (3.24)

gives

ps(y)
∂p

∂t
= −

(
PL2

√
2D̂(x)L−11 L2

√
2D̂(x)

)
ps(y)p(x, t)

Evaluating the right-hand side along identical lines to the
previous case and canceling a common factor of ps(y),
yields the Stratonovich FP equation

∂p

∂t
=

∂

∂x

√
D̂(x)

∂

∂x

√
D̂(x)p(x, t). (3.25)

This corresponds to the Stratonovich SDE (2.12).

IV. ANALYSIS OF ADIABATIC AND
WHITE-NOISE LIMITS USING THE

BACKWARD EQUATION

So far we have used projection and perturbation meth-
ods to investigate how the effective forward FP equation
depends on the order in which we take the adiabatic and
white noise limits. To gain further insights into this is-
sue, we develop an alternative approach in which we set
ε = κ2/η for some η > 0 and carry out a regular single
perturbation expansion in κ. Cases A and B are then
recovered in the limits η → 0 (κ approaches zero faster
than ε) and η → ∞ (ε approaches zero faster than κ)).
However, for finite η we obtain yet another limit, ε, κ→ 0
with ε/κ2 fixed. (One could also obtain this limit using
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the forward method, but the analysis is more compli-
cated.)

Adapting methods in [32], the starting point is the
Kolmogorov backward equation for the three-component
process (X(t), Y (t), N(t)) defined in (2.3)-(2.4), which is

∂

∂t
q =

( 1

κ2
L∗1 +

1

κ
L∗2J +

1

ε
A∗
)
q, (4.1)

where L∗1 and L∗2 are the adjoints of (3.3),

L∗1 = −y ∂
∂y

+
1

2

∂2

∂y2
, L∗2 = y

∂

∂x
,

and A∗ is the adjoint (transpose) of (2.9), and

q =

(
q0(x, y, t)
q1(x, y, t)

)
.

Setting ε = κ2/η for some η > 0 and plugging the
following power series expansion,

q = q(0) + κq(1) + κ2q(2) + . . .

into (4.1) yields following hierarchy of equations

−(L∗1 + ηA∗)q(0) = 0 (4.2)

−(L∗1 + ηA∗)q(1) = L∗2Jq(0) (4.3)

−(L∗1 + ηA∗)q(2) = L∗2Jq(1) − ∂

∂t
q(0) ≡ h(2). (4.4)

Ergodicity of Y (t) and N(t) imply that the nullspace of
L∗1+ηA∗ (vectors q(0)(x, y) for which (L∗1+ηA∗)q(0) = 0)
consists of functions of the form

(
q
(0)
0 (x, y, t)

q
(0)
1 (x, y, t)

)
=

(
q(x, t)
q(x, t)

)
.

for some function q(x, t). Hence, Eq. (4.3) becomes

−(L∗1 + ηA∗)q(1) = y
∂

∂x
q(x, t)

(√
2D0√
2D1

)
≡ h(1). (4.5)

Now observe that the nullspace of L1+ηA (vectors e(x, y)
for which (L1 + ηA)e = 0) is spanned by

e(x, y) = ps(y)

(
ρ0(x)
ρ1(x)

)
,

where ps(y) is the stationary probability density of Y (t)
given in (3.5). Therefore, the righthand side of (4.5) is
orthogonal to the nullspace of L1 + ηA since

〈h(1), e〉 ≡
∫ ∞

−∞

∫ ∞

−∞

∑

n=0,1

h(1)n (x, y)en(x, y)dx dy

=

√
2D̂(x)

∂

∂x
q(x, t)

∫ ∞

−∞
yps(y) dy = 0.

Hence, the Fredholm alternative [33] ensures that (4.5)
is solvable. Indeed, it is straightforward to check that

(
q
(1)
0 (x, y, t)

q
(1)
1 (x, y, t)

)
:=
√

2

(
b0(x)
b1(x)

)
y
∂

∂x
q(x, t) (4.6)

solves eq. (4.5), where

bn(x) := νη(x)

√
D̂(x) + (1− νη(x))

√
Dn, (4.7)

and

νη(x) :=
η(α(x) + β(x))

1 + η(α(x) + β(x))
. (4.8)

Again appealing to the Fredholm alternative, in order
for Eq. (4.4) to be solvable, we need L∗2Jq(1) − ∂

∂tq
(0) to

be orthogonal to the nullspace of L1 + ηA. That is, we
need

ρ0(x)

∫ ∞

−∞
ps(y)

{
L∗2
√

2D0q
(1)
0 −

∂q

∂t

}
dy

+ ρ1(x)

∫ ∞

−∞
ps(y)

{
L∗2
√

2D1q
(1)
1 −

∂q

∂t

}
dy = 0.

Now, it is immediate that

ρ0(x)

∫ ∞

−∞
ps(y)

∂q

∂t
dy + ρ1(x)

∫ ∞

−∞
ps(y)

∂q

∂t
dy =

∂q

∂t
,

since ρ0(x) + ρ1(x) =
∫∞
−∞ ps(y) dy = 1 and q is indepen-

dent of y. Furthermore, using (4.6) we have that

ρn(x)

∫ ∞

−∞
ps(y)L∗2

√
2Dnq

(1)
n dy

= 2
√
Dnρn(x)

(∫ ∞

−∞
y2ps(y) dy

) ∂
∂x

[
bn(x)

∂

∂x
q(x, t)

]

=
√
Dnρn(x)

∂

∂x

[
bn(x)

∂

∂x
q(x, t)

]
,

for n ∈ {0, 1} since
∫∞
−∞ y2ps(y) dy = 1/2.

Putting this together yields the limiting backward Kol-
mogorov equation,

∂q

∂t
=
∑

n=0,1

√
Dnρn(x)

∂

∂x

[
bn(x)

∂

∂x
q(x, t)

]
.

Using (4.7), this becomes

∂q

∂t
=

√
νη(x)D̂(x)

∂

∂x

√
νη(x)D̂(x)

∂q

∂x

+ (1− νη(x))D(x)
∂2q

∂x2
+ Vη(x)

∂q

∂x
,

where

Vη(x) := ν′η(x)
(
1
2D̂(x)−D(x)

)
.
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Therefore, the limiting SDE is

dX(t) =
(
Vη(X(t)) + 1

2νη(X(t))D̂′(X(t))
)
dt

√
2νη(X(t))D̂(X(t)) + 2(1− νη(X(t)))D(X(t)) dW (t),

(4.9)

and the corresponding limiting FP equation is

∂p

∂t
=

∂

∂x

√
νη(x)D̂(x)

∂

∂x

√
νη(x)D̂(x)p

+
∂2

∂x2

[
(1− νη(x))D(x)p

]
− ∂

∂x

[
Vη(x)p

]
.

(4.10)

There are several things to note about (4.10). First, if
κ2/ε = η → ∞, then νη(x) → 1 and ν′η(x) → 0 and we
obtain the Stratonovich FP equation (3.25) correspond-
ing to the Stratonovich SDE (2.12) with diffusion coef-

ficient D̂. In the opposite limit, if κ2/ε = η → 0, then
νη(x) → 0 and ν′η(x) → 0 and we obtain the Itô FP
equation (3.18) corresponding to the Itô SDE (2.6) with
diffusion coefficient D. Finally, if η is finite and nonzero,
then (4.10) is a mixture of Stratonovich and Itô terms

plus a drift depending on the difference between D̂ and
D.

V. NUMERICAL RESULTS

In this section, we use numerical simulation to demon-
strate the convergence of (2.4) to either (2.6), (2.12),
or (4.9), depending on how we take the double limit
ε, κ→ 0. We present the numerical results first and then
describe our algorithm for generating statistically exact
simulations of the hybrid colored noise process (2.4).

In Fig. 1, we consider spatially constant switching
rates. In this case, the probability distribution of the
limiting process, (2.6), (2.12), or (4.9), at time t > 0 is
Gaussian with zero mean and respective variance

2tD, 2tD̂, or 2t(νηD̂ + (1− νη)D).

In addition to verifying that the numerics agree with the
theory, Fig. 1 shows that the distributions of the three
limiting processes, (2.6), (2.12), and (4.9), can be quite
different, even for spatially constant switching rates. In-

deed, comparing the formulas for D and D̂ in Eqs. (2.7)

and (2.11) shows that the ratio D̂/D can be as small as

D̂/D =
4
√
D0/D1

(
√
D0/D1 + 1)2

< 4
√
D0/D1, (5.11)

for α, β chosen appropriately. Eq. (5.11) shows that the
possible discrepancy between the effective diffusion coef-

ficients, D and D̂, is related to the discrepancy between
the two diffusivities, D0 and D1. We therefore note that
single particle tracking experiments have found that anti-
gens diffusing on the surface of T cells can switch between

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

p
(x
,t
)

D

D̂

νD̂ + (1− ν)D

FIG. 1. Convergence of hybrid colored noise process to var-
ious SDEs depending on ratio of correlation time to mean
switching time for spatially constant switching rates. The
red, blue, and black curves are the respective distributions of
(2.6), (2.12), and (4.9), which are Gaussians with zero mean

and variance 2tD, 2tD̂, and 2t(νηD̂+(1−νη)D). The squares,
circles, and plusses are the empirical distribution of the hybrid
colored noise process (2.4) with mean switching time ε = 10−4

and respective correlation times κ = ε2 (η = 10−12), κ = ε1/4

(η = 102), or κ = ε1/2 (η = 1) for 106 trials. Simulations of
the hybrid colored noise process were performed according to
the statistically exact algorithm described in section V. The
distributions are at time t = 1 with D0 = 10−2, D1 = 1,

α = 1 − β = 0.9091, and thus D = .1, D̂ = 0.3306D, and
ν = 1/2.

two diffusivities D0 and D1 with D0/D1 ≈ 5 × 10−2

(see Table 1 in [23]). In the case of Fig. 1, we take
D0 = 10−2 < D1 = 1 and α = 1 − β = 0.9091 so the

ratio is D̂/D = 0.3306.
Fig. 2 plots the effective diffusivity of the hybrid col-

ored noise process for a range of ratios of correlation time
to mean switching time, η = κ2/ε, for spatially constant
switching rates. In addition to verifying the theory of sec-
tions III-IV, this figure illustrates that as η varies, there
is a sharp transition between the regime in which the ef-
fective diffusivity is approximately D and the regime in

which the effective diffusivity is approximately D̂. In-
deed, for the parameters in Fig. 2, the transition essen-
tially occurs between η = 0.1 and η = 10.

Moving to space-dependent switching rates, Fig. 3
demonstrates the convergence of (2.4) to either (2.6),
(2.12), or (4.9) for

α(x) = β(−x) = tanh(10x) + 1.

This choice of switching rates makes X(t) more likely to
have diffusivity D0 (respectively, D1) when X(t) > 0 (re-
spectively, X(t) < 0), see the top panel of Fig. 4. This
models the generic situation in which the diffusing parti-
cle is more likely to be in one conformational state when
it is one spatial region, perhaps due to spatial hetero-
geneity of a substrate that binds to the particle and af-
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Simulation

FIG. 2. Effective diffusivity of hybrid colored noise process
as a function of ratio of correlation time to mean switching
time, η = κ2/ε, for spatially constant switching rates. The

red dashed line is D in Eq. (2.7), the blue dotted line is D̂ in
Eq. (2.11), and the black solid line is the effective diffusivity,

νηD̂ + (1 − νη)D, with νη in Eq. (4.8). The black diamonds
are one half of the empirical variance of 106 simulations of the
hybrid colored noise process until time t = 1. The parameters,
ε, α, β,D0, D1 are given in the caption of Fig. 1.

fects its diffusivity. Fig. 3 shows that the distributions of
the three limiting processes, (2.6), (2.12), and (4.9), are
quite different. This discrepancy stems from the differ-
ent interpretations of the multiplicative noise (Itô versus
Stratonovich), in addition to the difference between D(x)

and D̂(x), which are actually relatively close in this case,
see the bottom panel of Fig. 4.

A. Exact stochastic simulation algorithm

We now describe our stochastic simulation al-
gorithm for drawing statistically exact samples of
the three-component hybrid colored noise process
(X(t), Y (t), N(t)) defined in (2.3)-(2.4). Our algorithm
relies on two main ideas. First, we can draw statistically
exact samples ofX(t), Y (t) away from jump times ofN(t)
since the FP equation for Ornstein-Uhlenbeck processes
can be solved analytically [34]. Second, since the jump
rates of N(t) depend on X(t), we draw statistically ex-
act samples of the jump times of N(t) by adapting the
classical Poisson thinning method [35, 36] for simulating
inhomogeneous Poisson processes.

For a given value (X(s), Y (s), N(s)), suppose we want
to generate a realization of (X(s+T ), Y (s+T ), N(s+T ))
for some time T > 0. The first step is to generate the first
possible jump time of N(t) for t > s. For simplicity, we
assume α(x), β(x) are bounded, though one could easily
extend to the case where α(x), β(x) are only continuous.
Let λ > 0 be such that

sup
x
{α(x), β(x)} < λ.

−2 −1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

x

p
(x
)

Ito, D

Stratonovich, D̂

Mix, νD̂ + (1− ν)D

FIG. 3. Convergence of hybrid colored noise process to vari-
ous SDEs depending on the ratio of correlation time to mean
switching time for space-dependent switching rates, α(x) =
β(−x) = tanh(10x) + 1. The red, blue, and black curves
are the respective empirical distributions of (2.6), (2.12), and
(4.9), for 106 trials. The squares, circles, and plusses are
the empirical distribution of the hybrid colored noise process
(2.4) with mean switching time ε = 10−3 and respective cor-

relation times κ = ε2 (η = 10−9), κ = ε1/3 (η = 10), or

κ = ε1/2 (η = 1) for 106 trials. Simulations of (2.12), (2.6),
and (4.9) were performed using the Euler-Maruyama method
with a discrete time step of size 10−3. Simulations of the hy-
brid colored noise process were performed according to the
statistically exact algorithm described in section V. The dis-
tributions are at time t = 1 with D0 = 10−1 and D1 = 1.

We then generate τ1 according to an exponential distri-
bution with rate λ. If τ1 < T , then we generate X(s+τ1)
and Y (s+ τ1) according to [34]

Y (s+τ1) = µ(τ1)Y (s) + σ(τ1)ξ1,

X(s+τ1) = X(s) +
1

κ

√
2DN(s)

(
(1− µ(τ1))κ2Y (s)

+
√
θ2(τ1)− (ζ(τ1)/σ(τ1))2ξ2 + (ζ(τ1)/σ(τ1))ξ1

)
,

(5.12)

where ξ1, ξ2 are independent standard normal random
variables and

µ(t) := e−t/κ
2

,

σ(t) :=

√
1− µ(t)2

2
,

θ(t) := κ2
√
t/κ2 − 2(1− µ(t)) + (1− µ(t)2)/2,

ζ(t) := κ2(1− µ(t))2/2.

We then set N(s+ τ1) = 1−N(s) with probability

N(s)α(X(s+ τ1)) + (1−N(s))β(X(s+ τ1))

λ
,

and N(s + τ1) = N(s) otherwise. With this value of
(X(s+τ1), Y (s+τ1), N(s+τ1)), we then generate the next
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FIG. 4. Top: Space-dependent switching rates, α(x) =
β(−x) = tanh(x) + 1. Bottom: Effective diffusivity D(x)

in Eq. 2.7 and Effective diffusivity D̂(x) in Eq. (2.11) for
D0 = 10−1, D1 = 1, and α(x) = β(−x) = tanh(x) + 1.

possible jump time, τ2, of N(t) for t > s+τ1 according to
an exponential distribution with rate λ and repeat this

procedure until we reach a point when
∑K
k τk > T . At

this point, we generate X(s+ T ), Y (s+ T ) according to

Eq. (5.12) with the s in Eq. (5.12) replaced by
∑K−1
k τk

and the τ1 in Eq. (5.12) replaced by T −∑K−1
k τk.

VI. DISCUSSION

We have considered a hybrid colored additive noise
process in which a particle randomly switches between
two diffusivities with mean switching time characterized

by a dimensionless parameter ε > 0, and whose corre-
lation time is characterized by a dimensionless parame-
ter κ > 0. In the parameter regime that ε and κ are
both small, we have found that the effective diffusion
process depends on the ratio κ2/ε. In the case that the
switching rates depend on the position of the particle,
then the effective diffusion is of Itô form if κ2/ε � 1,
Stratonovich form if κ2/ε� 1, and a mixture of the two
if κ2/ε = O(1). Furthermore, even in the case of spatially
constant switching rates, the effective diffusion coefficient
can vary dramatically depending on κ2/ε.

For simplicity, we have focused on 1D models with pure
diffusion and only two diffusing states. However, it would
be possible to extend our analysis to diffusion in two or
more space dimensions and any finite number of diffusing
states. In particular, in the case of particles switching be-
tween N conformational states with distinct diffusivities
Dn, n = 0, 1, . . . , N − 1, the expressions (2.7) and (2.11)

for the effective diffusion coefficients D(x) and D̂(x) still
hold, with the sums now taken over n = 0, 1, . . . , N − 1.
One could also include n-dependent external forcing or
drift terms by taking

dX(t) = FN(t)(X(t)) +
1

κ

√
2DN(t)Y (t)dt (6.13a)

dY (t) = − 1

κ2
Y (t)dt+

1

κ
dW (t). (6.13b)

In this case, one finds that the effective drift term in the
double limit ε, κ→ 0 is

F (X) =
∑

n

Fn(X)ρn

irrespective of the order of the limits, and provided that
the correct form of the diffusion term is taken.
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