
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Phenomenological modeling of durotaxis
Guangyuan Yu, Jingchen Feng, Haoran Man, and Herbert Levine

Phys. Rev. E 96, 010402 — Published 17 July 2017
DOI: 10.1103/PhysRevE.96.010402

http://dx.doi.org/10.1103/PhysRevE.96.010402


Phenomenological Modeling of Durotaxis

Guangyuan Yu1,2, Jingchen Feng2, Haoran Man1,Herbert Levine2,3

1 Physics and Astronomy Department, Rice University, Houston, USA
2 Center for Theoretical Biological Physics, Rice University, Houston, USA

3 Bioengineering Department, Rice University, Houston, USA
(Dated: June 28, 2017)

Cells exhibit qualitatively different behaviors on substrates with different rigidities. The fact
that cells are more polarized on the stiffer substrate motivates us to construct a two-dimensional
cell with the distribution of focal adhesions dependent on substrate rigidities. This distribution
affects the forces exerted by the cell and thereby determines its motion. Our model reproduces the
experimental observation that the persistence time is higher on the stiffer substrate. This stiffness
dependent persistence will lead to durotaxis, the preference in moving towards stiffer substrates.
This propensity is characterized by the durotaxis index first defined in experiments. We derive
and validate a 2D corresponding Fokker-Planck equation associated with our model. Our approach
highlights the possible role of the focal adhesion arrangement in durotaxis.

Cells are capable of sensing and responding to the me-
chanical properties of their external environment. For
example, cytoskeletal stiffness [1], cellular differentia-
tion [2–5] and cell morphology and motility [6–9] are all
strongly influenced by ECM stiffness. In particular, it
has been shown experimentally that cells prefer crawl-
ing towards the stiffer parts on substrates with spatially
varying rigidity, a property which is referred to as duro-
taxis. Durotaxis is a universal property of motile cells,
despite the diverse shapes and structures among different
cell types. It has been proposed that durotaxis is crit-
ical for fine-tuning cell path-finding and wound healing
[10, 11]. Also, there is increasing evidence showing that
durotaxis is involved in cancer metastasis, since tumors
are usually stiffer than the surrounding materials [12, 13].

A standard approach to modeling cell motility is to as-
sume that cells execute a persistent random walk [14–16];
sometimes Lévy walks are used instead [17, 18]. Recently,
Novikova and colleagues applied persistent random walk
ideas to understand durotaxis by relating persistence to
substrate stiffness [19]. Their approach did show how this
assumption could lead to durotaxis, but did not propose
any direct mechanical reason for this correspondence;
also they did not fully analyze their model in the rele-
vant case of a two-dimensional spatial domain. In this
study, we propose a simple intracellular mechanism that
naturally leads to stiffness dependent persistence which,
in agreement with the above findings, results in duro-
taxis. Our approach combines direct simulations with the
derivation of a quantitatively accurate 2D Fokker-Planck
equation, for which the numerical solution matches well
with simulation data.

Our basic hypothesis is built on the fact that cells are
observed to be more polarized when they move on stiffer
materials. Cells have sophisticated mechanisms to sense
stiffness, involving various cellular components and sub-
systems including the plasma membrane [20, 21], actin fil-
aments [22, 23], actomyosin-based contractility, integrin-
based focal adhesions [24, 25], etc. Once cells sense a
stiffer substrate, they take on a more elongated shape
[26, 27] as a response. Now, cells move by protrusions

which occur with the help of focal adhesions which allow
force transmission to the substrate. We will assume that
the change in shape to being more polarized implies that
focal adhesions (FA) are formed within a narrower wedge
on the cell front. In other words, we assume that the FA
distribution is correlated with cell polarization; the exact
biophysical process which creates this correlation is not
addressed here. It is also possible that the total number
of FAs present at some fixed time increases on stiffer sub-
strates, as FA are observed to be more stable on stiffer
substrates [6]. In our model, both the distribution and
the total number of FA directly control the variance of
deflection angles in cell motion over a short time inter-
val. We also consider the possibility that cell speed may
also depend on stiffness.These mechanisms will create the
necessary relationship between stiffness and persistence.

In experiments, the locations of cells moving on a 2D
surface are typically recorded at fixed time intervals.
Accordingly, we model the cell as a rigid object mov-
ing with velocity v and rotating its motion direction Φ
(its polarization) by an angle ∆Φ at fixed time intervals
∆t = ti+1 − ti which we take to be our unit of time. To
determine ∆Φ, we assume there are a number Nf of focal
adhesions which are positioned at distances ri from the
cell center and angles θi relative to the current direction
of motion; these are chosen randomly from uniform distri-
butions with ranges (rmin, rmax), (−θmax, θmax) respec-
tively. We assume in line with the previous arguments
that θmax is determined by local substrate stiffness k as
θmax = A/k, where A is a constant factor. The basic
picture of our cell is given in Fig. 1, Our calculations
will assume that Nf remains constant. The driving force
from each focal adhesion is assumed to have a constant
magnitude and to point in the current moving direction.
The net driving force is canceled by the friction acting
on the cell, thereby determining the velocity. It is worth
noting that in reality, FA’s are located both at the front
and the back of the cell. The forces applied by back
FAs, which typically operate in a “slipping" rather than
“gripping mode" [28] are replaced with friction.

At each time step, the dynamical formation and dis-
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ruption of FAs cause a possible imbalance in the driving
torque. With fast relaxation, the cell will rotate by an
angle ∆Φ at each time step to satisfy zero net torque:

Nf∑
i=1

ri sin(θi −∆Φ) = 0 (1)

whose solution is:

tan ∆Φ =

∑Nf
i=1 ri sin(θi)∑Nf
i=1 ri cos(θi)

(2)

For the purpose of illustration, we typically set ri = 1 for
all i and Nf = 12 in our model.

Clearly the variance of the induced distribution for ∆Φ
determines the persistence of the motion. Here we use a
Monte Carlo sampling method to evaluate this variance.
We use 106 sampling steps and have checked that this
gives us an accurate evaluation for the range of parame-
ters we have investigated. For the case of fixed radii, we
obtain∫

· · ·
∫ θmax

−θmax

Nf∏
i=1

dθi
2θmax

 arctan2

(∑Nf
i=1 sin(θi)∑Nf
i=1 cos(θi)

)

One can also compute the variance for the more general
situation with a distribution for the radii as well. Typical
results of this calculation are shown in Fig 2a. For use
later on, we have fitted the data for the case Nf = 12
with fixed radii to a simple function of k.

σ(k) =
1

αk + β
(3)

As expected, increasing Nf or decreasing θmax reduces
the variance, whether directly or via more averaging.
Thus, rigidity-dependent changes in the focal adhesion
dynamics can indeed be used to model the mechanism
underpinning the persistence-stiffness correlation.

Since focal adhesions are dynamically formed and de-
stroyed, in our model at each time step the locations of
all focal adhesions θi are reselected with no correlation
to their previous value, hence < ∆Φ(ti)∆Φ(ti+1) >= 0.
Thus on a uniform substrate, approximating the distri-
bution of ∆Φ to be Gaussian with the calculated width
reduces our model to a version of the worm-like chain,
where the mean squared displacement is:

〈x2〉 = v2τ2
p (

t

τp
+ e
− t
τp − 1) (4)

Here the persistence time is defined as τp = − ∆t
ln〈cos ∆Φ〉 .

Since 〈cos ∆Φ〉 = e−
σ2∆t

2 , where σ2∆t = var(∆Φ), τp =
2
σ2 . In terms of real numbers for example from Ref [18],
we can set v = 0.5 µm (per δt), δt = 0.01h. We the
obtain σ2δt ∼ 0.052 on stiff substrates and ∼ 0.32 on
soft substrates. In this way, we find τp = 2/σ2 ∼ 0.2h

FIG. 1: A sketch of our model. Red dots represent focal
adhesions. In our simulation, focal adhesions are randomly
generated within an angular range bounded by red lines in
the figure at each step. (a) For cells on a soft substrate,
the distribution of FAs is relatively wide (b) Conversely, for
cells on a hard substrate, the distribution of FAs is relatively
narrow.

on soft substrates and ∼ 8h on stiff substrates in our
simulations.

Initially, we assume that the cell speed v is stiffness-
independent and we simulate cell trajectories on uniform
substrates with different stiffness and verify the previ-
ous results for σ2 (see Fig 2b). In Fig. 2c and 2d, we
show trajectories of cells simulated on both uniform soft
and hard substrates. Consistent with the experimental
observation [29], cells crawl more efficiently on stiffer sub-
strates.

Next, we study the effect of stiffness gradients on cell
motility. We impose a constant stiffness gradient in the
central region with constant low stiffness kleft on the left
side and high stiffness kright on the right side. We fix
both kleft and kright and vary the width of the central
region.

k(x) =


kleft = 1 −1000 < x < −L
kleft +

(kright−kleft)
2L (X + L) −L ≤ X ≤ L

kright = 5 L < x < 1000

(5)
Initially all our cells are placed at the origin and given a
random initial direction. For small width, at a time when
half of the cells go into the stiff region on the right, the
other half are still hovering within the central gradient
region (Fig. 3a). As the width increases, fewer and fewer
cells enter the soft region on the left (Fig. 3b and c).
This is caused by the fact that larger width allows more
moving steps inside the gradient region and cells have
more time to adapt to the direction of stiffness gradient.
We further characterize these results by the durotactic
index (DI) ([30]). We calculate DI defined below every
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FIG. 2: Simulation result of uniform substrates and the vari-
ance of deflected angles. (a) The variance of deflected an-
gles calculated by Monte Carlo sampling. σ2 vs stiffness k.
N = 8, ri = 1(red), N = 12, ri = 1(blue), N = 12, ri ∈
(0.5, 1.5) (yellow) for all i and the fitted function σ(k) with
α = 3.9 and β = −0.645(Eq 3)(purple). (b) Comparison
between Monte Carlo sampling and direct simulation. For
N = 12, r = 1(red), two lines overlap together as the purple
line. For N = 12, ri ∈ (0.5, 1.5), two lines overlap together
as the blue line.N = 8, ri = 1(green)(directsimulation),N =
8, ri = 1(red)(MonteCarlo). For (c) and (d), we simulate
1000 time steps with v = 1(arb.units) Initial position of 20
cells are (0,0) and the initial moving direction is randomly
selected. The black dots are the final positions of each cell.
(c) On a soft substrate, k=1 and θi ∈ (−0.5π, 0.5π) for all
i. (d) On a stiff substrate with k=5, the angle range is
θi ∈ (−0.1π, 0.1π), for all i.

ten time steps in our simulation:

Durotaxis Index(ti) =
Nright −Nleft
Nright +Nleft

(6)

where Nright and Nleft are the number of cells have posi-
tive and negative net displacement in x-direction respec-
tively. This index ranges from [−1, 1]. Larger Durotaxis
Indices indicate more cells are moving towards the as-
cending gradient direction.

We find that the curve can be divided into three sec-
tions (Fig. 3d). In the first section, nearly all cells are
still in the gradient region. The index increases rapidly,
which suggests that cells start being guided by the stiff-
ness gradient. Consistent with experiment observation
[27], the magnitude of DI is highly correlated with the
magnitude of the gradient. In the second section, part of
the cells are in the gradient region while the other have
entered the uniform stiffness region. In the last section,
the index starts decreasing because all cells move into the
uniform rigid region and begin to execute random walks.
The DI curve in the first section elucidates the role of
gradient stiffness on cell motility.

FIG. 3: Direct simulation on gradient matrix and DI. (a)-(c)
Soft substrate k=1 in the left region and hard substrate k=5
in the right region. The central region has a constant gradient
stiffness and varying width L = (a) 100, (b) 200 and (c) 300
(arb. units). (d) Durotaxis Indices at several values of L; the
index decreases as L is increased. Every 10 steps is counted
as a "big step"

To facilitate understanding of our simulation data, we
now develop a Fokker-Plank equation for the probabil-
ity distribution P (x, y,Φ; t) governing a population of
particles in our model. We will be specifically inter-
ested in cases with a stiffness gradient, which we choose
to lie along the x direction. We focus on the varia-
tion with x and Φ and introduce p =

∫
dyP as a two-

dimensional density. For any single cell, the next position
x(t + dt) depends on the current position and angle via
x(t) + v cos(Φ(t))dt. We can therefore represent a single
step in our stochastic process via

p(x,Φ; t+ dt) =

2π∫
0

p(x− v cos(Φ0)dt,Φ0; t)

f(x− v cos(Φ0)dt,Φ0 − Φ)dΦ0

(7)

where we will use the aforementioned Gaussian approxi-
mation

f(x,Φ0 − Φ) = a(x)e
− (Φ0−Φ)2

2σ(x)2dt (8)

Here a(x) =
√

1
2πσ(x)2dt is the normalization coefficient

as long as the width is significantly smaller than 2π. Note
that now the variance depends on x through an x depen-
dence in the stiffness k.

In standard manner we can assume small dt and ex-
pand p around the current values of its arguments. After
some simplification, we obtain

∂p

∂t
= −∂p

∂x
v cos Φ +

σ(x)2

2

∂2p

∂Φ2
+ v sin Φ

∂

∂x
[σ(x)2dt

∂p

∂Φ
]
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FIG. 4: PDE solution. (a) Initial probability density function
p(x,Φ; t = 0) (b) Probability density function p(x,Φ; t = 94)
on a uniform substrate. Note that in this and the subsequent
figure Φ runs from π/2 to 5π/2.

The horizontal location x and moving direction Φ are di-
rectly coupled in the last term on the right side, which
is of the order of dt. We have checked that this third
term can be neglected in our model, both in terms of
any qualitative predictions but also (and perhaps more
surprisingly) at little cost in quantitative accuracy even
though our model involves discrete update steps. Conse-
quently, Eq(9) can be simplified to

∂p

∂t
= −∂p

∂x
v cos(Φ) +

σ(x)2

2

∂2p

∂Φ2
(9)

Following standard procedures (For example, see ref
[31]), one can show the Langevin equations below are
equivalent to the Fokker-Planck approach:

dx

dt
= v cos(Φ)

dΦ

dt
= η(t)

(10)

where 〈η(t)〉 = 0,〈η(t)η(t′)〉 = δ(t− t′)σ(x)2.
We then solve Eq (9) for both the uniform and stiff-

ness gradient substrate cases. Fig 4a shows the initial
condition in the all cases discussed in the following; in
particular we apply a narrow gaussian distribution to ap-
proximate the δ in p(x,Φ; t = 0) = 1

2π δ(x),Φ ∈ (0, 2π).
The solution shows a peak in x which varies from being at
positive values (for Φ ' 0) to negative ones (for Φ ' π);
the peak heights are independent of Φ as expected via
rotational symmetry (see Fig 4b).

For the stiffness gradient case, the stiffness distribution
is described by Eq (5) with L = 400. The full distribu-
tions are shown at several times in Figs. 5a and 5b. Now
there is a clear peak as a function of the direction. Most
cells adapt their moving directions from their initial di-
rections Φ(t = 0) to Φ near zero, exhibiting durotaxis
(data not shown); this can be seen by showing a full 2d
density plot, where there is a sharp ridge of cells moving
ahead and a significant smearing of cells that are go-
ing backwards (Fig 5c). This can be studied by defining
p̂(x, t) =

∫ 2π

0
p(x,Φ, t)dΦ and comparing our PDE result

FIG. 5: PDE solution and comparison to simulation on a sub-
strate with stiffness gradient. Probability density distribution
p(x,Φ; t) at (a) t=56 (b) t=94. (c) Full 2d density plot, from
direct simulation, (d) Comparison between direct simulations
of 30000 cells and the numerical solution of the Fokker-Planck
equation for p̂(x, t = 94).

for this quantity with direct simulations (Fig 5d). The
very good agreement between PDE and direct simulation
results validates the Fokker-Planck equation approach.
Note that as time progresses the above trends continue,
with the population continuing to break up into a peak at
positive x and a straggler peak at negative x correspond-
ing to cells that have wandered out into the uniform less
stiff side of the gradient profile.

In general, the Fokker-Planck approach is computa-
tionally preferable, especially if we are interested in long-
time behavior of the density. With direct simulation, we
often need to calculate many thousands of cells to deter-
mine a smooth distribution. An example is shown in Fig
6a, where the left side of the box is soft, the right half
hard and we have used reflective boundary conditions in
x and periodic in y. Even though the trajectories are
very different on each side, the overall steady-state den-
sity distribution is flat (see Fig. 6). This can be obtained
directly from the steady-state Fokker-Planck approach,
either by numerical relaxation or analytically by separa-
tion of variables.

To see one last non-trivial use of the PDE approach,
we now generalize our model to allow the velocity to be
stiffness dependent. The Fokker-Planck equation now
becomes

∂p

∂t
= − cos(Φ)

∂

∂x
(pv(x)) +

σ(x)2

2

∂2p

∂Φ2
(11)
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FIG. 6: Direct simulations with random initial velocities ve-
locity and uniform initial spatial density.

FIG. 7: Further test of the PDE (a) Full PDE solution for
periodic variation in stiffness and concomitant cell speed, with
random initial velocities velocity and uniform initial spatial
density. (b) Comparison between direct simulations of 10000
cells and the numerical solution of the Fokker-Planck equation
for p̂(x, t = 200)

We use the specific forms

k(x) =



khard = 5 −150 < x < −90

khard +
(ksoft−khard)

60 (X + 90) −90 ≤ X ≤ −30

ksoft = 1 −30 < x < 30

ksoft +
(khard−ksoft)

60 (X − 30) 30 ≤ X ≤ 90

khard = 5 90 < x < 150

(12)
and for the same regions,

v(x) =



vhard = 0.56

((

√
v(soft)−

√
v(hard))

60 ∗ (x+ 90) +
√
v(hard))2

vsoft = 0.0165

((
−
√
v(soft)+

√
v(hard))

60 ∗ (x− 30) +
√
v(soft))2

vhard = 0.56

(13)

Fig 7 shows that the PDE result matches very well with
direction simulation, but direction simulation needs a
very large amount of cells to get a smooth result.

In this study, we discussed a possible underlying mech-
anism for durotaxis, namely a stiffness dependence of
FA formation and possible FA-dependent speed. It is
known that FAs can dynamically sample rigidity to act
as mechanosensors [25], but it remains elusive how FAs
formation can directly control cell motility. In previous
work, it has been shown that stiffness dependent per-
sistence time leads to durotaxis [19]. In our work, we
proposed several biophysical mechanisms that can cause
positive correlation between persistence time and/or dis-
tance and substrate stiffness. For example, we show
that a model starting from stiffness dependent FA for-
mation assumption can generate consistent results to
those in [19]. In addition, we derived the corresponding
2D Fokker-Planck equation associated with our model
and show that it gives consistent numerical agreement
with our simulations. To show some novel application of
our model, we predicted long-term durotaxis effects on
cell density distribution in the presence of a spatially-
complex stiffness field. We find that the velocity de-
pendency on stiffness can lead to cell trapping on soft
materials. Our work can potentially help in predicting
cell motility in more complex physiological environments
such as those arising during cancer metastasis.

Our model implicitly assumes that cells are incompe-
tent at sensing rigidity gradients without moving around.
For chemotaxis, a close analog of durotaxis, a eukary-
otic cell is capable of comparing chemical concentration
between its two ends, even though a typical bacterium
bacteria is not [32]. It is technically hard to test such
an ability in durotaxis, mainly because the cytoskeleton
is essential for both cell motility and mechanosensing.
Recently it has been shown that some cells can exhibit
durotaxis as a cluster even if isolated constituent cells
are ineffective [33]; in this case motion appears to not be
necessary.
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