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The stationary states of the prisoner’s dilemma model are studied on a square lattice taking
into account the role of a noise parameter in the decision making process. Only first neighboring
players, defectors and cooperators, are considered in each step of the game. Through Monte Carlo
simulations we determined the phase diagrams of the model in the plane noise versus temptation to
defect for a large range of values of the noise parameter. We observed three phases: cooperators and
defectors absorbing phases and a coexistence phase between them. The phase transitions as well
as the critical exponents associated with them were determined using both static and dynamical
scaling laws.
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I. INTRODUCTION

The study of simple models in Physics has been and remains a powerful tool to understand basic and fundamental
aspects of natural phenomena. Despite their simplicity they succeed to describe quantitative and qualitatively how
some real systems work. One model belonging to this set is the named prisoner’s dilemma model (PD). From the
physical point of view, even its simpler versions can present chaotic behaviour, different absorbing phases, coexistence
of states and phase transitions between the coexistence and absorbing phases. The PD model was first proposed by
Flood and Dresher in the fifties [1] in the context of the Game Theory [2, 3] and more recently it was used in studies
of emergence of cooperation in Social Sciences by Axelrod [4]. In a evolutionary spatial version of the model, Nowak
and May [5–7] observed several spatial and temporal chaotic patterns. However, it was a pioneering article by Szabó
and Tóke [8] who brought it to the statistical physics community [9–21].

The model contains just four ingredients, that conveniently defined, can mimic real systems in a broad area of
research [20]: the players, their strategies and the reward received when they play a round (payoff matrix) and an
updating evolutionary dynamics. The players are placed on a lattice or on a network and the opponents of each
player are their nearest neighbour players. Consider that N identical players can assume only two types of strategies:
cooperation (C) and defection (D). Every round all players must decide if they keep their current strategy or change
to another one. For a direct encounter between two players the payoff received is obtained from the payoff matrix Π
defined as

Π =

(
R S
T P

)
,

where R(P ) is the reward if two players decide cooperate (defect), T (S) is the reward received by a defector (co-
operator) exploiting (exploited) a cooperator (by a defector). To characterize a prisoner’s dilemma the conditions
T > R > P > S and 2R > T + S must be satisfied. The model will depend on only one parameter if we take
R = 1, T = b and S = P = 0. Then 1 < b < 2.

The evolutionary rule to obtain a new configuration in the next round can be specified, for instance, by choosing a
player and an opponent. If the total payoff received by the player is equal or greater than the value of its opponent
payoff it decides to keep the same strategy. Otherwise, it changes to the strategy of its opponent. In this situation
the decision is completely rational. However, it is possible to include some irrationality if we define a probability of
transition from one strategy to another depending on both payoff values and of some parameter able to mimic noise
in this decision. As an example we present below the expression proposed by Szabó and Tóke [8] for the transition
probability

w =
1

1 + exp [(Ep − Eo)/K]
, (1)

where Ep and Eo are the total payoff values of the chosen player and of its opponent, respectively, and K is a noise
parameter. It is important to point out that different ways can be adopted to choose the player’s opponent and to
calculate the total payoffs. So, an opponent can be randomly chosen or alternatively it can be that one with the
highest total payoff within a certain neighbourhood, and the total payoff may include also a self-interaction or not.
Besides, the total payoff can be accumulated during the game (memory) or be instantaneous. Other aspects that
can be considered in the PD model are the type of lattice (triangular, square, complex, etc.) and network topology
(mesh, fully or partially connected, etc.) and the way in which all players are updated (synchronously like in a cellular
automata or asynchronously). The model shows an interesting behaviour as a function of the temptation to defect b
and noise parameter K. The PD model can present two absorbing states (only cooperators or defectors) separated
by a region where cooperators and defectors coexist. In the rational model, the transition (jump) to absorbing states
appears to be discontinuous while in the noisy case it is continuous and belongs to the directed percolation universality
class (DP).

All versions of the model can be analytically studied by writing the master equation and obtaining time dependent
equations, in some level of the mean-field approximation, for the density of cooperators and defectors, as a function
of the control parameters b and K [14]. However, it has been observed that only for a high level of the cluster
approximation (six-point or more) the mean field theory results are able to agree with the Monte Carlo simulations
[15]. Recent advances including dynamic aspiration into the evolution were found in square and sclae-free networks
by also using the master equation and Monte Carlo simulation [16]

In this work we have considered the evolutionary PD model on a square lattice in which the opponent of a player is
one of its four nearest neighbours. From one round to another all players try to change their strategies (asynchronous
update) and the instantaneous total payoff is calculated taking into account the numbers of cooperators in the
neighbourhood in two distinct cases, with and without self-interaction. Our main goal is to determine the phase
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diagram of the model in the plane b versus K in these two situations, and also to characterize the phase transitions
between the cooperation and defection absorbing phases to the coexistence phase. We have used extensive Monte
Carlo simulation [22] in order to obtain both phase diagrams, and the dynamical and steady-state scaling theories
[23, 24] to determine two critical exponents associated with the transitions. To our knowledge only the phase transition
between the D-absorbing and the coexistence phases was studied in a case where self-interaction was neglected, and
only for a small range of the noise parameter values. The nature of the transition was predicted to be continuous
and belonging to the DP universality class. However, this conclusion was based on the value of the critical exponent
associated to the steady-state order parameter for only a single value of K. Here, we have extended that analysis to
a broad range of the noise parameter values. Besides, we determined two different critical exponents in two different
approaches (dynamical and stationary) for several values of K in the two transitions (C-absorbing → coexistence →
D-absorbing) in the cases with and without self-interaction.

Our work is organized as follow: in Section II we present our version of the PD model and we detail the Monte
Carlo simulation procedures. In Section III we present and discuss our results for the critical behaviour of the model.
Finally, in Section IV, we address our conclusions.

II. THE MODEL AND THE MONTE CARLO SIMULATIONS

In our version of the evolutionary PD model the players are placed on the sites of a square lattice of linear length
L and a state variable Si = +1 (Si = −1) is signalled for a cooperator (defector) i with i = 1, .., N = L2. Initially,
the cooperator and defector densities are equal and the values of the parameters b and K are fixed. One player p and
a first neighbour opponent o are randomly selected. If they are in the same state, another pair of neighbouring sites
are chosen. If not, we determine the instantaneous total payoff for a cooperator using

ECp,o = a+

4∑
i=1

δSi,1, (2)

and

EDp,o = b

4∑
i=1

δSi,1, (3)

for a defector, where δ is the Kronecker’s delta symbol. The parameter a is included in order to consider self-interaction
for cooperation (a = 1) or not (a = 0). We have taken into account these two cases because a cooperator can represent
a cluster of cooperators [5–7, 14]. We calculate the transition probability w given by Equation (1) and we compare
this value with a random number 0 ≤ r ≤ 1. If w < r the player remains in its state and for w ≥ r it immediately
assumes the opponent’s strategy. In a round we try to change the strategy of players N times, defining one Monte
Carlo step per particle (MCs) as our time unit. At each MCs we determine the density of cooperators and defectors.
After a transient time these quantities attain stationary states in which it is possible to calculate their time average
values. In general, we have used up to 105 rounds to calculate these stationary mean values after neglecting 105 MCs
to attain the stationary regime. In order to decrease statistical errors we also repeat the experiment over M = 200
samples for L = 100 and L = 200. The largest value of L was used to study the critical behaviour of the model. In
two special cases, that will be considered in this work, we use M = 400. The time dependent densities of cooperators
and defectors were calculated using only surviving samples whose density of cooperators or defectors are not equal to
one.

III. RESULTS AND DISCUSSIONS

We have distinguished three different cases, depending on the values of b and K for both values of a: absorbent
phases of cooperation or defection and a coexistence phase between cooperators and defectors . In fact, Fig. 1 shows
the behaviour of the mean value of the density of cooperators ρC as a function of b for a = 0 (Fig. 1(a)) and a = 1
(Fig. 1(b)) and several values of K. For values of b ≤ b1 a cooperator absorbing phase is present and for b ≥ b2 only
the defector absorbing phase is seen. This Figure includes the K = 0 cases in which the values of b1 are 3/4 (the inset
in Fig. 1(a)) and 1 for a equal zero or one, respectively.

Despite the qualitatively very similar plots for the two cases, with two phase transitions, we observe that they are
quantitatively different with respect to the values of b and K. If self-interaction is taken into account the range of
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FIG. 1. Normalized density of cooperators as a function of b for several values of K for (a) a = 0 and (b) a = 1. The inset in
(a) corresponds to details of the transition for K = 0.
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FIG. 2. Phase diagram in the plane b versus K for (a) a = 0 and (b) a = 1. Open circles represent the critical point b1 from
the absorbing C to the mixed phase (C + D), while open squares represent the critical points b2 from the mixed phase to D
absorbing phase.

values of b in which the coexistence phase occurs is larger than one without self-interaction. Besides, we also note that
the coexistence phase holds on a large range of the noise parameter values K. To compare these two cases we present
in Fig. 2 the phase diagrams in the plane temptation to defect versus noise parameter. That is, we have plotted the
values of b1 and b2 for a broad range of values of K for a = 0 and a = 1 in Figs. 2(a) and 2(b), respectively. To
determine the points in which the transitions occur we have used the stationary values of the densities of cooperators
ρC and defectors ρD because one of them goes to zero at the transitions, but they are finite in the active (coexistence)
phase. That is, ρC = 0 for b ≥ b2 and ρD = 0 for b ≤ b1.

Below the line connecting the critical points b1 the lattice is completely filled with cooperators and, above the line
connecting the points b2, it is poisoned with defectors. Between these two lines we have a coexistence phase. As we
can see, a qualitative difference appears between the two cases in the transition to the defector’s absorbing phase
both for small and high values of K. While in the self-interaction case the critical value b2 continuously decreases
from two to 3/2 when K increases, in its absence we first observe a slight increase in the values of b2 until it attains
a maximum value and starts to decreasing to one. The critical points for the non self-interaction case was described
in reference [20] and it is reproduced here for a broad range of K values. In the opposite limit (larger values of K)
we observe that the coexistence phase tends to disappear in the non self-interaction case, while it remains existing
for a = 1. This last observation is in contrast to the schematic phase diagram proposed in Ref. [20], in which the
coexistence phase also disappears for large values of K when the self-interaction is taken into account.

Since the order parameter of the model has only one-component and a single absorbing state at each transition, it
must obey the conjecture of Jansen [25] and Grassberger [26]. So, we expect that the two transitions are continuous
for any value of K and to belong to the Directed Percolation (DP) universality class. Besides, in the particular case
studied by Szabó and Tóke [8] (coexistence→ D-absorbing phase transition for a = 0), they found a typical power-law
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FIG. 3. Log-log plot of the stationary order parameter as a function of the distance from the critical point for a = 0 and
K = 1.0. Open circles represent the simulation data and the straight lines the best fit to them. (a) Transition to the C
absorbing phase,(b) Transition to the D absorbing phase.

behaviour for the stationary cooperator density near the transition point b2 for only one value of K. The value
determined for the associated critical exponent is very close to that of the DP.

Now, we turn to investigate the critical properties of the present model for all values of the noise parameter K.
We employ two different procedures to find the critical behavior of the model. Then, two critical exponents were
determined allowing a better understanding of the universality class of the model. Using the steady-state scaling
theory for the absorbing phase transition [23, 24] we expect that the order parameter scales algebraically as
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FIG. 4. Same as in Fig. 3 for a = 1.

ρC,D ∼ (∆bi)
βi , (4)

where i = 1 indicates the transition ρD → 0 for ∆b1 = b− b1 > 0 with b close to b1 and i = 2 the transition ρC → 0
for ∆b2 = b2 − b > 0 with b ≈ b2, where β1 and β2 are the order parameter critical exponents for the two transitions.

As an example of the determination of the critical exponents βi for the two phase transitions we have built a log-log
plot of the order parameter as a function of ∆bi in Fig. 3 for a = 0 and in Fig. 4 for a = 1 for the noise parameter
K = 1.0. The values of bi were accurately determined through the best linear fit to the log-log plot for the simulation
data for a set of values of b near the transitions, and the exponents βi are calculated as the slopes of the best fits.

As we can see, for the two transitions the values we have obtained for the critical exponents β1 = 0.569 and
β2 = 0.587 for a = 0, and β1 = 0.568 and β2 = 0.557 for a = 1 are close to the values found for DP (βDP = 0.58)
[23, 24].

We have also considered the critical behaviour for other values of the noise parameter, and we have found a good
agreement with the DP universality class only for K ≤ 2 (a = 0) and K ≤ 10.0 (a = 1). For other values of the



6

lo
g

 ρ
D
(t

)

−2.00

−1.80

−1.60

−1.40

−1.20

−1.00

−0.80

log t
3.00 3.20 3.40 3.60 3.80 4.00

 b=0.9775
 b=0.9770
b=b1=0.9765
 b=0.9760
 b=0.9755
α1=0.443(4)

(a)

lo
g

 ρ
C
(t

)

−1.80

−1.60

−1.40

−1.20

−1.00

−0.80

log t
3.00 3.20 3.40 3.60 3.80 4.00

 b=1.0345
 b=1.0350
b=b2=1.0354
 b=1.0360
 b=1.0365
α2=0.455(4)

(b)

FIG. 5. Log-log plots of the order parameter versus time for K = 1.0 and a = 0 and several values of b close to the critical
points (a) b1 = 0.9765 and (b) b2 = 1.0354. The values of b are indicated in the legend of the figures as well as the slope of the
linear fit (bold straight line) at criticality.
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FIG. 6. Log-log plots of the order parameter versus time for K = 1.0 and a = 1 and several values of b close to the critical
points (a) Best value b1 = 1.3110 and (b) Best value b2 = 1.6305. The values of b are indicated in the legend of the figures as
well as the slope of the linear fit (bold straight line) at criticality.

noise parameter the gap (jump) in the values of the order parameters at criticality is high enough to invalidate this
approach. From the time dependence of the order parameters of the model we can also use a dynamical scaling
approach [23, 24]. We have measured the density of cooperators and defectors as a function of time for fixed values
of K and b close to the transition points. At criticality the order parameters decay according to power laws

ρC,D(t) ∼ t−αiF±(t|∆bi|(νq)i), (5)

from which we can determine the exponents αi when F±(0) is constant. The exponents αi are related to βi through
αi = βi/(νq)i, where (νq)i are critical exponents associated with the temporal correlation lengths. In this way, if we
build the logarithm scaled plot of the order parameter as a function of time we can obtain the critical exponents αi
and compare them with the same exponent of the DP (αDP = 0.45) [23, 24].

In Figs. 5 and 6, for the non self-interaction and self-interaction cases, respectively, and K = 1.0 we have shown
the log-log plots of the time dependence of the order parameter for some values of b near criticality. Figs. 5(a) and
6(a) refer to the transition point b1 while Figs. 5(b) and 6(b) close to transition point b2. In the legend of these
figures we also write the values of the critical exponents obtained by a linear fit at criticality (bold straight lines). As
expected, all values of the critical exponents αi are close to the αDP value, indicating again that the model belongs to
DP universality class. However, as we have mentioned before, we have found some difficulties to determine the static
critical behavior for high values of K. Fortunately, this is not the case when we consider the dynamical scaling laws.
We show in Fig. 7 for a = 0 and K = 10.0 and in Fig. 8 for a = 1 and K = 100.0, results for the exponent αi, which
are in agreement with the DP universality class.
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By comparing these two figures with Figs. 5(a) and 6(a) we note that the scale on the t-axis is one order of
magnitude larger, indicating that greater the value of the noise parameter more difficult to achieve the steady state.
Besides, the fluctuations of the order parameter on time are very pronounced for small number of samples and, due
to this fact, we used M = 400 to make these plots.

The theory of the dynamical scaling for the non-equilibrium systems predicts the scaling law form (Eq. 5) for the
time-dependence of the order parameter [17]. In accordance with this theory a plot of ρC,D(t).t

α versus t|∆bi|β/α,
near criticality, shows data collapse into two curves depending on the signal of ∆bi = b − bi. We searched for this
behaviour for several values of K using the previous results obtained for αi and βi at both transition points. In Fig.
9 we show the data collapse for two values of K in the self-interaction and non self-interaction cases: K = 1.0 at
the b2 critical point for a = 0 (Fig. 9(a)) and K = 10.0 at the b1 critical point for the case where a = 1 (Fig.9(b)).
The values we used for the critical exponents were obtained through the scaling forms given by Eqs. 4 and 5, and
they are given in the legend of the figures. Clearly, the rescaled data split into two scaling functions: one for the
cooperator/defector coexistence phase and another to the absorbing phase (C or D).

As we have stressed before the values of βi can not always be obtained from the steady state values of the order
parameters through Eq. 4. However, if we use Eq. 5 for the time dependence of the order parameters all exponents
αi can be found. Then, if we assume that the scaling law form for the time-dependent order parameter is valid for
any value of the noise parameter, we can find the values for βi adjusting them to a given data set close to criticality,
in order to obtain the best data collapse for a fixed value of K. Figs. 10 and 11 support this idea for large values of
K at the two critical points for a = 0 and a = 1, respectively.

We summarize the results we found for the the critical exponents in Fig. 12, in which we plot the critical exponents
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as a function of K. As we can see, all values found are close to and fluctuate around the well known DP values.

IV. CONCLUSIONS

The role of the noise parameter on the stationary states of the Prisoner’s Dilemma model was studied through the
Monte Carlo simulations. We determined the phase diagram of the model considering or not the self-interaction of
cooperators. Depending on the values of the parameters of the model we observed three distinct states: an absorbing
phase of cooperators, a coexistence phase of cooperators and defectors and an absorbing phase of defectors. Using
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FIG. 12. Critical exponents as a function of K for (a) non self interaction and (b) self interaction cases.

the static and dynamical scaling laws we determined the critical exponents associated with these phase transitions.
In accordance with our results, the prisoner’s dilemma model belongs to the DP universality class, as conjectured in
the literature.
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