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We use high temperature series expansions to study the ±J Ising spin-glass in a magnetic field
in d-dimensional hypercubic lattices for d = 5, 6, 7 and 8, and in the infinite-range Sherrington-
Kirkpatrick (SK) model. The expansions are obtained in the variable w = tanh2 J/T for arbitrary
values of u = tanh2 h/T complete to order w10. We find that the scaling dimension ∆ associated
with the ordering-field h2 equals 2 in the SK model and for d ≥ 6. However, in agreement with
the work of Fisher and Sompolinsky, there is a violation of scaling in a finite field, leading to an
anomalous h-T dependence of the Almeida-Thouless (AT) line in high dimensions, while scaling is
restored as d → 6. Within the convergence of our series analysis, we present evidence supporting an
AT line in d ≥ 6. In d = 5, the exponents γ and ∆ are substantially larger than mean-field values,
but we do not see clear evidence for the AT line in d = 5.

PACS numbers:

One of the most striking predictions of the mean field
theory of spin glasses [1–3] is the existence of a line of
transitions in the magnetic-field temperature plane first
found by de Almeida and Thouless (AT) [4]. This tran-
sition is surprising since it occurs without the breaking
of any “obvious” symmetry, and instead marks the on-
set of “replica symmetry breaking” (RSB). The solution
of the mean-field, infinite-range, Sherrington-Kirkpatrick
(SK) [2] model in the RSB phase below the AT line
is complicated and was obtained, in a tour-de-force, by
Parisi [5, 6]. Whether or not an (AT) line of instabilities
occurs in the magnetic-field temperature plane for short-
range Ising spin-glasses has been an outstanding problem
that has remained unresolved over the last few decades.
According to the “droplet theory” [7, 8] of spin glasses,
the AT line is an artefact of the infinite-range nature of
the interactions of the SK model and would not occur in
any finite-dimensional, short-range model. In the “RSB
scenario”, see e.g. [9, 10] and references therein, the be-
havior of real spin glasses is similar to that of the SK
model and so there would be an AT line down to d = 3.

In recent years, numerical simulations have investi-
gated whether or not there is an AT line in short-range
spin glasses. While some work finds evidence for an
AT line only above dimension d = 6 [11, 12], other
work [9, 10], which used a different method doing finite-
size scaling, does find an AT line at least down to d = 4
and possibly d = 3.

In view of the importance of whether or not an AT
line exists in short-range spin glasses, and the fact that
Monte Carlo simulations don’t give an unambiguous an-
swer, it is useful to attack the problem by other possible
means, and here we use high-temperature series expan-
sions. Some benefits of the series methods are that av-
eraging over disorder is done exactly, it can be done in
arbitrary dimension, is particularly accurate in high di-

mensions, and that the series is an equilibrium property
of the infinite system. In fact, Monte Carlo studies of
the AT line in the range of dimension that we consider
here, d ≥ 5, have not been performed directly, but only
indirectly using a one-dimensional model with long-range
interactions [11, 13].
Obtaining the series in a field is more complicated than

in zero field, so we are only able to obtain series of moder-
ate length. Nonetheless, the series does provide evidence
for an AT line above d = 6. Below d = 6 the series
does not find good evidence for an AT line, but whether
this is because the line does not exist or the series is not
long enough to see it, is unclear. This situation is rem-
iniscent of an early perturbative renormalization group
calculation [14] which did not find a stable fixed point
in a field below d = 6. In that case, the issue, as yet
unresolved, is whether the AT line does not exist below
d = 6 or whether there is one which is just not accessible
by perturbation theory.
We consider the Hamiltonian

H = −
∑

〈i,j〉

JijSiSj − h

N
∑

i=1

Si , (1)

where the Si are Ising spins which take values±1, and the
interactions Jij are quenched random variables with a bi-
modal distribution, i.e. Jij = ±J with equal probability.
The N spins either lie on a hypercubic lattice, in which
case the interactions are between nearest-neighbors and
have J = 1, or correspond to the Sherrington-Kirkpatrick
(SK) [2] model in which case there is no lattice struc-
ture, every spin interacts with every other spin, and
J = 1/

√
N . We choose a bimodal distribution because

the series can be worked out much more efficiently for
this case than for a general distribution [15].
The AT line is characterized by the divergence of the



2

spin glass susceptibility χ
SG

where

χ
SG

=
1

N

N
∑

i,j=1

[

(

〈SiSj〉 − 〈Si〉 〈Sj〉
)2
]

av
, (2)

where [· · · ]av denotes an average over the disorder. For
a fixed value of h we expand the susceptibility for the
hypercubic lattice in powers of

w = tanh2(J/T ) . (3)

The coefficient of wn turns out to be a polynomial of
order 2n+ 2 in

u = tanh2(h/T ), (4)

so

χ
SG

(w, u) =

∞
∑

n=0

(

2n+2
∑

m=0

an,mum

)

wn . (5)

We evaluate all the coefficients an,m up to order n = 10
for a hypercubic lattice in arbitrary dimension d [16]. The
series for the SK model is obtained by setting J = 1/2d
and taking d → ∞ limit, in which case the high tem-
perature expansion variable becomes x = (1/T )2 rather
than w. A ten term series is only of moderate length,
but, compared with zero field, determining the series in
a field requires much more computer time and memory,
so it would need a very large numerical effort to substan-

tially increase the number of terms beyond 10. Part of
the reason for the extra complexity is that the coefficients
rapidly become large, and, for a given order n, consid-
erable cancellations occur between the coefficients with
different values of m. For example, for the SK model
with u = 0.2 the largest individual contribution to the
coefficient of w10 is about 107 times greater than the final
answer [16].
Equation (5) gives the high temperature series expan-

sion for arbitrary values of the ratio h/T . Fixing this ra-
tio corresponds to expanding χ

SG
along a diagonal line in

the h-T plane ending at h = T = 0, which must intersect
an AT line if one exists.
Zero-field Spin-Glass Transition: It is known from ear-

lier studies [17–20], that a 10-term series in w does not
give consistent indication of a critical temperature in
d = 3 and is also problematic in d = 4 giving rather large
and inconsistent values of critical exponents. Hence, we
confine our analysis to d = 5 and higher.
For the SK model, the zero-field spin-glass series is a

simple geometrical series, in x = 1/T 2, which sums to
1/(1− x) showing that the exponent γ equals unity. For
d ≥ 6, the model’s critical behavior is governed by a
Gaussian fixed point with γ = 1 [21, 22]. We use Padé
approximants directly on the series to estimate wc, the
critical value of w. This fixes γ to unity, and produces es-
timates for wc shown in Table I. Note that uncertainties

in series analysis are just confidence limits [23]. These wc-
values are consistent with those from large dimensionality
expansions [24, 25], and agree to within around a percent
with those from a more sophisticated analysis taking cor-
rections to scaling into account [19, 20]. It is well known
that estimates of critical points in series-analysis are cor-
related with estimates of critical exponents. Hence, by
fixing the critical exponent to unity, we avoid some of
the subtleties and get a fairly reasonable estimate of the
critical point with a moderate length series.

TABLE I: Estimates of critical points and exponents in vari-
ous dimensions for zero field.

d wc γ ∆

8 0.0695 ± 0.0002 1 2.0± 0.1
7 0.0816 ± 0.0004 1 2.0± 0.2
6 0.0996 ± 0.0008 1 2.0± 0.5
5 0.1388 ± 0.0009 1.9± 0.1 3.1± 0.4

In d = 5, we use standard d-log Padé approximants
and differential approximants [26, 27] to analyze the se-
ries. The critical point estimate wc = 0.1388 ± 0.0009
is consistent with previous studies [17, 19]. Using biased
approximants with critical point fixed at the central es-
timate wc = 0.1388, we obtain γ = 1.9 ± 0.1, again in
agreement with previous studies.
Scaling dimension of the ordering field: Field theory

predicts [21, 22, 28] that the scaling dimension of the
ordering field h2, or equivalently u, should be ∆ = 2
at the Gaussian fixed point. In other words for d ≥ 6,
the variable u should scale, near Tc, with the reduced
temperature t ≡ (T − Tc)/Tc, in the combination u/t2.
To study this through series expansions we consider

two single variable series in w defined as

K1(w) =
∂uχSG

(w, u)|u=0

χ
SG

(w, 0)
, (6)

and

K2(w) =
∂2
uχSG

(w, u)|u=0

∂uχSG
(w, u)|u=0

. (7)

Both quantities K1(w) and K2(w) should diverge at the
critical temperature as 1/t∆ with ∆ = 2 for d ≥ 6. Note
that we consider the limit t → 0 for which t ≡ (T −
Tc)/Tc ∝ (wc − w)/wc.
For the SK model, these quantities sum up to

KSK
1 = −2/(1− x)2 (8)

and

KSK
2 = 6− 2x− (x+ 7)/(1− x)2 (9)

respectively, with x = 1/T 2, clearly showing that ∆ =
2. In fact, from an asymptotic analysis of our graphical
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FIG. 1: Histogram of the exponent ∆ obtained from various
approximants in (a) d = 8, (b) d = 7, (c) d = 6 and (d) d = 5
to the series for K1(D1) and K2(D2) defined in Eqs. (6) and
(7).

method, one can show that the m-th derivative of χSK
SG

with respect to u, evaluated at u = 0 diverges as 1/t1+2m,
confirming that ∆ = 2 is true to all perturbative orders
in u.

To analyze K1(w) and K2(w) series in finite dimen-
sions, we use d-log Padés and differential approximants.
We fix the critical point at those values estimated from
the zero-field susceptibility series, see Table I. A his-
togram of ∆ values estimated from the analysis are shown
in Fig. 1. It is clear that in d ≥ 6 the exponent ∆ remains
equal to 2. However, in d = 5 it is closer to 3.

Analysis of series in a finite field: We fix a value of
u and study the series in w. In the SK model the spin-
glass susceptibility diverges as a simple pole at the AT
line. Unlike the case of zero field the series for SK model
are no longer simple in a field, and indeed no truncated
series can reproduce exactly the violation of scaling en-
capsulated in the fact that, along the AT line, T − Tc

scales as hθ with θ = 2/3 rather than as h2/∆ as ex-
pected from scaling. In fact, for any finite length series,
at sufficiently small h, such a non-linear relation can not
follow. Hence, our focus will be on fields which are not
too small to be dominated by just the leading order field
terms.

We have found that the finite-field series for the SK
model do not converge well close to the AT line. The se-
ries analysis works better in the variable w = tanh2 1/T .
Two diagonal Padé approximants for χ−1

SG using the vari-
able w for u ≡ tanh2(h/T ) = 0.1 and u = 0.2 are shown
in Fig. 2 along with the exact value computed numer-
ically. The critical point is located reasonably well at
u = 0.1 but not at u = 0.2. This is found to be true for
a majority of Padés, including off-diagonal ones.

For different values of u, we carry out a large number
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FIG. 2: The inverse of the spin glass susceptibility in the SK
model for (a) u ≡ tanh2(h/T ) = 0.1 and (b) u = 0.2. The AT
line is where χ−1

SG
= 0. The exact values obtained numerically

from the equations of AT are shown by the solid red (thick)
line. Also shown are the (5, 5) (green, solid) and (4, 4) (blue,
dashed) Padé approximants of the high temperature series
using the transformed variable w = tanh2(1/T ). It is seen
that the divergence is located reasonably well at u = 0.1 but
less so at u = 0.2.

of Padé approximants and determine the critical point
from the set of approximants which are bunched closest
to each other. The estimated phase boundary is shown in
Fig. 3. The exact value of AT line for the SK model, de-
termined numerically, and its asymptotic small h-t limit
are also shown in the figure. The series analysis is con-
sistent with the correct θ = 2/3 value for the AT line but
overestimates the extent of the paramagnetic phase for
larger u. Any significant improvement will need substan-
tially longer series. Note that as discussed in the previous
paragraph, for very small h, the analysis is dominated by
the leading h-terms and shows only a small shift in the
critical point. While the convergence is not excellent, it
is clear that high temperature expansion with a moder-
ate number of terms can capture the highly non-trivial
Almeida-Thouless instability in the SK model.

Fisher and Sompolinsky [28] have shown that between
d = 8 and d = 6 the AT-line exponent becomes θ =
4/(d− 2), which goes from the SK value of θ = 2/3 in
d = 8 to θ = 1 in d = 6. Thus usual scaling relation
θ = 2/∆ is restored in d = 6. For d = 6, 7, 8, we
repeat the same analysis as for the SK model. The results
for the estimated AT lines are shown in Fig. 4. The
uncertainties in locating the AT line are too large to allow
an unbiased fit to a power-law. However, a few points
can clearly be noted: (i) In both d = 7 and d = 8,
the small-field behavior differs qualitatively from that at
larger fields and is very similar to the behavior seen in the
SK model. (ii) For d = 7 and 8 it is only after u exceeds a
certain value that a more consistent behavior with θ < 1
emerges. As a guide, we have drawn curves with θ = 2/3
and θ = 4/5 in d = 8 and d = 7 respectively, as expected
from the analysis of Fisher and Sompolinsky. (iii) In d =
6, we do not see the clear discrepancy at low-fields and
the behavior is more consistent with θ = 1 as expected
from scaling, which is predicted to be restored [28] in d =
6. This suggests that the series analysis is capturing some
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FIG. 3: The solid (blue) line is the expression for the AT line
in the SK model while the dashed (green) line is its asymptotic
small h limit. The points joined by lines are the results of the
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FIG. 4: Estimates of the AT line in d = 6, d = 7 and d = 8
obtained from Padé analyses of the series. The formulae for
the lines are given in the legend and are discussed in the text.

of the key features of the finite-field behavior in short-
range spin-glasses and its changes with dimensionality,
and that the Almeida-Thouless instability does exist for
d ≥ 6.

In d = 5, the system is no longer governed by a Gaus-
sian fixed point. However, the increased ∆ value shown in
Table I suggests that if there is an AT line it should have
a power θ = 2/∆ which is again close to 2/3. For this
case, we analyze our series by d-log Padé approximants
and differential approximants. At very small u values,
we see a singularity that is very similar to what is seen in
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FIG. 5: Approximants showing divergence of the spin-glass
susceptibility in d = 5, and the range of their exponent γ.

the SK model and in higher d. There is only a small shift
in the critical point. But, once u exceeds a certain value
most approximants do not show a consistent divergence.
As seen in Fig. 5, only a handful of approximants show
any divergence at all. These predict a reduced exponent
0.7 < γ < 1.3. This could imply that the series are too
short to see the non-trivial critical behavior in d < 6 or it
could mean that there is no Almeida-Thouless instability
below d = 6. We especially note that one difference in
our analysis of the susceptibility in a field in d = 5 versus
higher-d is that in higher dimensions we biased the criti-
cal exponents to have mean-field values. The absence of
such a bias contributes to the uncertainty in the d = 5
analysis and may be partly responsible for the lack of a
more definitive answer in d = 5.

Conclusions: In conclusion, we have studied the prob-
lem of short-range Ising spin-glasses in a field by high
temperature series expansion methods. We have pre-
sented evidence for violation of scaling along the AT line
in high dimension and its restoration as d → 6, as first
shown by Fisher and Sompolinsky [28]. Within the con-
vergence of our analysis, we have presented evidence for
the existence of the AT line of instabilities for d ≥ 6. In
d = 5, the critical exponents γ and ∆ are significantly
larger than the mean-field values but no consistent ev-
idence for the AT line is found. Thus, our results are
consistent with 6 being the lower critical dimension for
the AT line. However it is also possible that an AT line
does occur for d < 6 but the series are too short to see
it.

Finally we compare our results with other work. The
early renormalization group calculation of Bray and
Roberts [14] did not find a stable, perturbative fixed
point corresponding to an AT line below the upper crit-
ical dimension of 6. While this result is consistent with
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there being no AT line below d = 6 it is also possible
that a non-perturbative fixed point is present for this
range of dimension. Other studies used Monte Carlo
(MC) simulations on one-dimensional long-range inter-
actions models [9, 10, 12]. The results were analysed
using finite-size scaling (FSS) theory. While all analyses
found evidence for AT line for interactions corresponding
to d above 6, different conclusions were reached in lower
dimensions [9, 10, 12].
Our approach is complimentary to MC in that we

study short-range models directly on d-dimensional hy-
percubic lattices and that the series represent equilibrium
property of the infinite system. Thus, the combined MC
and series evidence provides a strong case for an AT line
in short-range models at least in high enough dimensions.
It would be challenging, but worthwhile, to try to extend
the series approach to include higher order terms.
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